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An iterative univariate minimizer (line search) is often used to generate a steplength in
each step of a descent method for minimizing a multivariate function. The line search
performance strongly depends on the choice of the stopping rule enforced. This termina-
tion criterion and other algorithmic details also affect the overall efficiency of the multi-
variate minimization procedure. Here we propose a more lenient stopping rule for the
line search that is suitable for objective univariate functions that are not necessarily
convex in the bracketed search interval. We also describe a remedy to special cases
where the minimum point of the cubic interpolant constructed in each line search itera-
tion is very close to zero. Results in the context of the truncated Newton package
TNPACK for 18 standard test functions, as well as molecular potential functions,
show that these strategies can lead to modest performance improvements in general,
and significant improvements in special cases.

Keywords: Line search; Descent method; Truncated Newton; Molecular potential
minimization

1 INTRODUCTION

Descent methods provide a general framework for constructing

globally convergent algorithms for minimizing real functions E on a

subdomain D of the n-dimensional Euclidean space Rn. For a given
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point Xk 2 D, a descent method generates a search direction Pk and a

steplength �k, and then defines the updated iterate Xkþ1 in the form

Xkþ1 ¼ Xk þ �kP
k, k ¼ 0, 1, 2, . . . , ð1Þ

where X0 is a starting point, and Pk is a method-specific search vector.

The search direction Pk is often chosen to satisfy the descent

condition

gðXkÞ
TPk < 0, ð2Þ

where gðXkÞ is the gradient of E at Xk, and the superscript T denotes a

vector or matrix transpose. A vector satisfying (2) is a ‘‘descent direc-

tion’’ because it implies that there exists a steplength �k such that

EðXk þ �kP
kÞ � EðXkÞ: ð3Þ

Since many �k may satisfy (3), line search schemes are employed at

each iteration of the minimization method (1) to select a reasonable

value of �k that will lead to an efficient descent method.

Such line search schemes are iterative, one-dimensional minimization

algorithms for solving:

min
�>0

f ð�Þ, ð4Þ

where

f ð�Þ ¼ EðXk þ �PkÞ, � > 0: ð5Þ

Safeguarded polynomial interpolation is typically used to compute an

approximate solution of (4). For example, a cubic interpolant is

constructed at each step using function and derivative values of f at the

two endpoints of the feasible � interval. This interval is modified at each

line search iteration to bracket the minimum until certain termination

criteria are met.

The prevailing belief up through the mid 1960s was that �k should be

chosen as an exact solution of (4). Further computing experience has

shown, however, that choosing �k as an approximate solution of (4)

can lead to a more efficient descent method. Indeed, while an exact
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search can reduce E further in one particular step, the additional cost

involved (more function, and possibly gradient, evaluations) may not be

overall profitable. This tradeoff between the work involved in comput-

ing �k at each step and the overall efficiency of the descent method

must be carefully balanced. When function evaluations are expensive

(e.g., potential functions for large biomolecules), cruder line searches

may be preferred at each step.

In this article, we propose a more lenient stopping rule for the line

search (termed C2) that is suitable for objective univariate functions

that are not necessarily convex in the bracketed search interval. Two

well-known stopping (or convergence) rules termed C1 and C10 in this

article (i.e., the strong Wolfe condition and the Wolfe condition [12])

consist of two conditions that are simultaneously satisfied at bracketed

search intervals on which the objective univariate function is usually

convex. Our amendment C2 halts the line search process when these

two standard conditions are satisfied or when two others are satisfied

at bracketed search intervals on which the function is not strictly

convex; C2 thus includes two condition sets. The convergence of the

overall descent method using C2 follows directly by the same procedure

used for C1 or C10. We have also incorporated a minimum value for �

into the acceptable steplength setting as often suggested. We have found

this restraint specification to work well in many molecular applications

where the cubic interpolant constructed in the line search algorithm has

a minimum close to zero. We also show in the appendix that a unit

steplength is a good line search starting point in truncated-Newton

type methods.

We present numerical results on two nonconvex functions [11],

potential energies of two proteins modeled by the molecular mechanics

program CHARMM [3] (started from various points), and 18 test func-

tions from Algorithm 566 [8] to demonstrate the performance of these

line search modifications. We use the line search algorithm developed

by Moré and Thuente [11], modified here as proposed. As a minimi-

zation algorithm for the multivariate objective function, we use the

truncated-Newton package TNPACK [5,13,17].

Results show that our modifications can slightly reduce the number

of line search iterations (or function evaluations) and hence the

required CPU times. The reduction is typically small because the line

search algorithm tends to generate an acceptable steplength �k near a
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minimum point of f such that f is often convex near iterate Xk at most

descent steps. Still, we found special cases in molecular potential energy

minimization where the reductions in computational times are more

significant. It thus appears that using C2 is no worse than using C1

and, in very special cases, C2 works better. Clearly, the resulting mini-

mum function value of f might be higher in any one iteration of the

multivariate minimization problem when C2 is used instead of C1,

and the consequence of this effect must be examined in the scope of

the overall progress to the minimum of the objective function for the

given application.

In Section 2, we present and discuss stopping rules for line search

algorithms. In Section 3, we discuss the case where the cubic interpolant

has a minimum point very close to zero. Sections 4 and 5 present

numerical results using C2. In the Appendix, we prove that the unit

steplength is a good starting point for the line search in the context

of truncated-Newton methods.

2 A MORE LENIENT STOPPING RULE FOR

LINE SEARCH METHODS

Stopping or convergence rules for line search schemes have been

developed on the basis of convergence theory for descent methods [6].

They usually consist of two conditions: the first enforces sufficient

decrease in E, and the second avoids excessively small steplength �k.

Two different formulations of the second condition have led to two well-

known stopping rules. One is the following Condition-set 1 (C1) [9,11]:

C1 (STOPPING RULE FOR LINE SEARCH). The iterative line search process

is terminated if the steplength �k > 0 satisfies

EðXk þ �kP
kÞ � EðXkÞ þ ��kgðX

kÞ
TPk ð6Þ

and

gðXk þ �kP
kÞ

TPk
�� �� � � gðXkÞ

TPk
�� ��, ð7Þ

where � and � are given constants satisfying 0 < � < � < 1 (typically

� ¼ 0:1 and � ¼ 0:9).
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Using condition (6) in combination with

gðXk þ �kP
kÞ

TPk 	 �gðXkÞ
TPk ð8Þ

instead of (7) gives the other well-known convergence rule for line

search termination (termed C10 here). This is a weaker combination

than C1 because a steplength satisfying (7) satisfies (8), but the converse

is not true. C10 is based on the work of Armijo [1] and Goldstein [10],

and is often referred to as the Wolfe conditions while C1 is referred

to as the strong Wolfe conditions [12].

Condition (6) follows from (2) and the definitionof the derivative of f ,

where f is given in (5). It forces a sufficient decrease in the function E

but does not rule out an arbitrarily small steplength. Condition (7) or

(8) ensures that the steplength �k is sufficiently large.

Here we observe that both C1 and C10 are based on the assumption

that a locally convex region of function f in (5) has been bracketed to

determine an acceptable steplength �k. In special cases, the bracketing

strategy may fail and f may not be strictly convex on some feasible �

subinterval explored in a line search iteration (see Figs. 3, 4 and 5 later).

For those subintervals, the line search procedure might generate points

that satisfy the sufficient decrease condition but not the second con-

dition of sets C1 and C10, even though the value of �k is not necessarily

small. Therefore, an alternative condition is needed in these situations

to halt the iteration process efficiently.

To see that an acceptable steplength �k determined by C1 or C10 lies

on an interval on which f is convex, we write f 0ð�kÞ ¼ gðXk þ �kP
kÞ

TPk

and f 0ð0Þ ¼ gðXkÞ
TPk < 0. We then use (7) or (8) to write

f 0ð�kÞ 
 f 0ð0Þ 	 ð�
 1Þ f 0ð0Þ 	 ð1 
 �Þj f 0ð0Þj ð9Þ

since f 0ð0Þ < 0 and 0 < � < 1. This shows that �k must be large enough

since the right-hand side of (9) is a positive constant. Using the mean

value theorem for f 0 in the interval ð0, �kÞ we write f 0ð�kÞ ¼ f 0ð0Þ þ

�kf
00ð�kÞ for �k 2 ð0, �kÞ. Dividing by �k and combining with (9), we have

f 00ð�kÞ ¼
f 0ð�kÞ 
 f 0ð0Þ

�k
	

1 
 �

�k
j f 0ð0Þj > 0: ð10Þ

This indicates that f is convex near �k.
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To determine an acceptable �k when the bracketing strategy has not

found a subinterval on which f is convex, we propose the following

Condition-set 2 (C2):

C2 (MORE LENIENT STOPPING RULE FOR LINE SEARCH). The iterative line

search process is terminated if it generates a steplength �k > 0 satisfies

the sufficient decrease condition (6) and one of the following two con-

ditions: (8) or

gðXk þ �kP
kÞ

TPk � ð2 
 �ÞgðXkÞ
TPk: ð11Þ

Note that C2 includes two condition sets. The combination of (6) and

(8) gives C10, which determines an acceptable �k from subintervals on

which f is convex. We use C10 rather than C1 as part of C2 since C10 is

a weaker stopping rule. To see that condition (11) has been introduced

to work on a subinterval on which f is not convex, note that (11) implies

f 0ð�kÞ 
 f 0ð0Þ � 
ð1 
 �Þj f 0ð0Þj, ð12Þ

indicating that there exists a �k 2 ð0, �kÞ such that f 00ð�kÞ < 0 for

0 < � < 1. Hence, the new combination of conditions (6) and (11) in

C2 works on a subinterval on which f is not convex. C2 can thus

lead to a larger range of acceptable steplengths than both C1 and

C10 for general f .

To illustrate, we consider function f1, plotted in Fig. 1:

f1ð�Þ ¼

�2 
 � if 0 � � � 1,
3

�

 5 if �	1 .

(
ð13Þ
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This continuously differentiable function is bounded below. It is easy

to show that the � intervals satisfying the sufficient decrease condition

(6) are [0, 1] and ½ð5 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 
 12�

p
Þ=ð2�Þ, ð5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 
 12�

p
Þ=ð2�Þ� ; the

interval satisfying (7) or (8) is ½
ffiffiffiffiffiffiffiffi
3=�

p
,1Þ. Thus, the range of � satisfying

C1 or C10 is II ¼ ½
ffiffiffiffiffiffiffiffi
3=�

p
, ð5 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 
 12�

p
Þ=ð2�Þ�. Since condition (11)

produces an additional interval I ¼ ½ð1 
 �Þ=2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð2 
 �Þ

p
�, the range

of � satisfying C2 is the union of two intervals I and II (see Fig. 2 for

� ¼ 0:1 and � ¼ 0:9).

While C2 can reduce the total number of line search iterations (or

function evaluations) due to a larger range of acceptable �, the accepted

� might not approximate well the minimum point of f , and these effects

must be considered in tandem. In fact, condition (8) or (11) only

ensures a sufficiently large steplength; it may not approximate a mini-

mum point of f even with � ¼ 0.

As examples, consider functions f2 and f3 [11] (Figs. 3 and 4)

f2ð�Þ ¼ ð�þ 0:004Þ5 
 2ð�þ 0:004Þ4, ð14Þ

and

f3ð�Þ ¼

1
�þ
2ð1
	Þ

l

sin

l


2
�

� �
if �� 1
	,

�
1þ
2ð1
	Þ

l

sin

l


2
�

� �
if �	 1þ	,

ð�
1Þ2

2	
þ
	

2
þ

2ð1
	Þ

l

sin

l


2
�

� �
if 1
	� �� 1þ	,

8>>>>>>><
>>>>>>>:

ð15Þ
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where 	 ¼ 0:01 and l ¼ 39. These functions were used in [11] to demon-

strate the performance of a line search algorithm using C1. To compare

the line search using C2 versus C1 and C10, we use the same line search

code [11] and parameters (such as the four different starting points for �

10
3, 10
1, 10 and 103, and � ¼ � ¼ 0:1) as [11]. Results are reported in

Table I. To verify that C2 can generate a sufficiently large steplength,

we also tested a very small starting point, �0 ¼ 10
10, with respect to

three different values of � (0.1, 0.5 and 0.9). Results are reported in

Table II. These two tables show, on one hand, that C2 can reduce the

total number of required function evaluations significantly in com-

parison to C1 and C10. On the other hand, the values of the accepted

� are very different! C1 leads to the minimum points 1.6 and 1.0 of func-

tions f2 and f3, respectively, while the acceptable steplengths generated

by C2 are much smaller than these values. Note also that using C10

requires less function evaluations than C1 but that for function f2 the

minima obtained are also different and depend on the starting point.
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Since C2 forces sufficient function decrease according to (6) and

guarantees a sufficiently large steplength, it might be tested in practice

for overall efficiency of a minimization procedure for a large-scale

multivariate function where function evaluations are expensive. In

theory, the global convergence for a descent method using C2 can be

proven in the same way as for C1 and C10 [6]. More precisely, the

following theorem holds for C2.

THEOREM Let E : Rn ! R be continuously differentiable in an open

convex set D and bounded below. If the descent iterates Xk defined by

(1) satisfy the descent condition (2) and the line search stopping rule

C2, and the angles between the search directions Pk and the gradients

gðXkÞ of E at Xk are bounded away from 90� by a constant for all k,

then for any given X0 2 D ,

lim
k!1

gðXkÞ ¼ 0:

Furthermore, if fXkg converges to a point X� 2 D, at which gðX�Þ ¼ 0

and the second derivative of E is positive definite, and there exists an
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TABLE I Line search performance using C2 vs C1 and C10 for functions f2 (Eq. (14))
and f3 (Eq. (15))

Starting
point

C1 C10 C2

f Eval. Accepted � f Eval. Accepted � f Eval. Accepted �

Function f2
10
3 12 1.6 10 1.6 1 0.001
10
1 8 1.6 5 1.6 1 0.1
10 8 1.6 5 1.6 3 0.69
103 11 1.6 7 1.6 6 0.72

Function f3
10
3 12 1.0 8 1.6 2 0.005
10
1 12 1.0 6 1.5 1 0.1
10 10 1.0 3 1.0 2 0.021
103 13 1.0 7 1.1 3 0.016

TABLE II Condition-sets C1, C10, and C2 for function f3 (Eq. (15)) with different �
and starting point 10
10

Value
of �

C1 C10 C2

f Eval. Accepted � f Eval. Accepted � f Eval. Accepted �

0.1 25 1.0 17 1.6 12 0.0056
0.5 25 1.0 17 1.6 12 0.0056
0.9 25 1.0 17 1.6 11 0.0014
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index k0 > 0 such that �k ¼ 1 for all k 	 k0, then fXkg converges to X�

q-superlinearly.

3 A MINIMUM ACCEPTABLE STEPLENGTH

The cubic interpolant constructed in each line search iteration may

have a very small minimum point in special cases. Our experience has

shown this to occur in practice in computational chemistry problems.

The simple modification below incorporates a minimum acceptable

value for �k.

Let �l and �t be the two endpoints of an interval I, and fl, ft, gl and

gt the values of f ð�Þ and f 0ð�Þ at �l and �t, respectively. Using them,

we can construct a cubic interpolant of f on I, and find its minimum

point �c as follows:

�c ¼ �l þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 
 glgt

p

 gl þ �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 
 glgt

p

 gl þ gt

ð�t 
 �lÞ, ð16Þ

where � ¼ 3ð fl 
 ftÞ=ð�t 
 �lÞ þ gl þ gt.

When ft > fl, we have � < 0. Hence, if ft ! þ1, we have

� ! 
1, andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 
 glgt

p

 gl þ �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 
 glgt

p

 gl þ gt

¼
j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
 glgt=�2

p

 gl þ �

2j�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
 glgt=�2

p

 gl þ gt

! 0: ð17Þ

Therefore, if the lower endpoint is set as �l ¼ 0, (16) and (17)

give �c � 0:

In the line search algorithm of Moré and Thuente [11], a sequence of

trial values, f�ð jÞg, is generated such that �ð jÞ is in the interval Ij satisfy-

ing I0 � I1 � I2 � � � � : If ft > fl , together with another condition (see

[11]), the jth iterate is defined by

�ð jÞ ¼ �c: ð18Þ

At the start of the line search, we have I0 ¼ ½0, �ð0Þ� with a given start-

ing point �ð0Þ > 0 (i.e., �l ¼ 0 and �t ¼ �ð0Þ). Thus, if f ð�ð0ÞÞ is very large,

we have �ð1Þ ¼ �c � 0: It follows that all subsequent trial values, �ð jÞ,

are very small, leading to failure of the line search algorithm.
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The above case occurs in our molecular energy minimization

occasionally. We illustrate this problem through an application of

the truncated-Newton package TNPACK [5,13,14,17] to the minimiza-

tion of the protein lysozyme (6090 Cartesian variables) [17]. At the 51th

truncated-Newton iteration, the line search fails to converge due to a

very small trial value obtained at the first iteration of the line search.

We plot here the function f ð�Þ ¼ EðXk þ �PkÞ at k ¼ 51 on the interval

½0, 1� in two figures: the positive values of f are in Fig. 5 and the nega-

tive values in Fig. 6.

From the inset of Fig. 6 we see that f 0ð0Þ < 0, and there exists a mini-

mum of f near 0.01. However, since f ð1Þ ¼ O ð10mÞ with m > 10, as
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FIGURE 5 The positive part of function E(Xkþ �Pk) at step k¼ 51 of the minimiza-
tion algorithm, where E is the lysozyme potential energy, Xkis the 51th truncated-
Newton iterate, and Pk is the search direction generated by the preconditioned conjugate
gradient method.

FIGURE 6 The negative part of the function E(Xkþ �Pk) as described in Fig. 5.
The inset shows the location of the minimum.
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shown in Fig. 5, the line search scheme generates a trial value as small

as Oð10
mÞ and fails to converge.

A simple remedy is the addition of a lower bound after the computa-

tion of the trial value �c. For example, Moré has suggested (personal

communication) to modify (18) as follows:

�ð j Þ ¼ max �l þ �ð�t 
 �lÞ, �c
� �

, ð19Þ

where � is a small number such as 0:001. Another solution is using a

backtracking strategy [6]. Too small a �c may indicate that function

f ð�Þ is poorly modeled by a cubic interpolant on ½�l , �t�. Hence, the

interval size should be reduced by setting a new trial value according to

�t :¼ 
�t

with 
 � 1=2.

4 NUMERICAL EXPERIMENTS IN

BIOMOLECULAR MINIMIZATION

We now test the two line search modifications in the context of

TNPACK. We use stopping rule C2 for halting the line search process,

and the modification (19) to incorporate a lower bound for the accept-

able steplength. The starting point for the line search is �ð0Þ ¼ 1. As we

show in the appendix, the value unity is the minimum point of the

quadric approximation qð�Þ of f . This is because the minimum point

of the quadratic model qð�Þ is 
gTk P
k=ðPkÞ

THkP
k ( Hk is the Hessian

at Xk) and ðPkÞ
THkP

k ¼ 
gTk P
k when the search direction Pk is a

linear preconditioned conjugate gradient (PCG) iterate. TNPACK

uses the line search code by Moré and Thuente, which uses C1 to halt

line search iterations. Hence, we will only compare C2 versus C1 in the

numerical experiments made with TNPACK.

We consider two protein molecular systems: BPTI and lysozyme.

The 58-residue protein BPTI has 568 atoms and thus 1704 Cartesian

variables; it is considered ‘‘small’’ by computational chemists. The larger

protein lysozyme has 130 residues, 2030 atoms, and 6090 variables.
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For each protein, we construct three starting points. Besides the default

experimental structure ( X0) from CHARMM, we also use the simple

perturbation formula X0,! ¼ X0 þ !� for ! ¼ 0:1 and 1, with the

random vector � generated by the randomly chosen seed 13434323.

All computations were performed in double precision in serial mode

on an SGI Power Challenge L computer with R10000 processors of

speed 195 MHZ at New York University. CHARMM version 23 was

used to compute the potential energy function and its derivatives,

with the default parameters of a TNPACK version for CHARMM

[17]. All nonbonded interactions of the potential energy function

were considered, and a distance-dependent dielectric function was used.

The vector norm k � k in the table is the standard Euclidean norm

divided by
ffiffiffi
n

p
, where n is the number of independent variables of a

potential energy function. The latest version of the Moré and

Thuente line search code was incorporated at this time.

Table III compares the performance of TNPACK using stopping

rules C1 versus C2. Different overall pathways are obtained, so com-

parisons are difficult, but a small improvement using C2 can be noted

over all. Interestingly, using C2 tends to produce lower final energy

values. C2 also tends to produce less function evaluations, less Newton

iterations, and much less CPU time to find a minimum than C1 (a factor

of four for BPTI).

+ [16.7.2002–12:14pm] [1–18] [Page No. 13] FIRST PROOFS i:/T&F Gordon & Breach/Goms/GOMS-21024.3d Optimization Methods and Software (GOMS) Paper: GOMS-21024 Keyword

TABLE III Minimization performance of TNPACK using the line search stopping rule
C1 vs C2 for two proteins and three starting points for each (labeled as a, b, c)

Criterion Final energy Final k g k TN (PCG) Itns. E Evals. CPU time

BPTI (1704 variables)

C1a 
2705.20 3:3 � 10
6 67 (1574) 207 5.9min
C2a 
2772.80 2:8 � 10
6 62 (1163) 179 4.5min
C1b 
2796.32 9:5 � 10
6 820 (2347) 2090 22min
C2b 
2730.47 1:2 � 10
6 81 (1215) 202 4.9min
C1c 
2771.91 7:0 � 10
6 70 (1686) 200 6.1min
C2c 
2766.47 9:8 � 10
6 55 (947) 186 3.9min

Lysozyme (6090 variables)

C1a 
4631.20 4:6 � 10
6 74 (1873) 229 1.5 h
C2a 
4649.90 3:3 � 10
6 70 (1578) 195 1.3 h
C1b 
4634.53 9:0 � 10
6 250 (2908) 593 3.0 h
C2b 
4600.88 3:7 � 10
6 91 (1964) 210 1.6 h
C1c 
4615.49 3:0 � 10
6 118 (2728) 292 2.2 h
C2c 
4639.50 3:4 � 10
6 75 (1769) 194 1.4 h
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5 NUMERICAL EXPERIMENTS FOR 18 STANDARD

TEST FUNCTIONS

We also study performance on the 18 test functions in the Algorithm

566 [7, 8] package by Moré et al., supplemented by the Hessian package,

HESFCN, by Averbukh et al. [15, 16]. The supplementary package

makes possible the testing of minimizers that use second-derivative

information.
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TABLE IV Minimization performance for the 18 test functions of Alg. 566

Prob TNPACK Final energy Final kgk TN (PCG) Itns. E evals.

1 Modified 2.88� 10
21 6.19� 10
10 16 (39) 20
Original 2.87� 10
32 6.67� 10
16 17 (40) 23

2 Modified 2.43� 10
1 3.38� 10
7 1156 (6165) 2606
Original 2.43� 10
1 3.05� 10
7 1274 (6822) 2963

3 Modified 1.13� 10
8 5.60� 10
11 2 (3) 4
Original 1.13� 10
8 5.60� 10
11 2 (4) 3

4 Modified 7.53� 10
10 8.70� 10
9 119 (209) 173
Original 2.98� 10
7 1.28� 10
7 107 (182) 167

5 Modified 1.05� 10
18 3.43� 10
10 16 (34) 20
Original 1.05� 10
18 3.43� 10
10 16 (34) 20

6 Modified 3.24� 10
22 8.04� 10
11 9 (14) 10
Original 1.97� 10
18 6.27� 10
9 9 (14) 10

7 Modified 4.71� 10
1 7.52� 10
15 9 (19) 10
Original 4.71� 10
1 7.52� 10
15 9 (19) 10

8 Modified 1.52� 10
5 3.43� 10
9 52 (96) 64
Original 1.52� 10
5 3.43� 10
9 52 (96) 64

9 Modified 3.20� 10
6 3.95� 10
11 34 (92) 42
Original 3.20� 10
6 1.85� 10
10 35 (95) 44

10 Modified 5.42� 10
20 7.09� 10
10 4 (5) 5
Original 5.42� 0
20 7.09� 10
10 4 (5) 5

11 Modified 8.58� 104 7.22� 10
3 10 (27) 11
Original 8.58� 104 7.22� 10
3 10 (27) 11

12 Modified 1.72� 10
30 7.24� 10
15 38 (92) 47
Original Line search failed at 3rd TN after 30 line search iterations

13 Modified 2.57� 10
3 7.79� 10
9 8 (21) 11
Original 2.57� 10
3 7.79� 10
9 8 (21) 11

14 Modified 1.18� 10
23 2.15� 10
12 27 (46) 32
Original 1.48� 10
25 2.97� 10
13 33 (57) 43

15 Modified 7.31� 10
13 3.13� 10
9 21 (75) 22
Original 7.31� 10
13 3.13� 10
9 21 (75) 22

16 Modified 3.98� 10
27 7.17� 10
14 9 (14) 11
Original 7.94� 10
24 2.37� 10
12 9 (16) 12

17 Modified 1.39� 10
30 2.30� 10
14 51 (170) 64
Original 4.30� 10
23 1.43� 10
10 52 (175) 64

18 Modified 2.84� 10
21 1.82� 10
10 7 (11) 11
Original 2.90� 10
17 9.18� 10
9 6 (9) 11

14 STOPPING RULE



We used the new TNPACK version [18] distributed as Algorithm 702

in ACM TOMS [13,14], which was updated as described here, along

with other improvements described in [17]. For simplicity, we used

all default starting points given in Alg.566 and default values

of TNPACK. The preconditioner for PCG was chosen as the diagonal

of the Hessian matrix Hk for all problems. The modified TNPACK in

Table IV used the line search stopping rule C2 and � modification (19);

other parts remained the same as the original TNPACK described

in [13], which used C1.

Table IV displays minimization performance of the modified

TNPACK for these 18 functions, together with a comparison with

the original TNPACK. The CPU times are all very small (of order of

0.001 s) and are not recorded.

From Table IV we see that the updated version performs overall

slightly better for all test functions. For the second function, described

by Biggs [2], and the 12th function (Gulf research and development

function [15,16]), a significant improvement is observedwhenC2 is used.

The original code failed on the 12th function due to rounding errors in

the third truncated-Newton iterate (after 30 line search iterations).

Numerical experiments thus show that using the more lenient line

search stopping rule C2 in the context of large-scale minimization prob-

lems is no worse than using the common stopping rule C1. However, in

special cases, such as highly nonlinear objective functions and very

costly functions, the use of C2 can improve overall efficiency.
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APPENDIX A STARTING POINT JUSTIFICATION

In a line search iterative method, a good starting point, �ð0Þ, can be

chosen as a minimum point of the following quadratic Newton model

function of �:

qð�Þ ¼ EðXkÞ þ �gTk P
k þ 1

2�
2ðPkÞ

THkP
k,
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because qð�Þ � EðXk þ �PkÞ. That is, we have

�ð0Þ ¼ 

gTk P

k

ðPkÞ
THkPk

: ð20Þ

In practice, however, formula (20) is rarely used due to the expensive

computation of the inner product ðPkÞ
THkP

k. But, when search direc-

tion Pk is generated by the preconditioned conjugate gradient (PCG)

method, as in truncated-Newton methods [4], we have the following

theorem:

THEOREM Let pj be the jth PCG iterate with p1 ¼ 0. Then

pTjþ1Hkpjþ1 ¼ 
gTk pjþ1 for all j 	 1: ð21Þ

Hence, when Pk ¼ pjþ1, we get

ðPkÞ
THkP

k ¼ 
gTk P
k,

which results in �ð0Þ ¼ 1. This prove that �ð0Þ ¼ 1 is a good starting

point for the line search in the context of TN.

The Proof of Theorem Let dj, rj and Mk be the jth PCG search direc-

tion, residual vector, and the preconditioner, respectively. From PCG

theory we know that

dT
jþ1Hkdj ¼ 0, and pjþ1 ¼ pj þ �jdj for j 	 1,

where �j ¼ rTj M

1
k rj=d

T
j Hkdj, and p1 ¼ 0. They imply that

dT
j Hkpj

¼ dT
j Hkðpj
1 þ �j
1dj
1Þ ¼ dT

j Hkpj
1 ¼ � � � ¼ djHkp1 ¼ 0, ð22Þ

and

pjþ1 ¼
Xj

�¼1

��d�: ð23Þ
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We have shown in [17] that


gTk d� ¼ rT� M

1
k r� for all � 	 1: ð24Þ

Hence, combining (23) and (24) gives


gTk pjþ1 ¼
Xj

�¼1

��ð
gTk d�Þ ¼
Xj

�¼1

��r
T
� M


1
k r�: ð25Þ

Further, using (22) and �j ¼ rTj M

1
k rj=d

T
j Hkdj, we have

pTjþ1Hkpjþ1 ¼ pTj Hkpj þ �2
j d

T
j Hkdj þ 2�jd

T
j Hkpj ¼ pTj Hkpj þ �jr

T
j M


1
k rj:

From this it follows by induction that

pTjþ1Hkpjþ1 ¼
Xj

�¼1

��r
T
� M


1
k r�, j 	 1: ð26Þ

The combination of (25) and (26) proves (21).

Note that the values of �� and rT� M

1
k r� in (26) have been calculated

before computing the matrix product pTjþ1Hkpjþ1. Hence, using identity

(26), we can reduce the work amount of computing pTjþ1Hkpjþ1 to only

OðnÞ floating point operations.
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