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Unbiased Rotational Moves for Rigid-Body Dynamics
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ABSTRACT We introduce an unbiased protocol for performing rotational moves in rigid-body dynamics simulations. This
approach—based on the analytic solution for the rotational equations of motion for an orthogonal coordinate system at constant
angular velocity—removes deficiencies that have been largely ignored in Brownian dynamics simulations, namely errors for
finite rotations that result from applying the noncommuting rotational matrices in an arbitrary order. Our algorithm should thus
replace standard approaches to rotate local coordinate frames in Langevin and Brownian dynamics simulations.

INTRODUCTION

Generalized numerical methods for Langevin or Brownian

dynamics (BD) involving rigid bodies require operators for

applying arbitrary finite rotational moves to three-dimen-

sional objects. Typically, a local body-fixed coordinate

frame, which defines a body’s three-dimensional orientation,

is associated with each body in a system (Garcı́a de la Torre

and Bloomfield, 1981; Allison, 1991; Fernandez and Garcı́a

de la Torre, 2002). Such methods are important and

commonly used to study large biomolecular systems, such

as long DNA (Wu et al., 1991; Chirico and Langowski,

1996; Jian et al., 1997; Klenin et al., 1998) or large

nucleoprotein complexes (Beard and Schlick, 2001; Huang

and Schlick, 2002). During every time-step, each body is

translated and rotated according to a given discretization of

the governing dynamical equations (Ermak and McCam-

mon, 1978; Allison, 1991; Fernandez and Garcı́a de la Torre,

2002). The translational step is straightforward; it involves

updating the three coordinates of a body’s center of rotation.

The rotational step is more subtle, because operators for

rotation about orthogonal axes do not commute and thus

their order of application defines different protocols. The

related difficulties have been ignored in the past (e.g.,

Allison, 1991; Fernandez and Garcı́a de la Torre, 2002); that

is, the noncommuting operators are usually applied in some

particular (arbitrary) order, introducing errors and bias into

the rotational move. Although most prior models with BD

simulation protocols have been assessed relative to available

experimental data and found to be satisfactory overall, the

previously-used rotational operators are strictly appropriate

only in the limit of small rotational angles, where these errors

are negligible. Here we address this limitation by exploring

the magnitudes of angles for which errors become apparent

in a simple model and introduce an unbiased accurate

operator for finite rotations. Given that our protocol has the

same computational cost as the biased protocol, it should be

used in general in BD algorithms to avoid any possible errors

from this computational component.

ROTATIONAL MOVES

We define a right-handed local particle-fixed coordinate

frame for a rigid body using three orthogonal unit vectors

fâa; b̂b; ĉcg; which translate and rotate in space as a dynamics

trajectory evolves (e.g., Fig. 1 of Beard and Schlick, 2001).

In this article, we focus on how a given rotation is applied

to a coordinate frame; we do not consider issues related

to how the dynamical equations are discretized to determine

the rotation and translation vectors for each time-step.

A finite rotation is denoted by ~VV ¼ fVa;Vb;Vcg; where
the components of ~VV are rotations about the three orthogonal

local axes. The central problem is posed as follows. Given

a rotation vector ~VV; how can this rotation be applied to

a coordinate frame fâa; b̂b; ĉcg? This issue is key in simulating

Brownian dynamics of rigid bodies (Allison, 1991; Fernan-

dez and Garcı́a de la Torre, 2002). In previous works, a three-

dimensional rotation is applied to a coordinate frame by

successively applying individual rotations about each local

frame. In this approach, the successive rotation operators are

given by

Ra ¼
1 0 0

0 cosVa �sinVa

0 sinVa cosVa

2
64

3
75;

Rb ¼
cosVb 0 sinVb

0 1 0

�sinVb 0 cosVb

2
64

3
75;

Rc ¼
cosVc �sinVc 0

sinVc cosVc 0

0 0 1

2
64

3
75; (1)

and the cumulative rotational operator R is defined by

applying these rotations in a particular order. For example,

applying rotations about the âa; b̂b; then ĉc axes, yields

R ¼ Rc Rb Ra: (2)
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However, this choice of R is not unique. The rotation

operators do not commute: Ra Rb Rc 6¼ Rc Rb Ra. Thus, the

operator R introduces bias into the coordinate rotation. As

we show below for a given random rotation vector chosen

from an unbiased distribution, resulting rotations will be

biased toward an axis which is determined by the choice of

the order of operators applied in Eq. 2.

BIAS-FREE ROTATIONAL APPROACH

A bias-free approach to performing these rotational steps can

be formulated from the dynamics equations for rotation of an

orthogonal coordinate system at a constant angular velocity

(see Eq. 4-62 of Goldstein et al., 2002):

dâa

dt
¼ vcb̂b� vbĉc

db̂b

dt
¼ vaĉc� vcâa

dĉc

dt
¼ vbâa� vab̂b; (3)

where fva, vb, vcg are the three components of angular

velocity. For constant va, vb, vc, Eq. 3 is a constant-

coefficient linear system with solution (which was obtained

using the program MAPLE, Waterloo Maple, Waterloo,

Ontario, Canada):

where fVa, Vb, Vcg ¼ fvaDt, vbDt, vcDtg, and V2 ¼ Va
2 1

Vb
2 1 Vc

2.

Using the notation of Fernandez and Garcı́a de la Torre

(2002), Eq. 4 can be expressed compactly as

where the triad vectors fâao; b̂bo; ĉcog denote the initial local

frame (at time to), and fâa; b̂b; ĉcg correspond to the local axes

following rotation (at time t). The matrix Mt!l ¼ âab̂bĉc
� �

is

a transformation from the local frame at time t to the fixed lab
(l ) frame. Thus Eq. 5 can be writtenMt!l ¼ Mto!lU; where
the matrix U, defined by Eq. 5, replaces the operator R in

Eq. 2.

The matrix operator U in Eq. 5 is an exact representation

for the rotation of the vectors fâao; b̂bo; ĉcog by an angle V

through the axis of rotation n̂n; where n̂n is the unit vector

defined by n̂n ¼ ~VV=V: Through geometric arguments, Gold-

stein et al. (2002) have shown that this rotation is expressed

as

~rr ¼~rro cosV1 n̂nðn̂n3~rroÞ½1� cosV�1 ðn̂n3~rroÞsinV; (6)

where~rro and~rr represent a vector before and after rotation,

respectively. Eq. 6—derived by rotating the frame to make

the z-axis point along the axis of rotation, applying the

rotation around this axis, and then rotating back—is

equivalent to our matrix operation of Eq. 5.

EXAMPLE OF ROTATIONAL ERROR

To compare the performance of the above rotational

operators, we consider the geometry illustrated in Fig. 1.

Without loss of generality, we assume that the initial local

frame fâao; b̂bo; ĉcog coincides with the lab fixed coordinate

system, indicated by the x-, y-, and z-axes. We consider

rotations where ~VV is directed in the x-y plane. In particular, ~VV
¼ V½cos u; sin u; 0�T;where u is the polar angle of ~VV (see Fig.

âaðt1DtÞ ¼ ðV2

b 1V
2

cÞcosV1V
2

a

V
2

� �
âaðtÞ1 VaVb

V
2 ð1� cosVÞ1 Vc

V
sinV

� �
b̂bðtÞ1 VaVc

V
2 ð1� cosVÞ �Vb

V
sinV

� �
ĉcðtÞ

b̂bðt1DtÞ ¼ VaVb

V
2 ð1� cosVÞ �Vc

V
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� �
âaðtÞ1 ðV2

a 1V
2

cÞcosV1V
2

a

V
2
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V
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V
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� �
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� �
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2

c

V
2

� �
ĉcðtÞ; (4)
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1) and the superscript T denotes the vector transpose. The

local frame following rotation is denoted by fâa; b̂b; ĉcg; with
rotated ĉc component, ĉc ¼ ½sinV sin u;�sinV cos u; cosV�T:
The endpoint of ĉc; directed out of the origin, lies on a circle

located in the plane at z¼ cosV. The transformation given by

Eq. 5 produces the expected result, whereas the approxima-

tionsRc Rb Ra ĉco and the other variations are not exact, as we
next show.

Specifically, we perform rotations on fâao; b̂bo; ĉcog at 188

intervals in u for V of 108, 308, and 608. In Fig. 2, we plot

the resulting endpoints of ĉc for the six variations on the

combinations of the noncommuting operators in R. The

x- and y-components of the rotated ĉc are plotted separately

in Fig. 2; the three concentric circles in each plot correspond

to the three different magnitudes of V. The solid circles

correspond to the exact operator of Eq. 5; the unfilled circles

correspond to the R operators as indicated in each plot (a–f ).

The behavior of the R operator is clearly dependent on the

definition used, with the magnitude of the error increasing

with the size of the rotation, V.

To quantify the error associated with R, we introduce

a normalized error measure: EcðV; uÞ ¼ kRĉco � ĉck=
kĉco � ĉck; which measures the magnitude in the error of the

R-rotated ĉc vector relative to magnitude of the exact move

kĉco � ĉck:Contours ofEc(V, u) forR¼RcRbRa are plotted in

Fig. 3. As expected, the relative error increases with V. The

error goes to zero as the rotational angle goes to zero. For other

definitions of R, results are similar. This rotational operator is

straightforward to implement in the standard Ermak and

McCammon algorithm (Ermak and McCammon, 1978) and

in higher-order BD updates, where repeated rotation appli-

cations may be necessary per time-step.

FIGURE 1 The unit sphere in the fx,y,zg fixed lab frame. The initial local

frame fâao; b̂bo; ĉcog corresponds to the fixed lab frame axes. The rotation

vector ~VV ¼ V½cos u; sin u; 0� is oriented in the x-y plane; ĉc denotes ĉco after

being rotated about ~VV:

FIGURE 2 Positions of the x- and y-components of ĉc

after rotating ĉco by ~VV: The initial local frame fâao; b̂bo; ĉcog
corresponds to the lab fixed frame (see Fig. 1). Rotations

are performed for 20 values of u between 08 and 3608 and

V of 108, 308, and 608. Solid circles correspond to the exact

move; unfilled circles correspond to rotations by each of

the six R operators, as indicated in a–f. The R operators

depend on the definition used, with the bias and magnitude

of error dependent on that choice of R.

FIGURE 3 Contours of EcðV; uÞ ¼ kRĉco � ĉck=kĉco � ĉck for the operator

R ¼ Rc Rb Ra in the V-u plane.
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CONCLUSION

The commonly used rotation protocol for rigid-body

dynamics introduces bias and error into the rotational move

and hence the overall simulation. Here, we show that the bias

and error are finite, yet diminish for small rotational angles.

Our alternative rotational protocol (Eq. 5), applied to chro-

matin folding (Beard and Schlick, 2001), does not introduce

additional numerical complexity and removes such biases

and errors. It should thus be used to rotate local coordinate

frames in rigid body dynamics.

The authors are grateful to Hong Qian for valuable discussions. They also

thank Marshall Fixman and Bruce Robinson for comments on an alternative
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