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Abstract. The similarity and diversity sampling problems are two challenging optimiza-
tion tasks that arise in analysis of chemical databases. As a first step to their solution, we
propose an efficient projection/refinement protocol based on the principal component anal-
ysis (PCA) and the truncated-Newton minimization method implemented by our package
TNPACK (PCA/TNPACK). We show that PCA can provide the same initial guess as the sin-
gular value decomposition (SVD) for the optimization task of solving the distance-geometry
optimization problem if each column of a database matrix has a mean of zero. Hence, our
PCA/TNPACK approach is analogous to the SVD/TNPACK projection/refinement protocol
that we developed recently for visualizing large chemical databases. Using PCA/TNPACK
and the Merck MDDR database (MDL Drug Data Report), we further investigate the projec-
tion/refinement procedure with regards to the preservation of the original clusters of chemical
compounds, the accuracy of similarity and diversity sampling of chemical compounds, and the

potential application in the study of structure activity relationships. We also explore by sim-

Dexuan Xie: Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Mil-
waukee, WI 53201, (dxieQuwm.edu)

Suresh B. Singh and Eugene M. Fluder: Merck Research Laboratories, Mail Stop RY50-SW100,
Rahway, NJ 07065, (suresh_singh@merck.com, fluder@merck.com)

Tamar Schlick: Departments of Chemistry and Mathematics, Courant Institute of Mathemat-

ical Sciences, New York University and the Howard Hughes Medical Institute, 251 Mercer

Street, New York, NY 10012, (schlick@nyu.edu)

Mathematics Subject Classification (1991): 65K10, 62H25, 92C50



2 Dexuan Xie et al.

ple experiments accuracy and efficiency aspects of the PCA/TNPACK procedure compared to
those of a global optimization algorithm (simulated annealing, as implemented by the program
package SIMANN) in terms of producing the projection mapping of a database. Numerical re-
sults show that the 2D PCA/TNPACK mapping can preserve the distance relationships of the
original database and is thus valuable as a first step in similarity and diversity applications. Of
course, the generation of a global rather than local minimizer and its interpretation in terms
of pharmeceutical applications remains a challenge. Since all numerical tests are performed
on the Merck MDDR database, results are representative of realistic cases encountered in the

field of drug design, and may help analyze properties of medicinal compounds.
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1. Introduction

Two fundamental research themes in chemical database analysis are similarity
and diversity sampling [2,15,21,29]. Their solution has great potential in bene-
fiting computer-aided drug design [3,7]. The similarity problem involves finding
a drug from the database that is similar to another drug with known bioactive
properties. The diversity problem involves defining a diverse subset of “repre-

sentative” compounds so that researchers can scan only a subset of the huge
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database each time a specific pharmacological agent is sought. The diversity
problem is essentially a combinatorial optimization problem, which has a non-
polynomial complexity. Hence, even for a small dataset (more than hundreds
of compounds), solving the diversity problem represents a grand challenge. In
contrast, the similarity problem is much simpler. Still, due to the large size of
real databases (millions and billions of compounds), solving the similarity prob-
lem is a practical challenge, as exhaustive procedures are not feasible. Hence,
all algorithms for addressing these problems are heuristic, and any systematic

schemes to reduce the computing time involved can be valuable.

Recently, we developed an algorithm for visualizing large chemical databases
in a low-dimensional space (2D or 3D) as a first step to the solution of the above
two challenging problems [35,36]. To illustrate, consider n compounds in the
chemical database, described as n vectors in the m-dimensional Euclidean space
R™, with associated pairwise distances reflecting the similarity or diversity of
the corresponding compounds. Our algorithm combines a distance-geometry ap-
proach with the singular value decomposition (SVD) [24]. The distance-geometry
approach finds an optimal projection mapping of the database from the high-
dimensional space R™ onto the low-dimensional space R! with I < m such that
the intercompound distances in R’ approximate the corresponding distances in
R™ as closely as possible. In our approach, we formulate the distance-geometry
problem by a new “smooth” target function and then minimize this multivari-
ate function by our truncated-Newton package TNPACK [33,39] with a starting

point generated by SVD. Since the SVD starting point is an optimal approxima-
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tion of the original database in the sense of the Euclidean norm [24], it provides
a reasonable starting point for a local minimization algorithm such as truncated
Newton. Qur application of TNPACK to refine the projection mapping generated
by SVD (termed the SVD/TNPACK method) produces distance relationships

in such chemical databases that are reasonable [35,36].

Several distance-geometry algorithms, such as nonlinear mapping [32], multi-
dimensional scaling [6], and the Sammon method [1], have been proposed to
generate a 2D projection mapping of chemical databases. While they use differ-
ent target functions of minimization, they rely on the simple steepest descent
minimization algorithm with a randomly chosen initial guess. As such, they may
suffer from slow convergence and variable quality of the 2D projection mapping.
Our application of the truncated Newton method accelerates that local mini-
mization aspect of the problem, but any other efficient large-scale method like

the limited-memory BFGS method [11,12] will likely perform just as well.

Principal component analysis (PCA) [25] and the related factor analysis [25]
are two fundamental statistical techniques in multivariate data analysis. Since
PCA can produce a compressed database in the low-dimensional space R' that is
optimal in the sense of maintaining the variation of the original database in R™,
PCA provides another promising approach for generating a good initial candi-
date for refinements which project the data from a high to a low-dimensional

space.

In this paper, we formulate the PCA projection procedure and then show

that PCA can produce the same projection mapping as SVD if each column of
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a database matrix has a mean of zero. The relationship we describe here may be

of practical utility to researchers in the field, since PCA is widely used.

Similar to the SVD/TNPACK approach, we combine the PCA projection
mapping with TNPACK for solving the distance-geometry problem. Numerical
results show that while the PCA and SVD mappings are different for matrix
databases that have columns with non-zero means, subsequent refinement by
TNPACK can significantly reduce the differences in the coordinate scales. Hence,
the PCA/TNPACK and SVD/TNPACK mappings generally produce similar ac-

curacies in terms of retaining the distance relationships of the original database.

Furthermore, using PCA /TNPACK and Merck drug compounds (each repre-
sented by 300 topological atom-pair descriptors [9]) selected from a commercially
available database from MDL, Inc. called MDDR (MDL Drug Data Report), we
numerically investigate several important issues (as summarized below) related

to the projection refinement approach.

First, we explore through simple tests the degree of improvement possible
when the projection mapping of a database is defined by a global instead of a
local (as found by PCA/TNPACK) minimum. Of course, the distance-geometry
problem is a challenging global optimization task [5,16,17], but the computing
cost involved is generally prohibitive. Thus, we solve the distance-geometry prob-
lem approzimately by applying an efficient local minimization algorithm such as
TNPACK together with a good starting point such as that generated from PCA

or SVD.
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To compare some accuracy and efficiency aspects of the PCA/TNPACK pro-
cedure to that of a global optimization algorithm, we construct a subset of
the database with 15 compounds; the corresponding global minimizer of the
distance-geometry problem can be easily located by the simulated annealing
program SIMANN [10,23,22]. Numerical results show that the 2D projection
mapping defined by the global minimizer provides minor improvements to the
2D PCA/TNPACK mapping in terms of the accuracy of retaining the database
distance relationships. We also compare the performance of SIMANN with that
of TNPACK for a dataset of 342 compounds. With a proper choice of starting
temperature (obtained by experimentation), SIMANN identifies the same local
minimizer as TNPACK does (with the same starting point generated by PCA)
but costs more than 5000 times more CPU time. Clearly, global optimization
approaches are important, but cost may be prohibitive for realistic applications,

and the local minimization approach presents a valuable first step.

Second, we investigate how the 2D PCA/TNPACK mapping preserves dis-
tance relationships. Namely, from a dataset of 342 Merck compounds, we ran-
domly select 12 spatially distant points and four nearby pairs of points based
on the 2D PCA/TNPACK mapping and compare the similarity/diversity of
the original chemical compounds in the database (before projections). Tests
show that the chemical interpretation of the 2D mapping appears reasonable
— distances between points in the projection roughly correspond to chemical
similarity/diversity in terms of chemical structures and bioactivities. We also

show that the projection accuracy of both the PCA and PCA/TNPACK map-
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pings can improve significantly as the projection dimension [ increases. For ex-
ample, with [ = 20 (rather than 2 or 3), almost all of the distance segments
in the PCA/TNPACK mapping are within 10% of the original distance values.
Though 2D and 3D projections are simpler for graphical illustrations, compressed
datasets with higher dimensionality are valuable for compound similarity appli-

cations.

Third, we test how the 2D PCA/TNPACK mapping can retain certain clus-
ters of chemical compounds. For this investigation, we construct a subset of
MDDR that consists of four clusters of compounds in the 300-dimensional chem-
ical space. We then project this dataset onto 2D by PCA/TNPACK. The four

clusters are reasonably preserved in the 2D PCA/TNPACK mapping.

Finally, we apply the 2D PCA/TNPACK mapping to the study of the re-
lationship between structures and medicinal activity. For this purpose, we con-
struct a dataset containing four different therapeutic groups of compounds and
visualize these compound interrelationships in 2D by PCA/TNPACK. While
the 2D PCA/TNPACK mapping produces reasonably clusters corresponding to
the four therapeutic groups, we emphasize that the compounds belonging to the

same therapeutic category can have very different chemical structures.

The remainder of the paper is organized as follows. Section 2 defines the
database structure. Section 3 reviews the optimization problems arising from
database analyses. Sections 4 and 5 describe the PCA and TNPACK mapping

algorithms. Section 6 presents the numerical results, and Section 7 summarizes
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our conclusions. The relation between PCA to SVD (which we have not seen

described in our context) is presented in the Appendix.

2. Database Definition

We consider a database of n compounds generated from m highly correlated

chemical descriptors {z;}7.,. Each compound Xj is represented as a vector
X; = (zi1, % im)? fori=1,2
i = \Til, Ti2,-- -5 Tim ort=14,4,...,Mm,

where z;; denotes the value of descriptor j of compound X;. The collective

database X is represented by the n X m matrix X:

Ti1 Ti2 - Tim

T 21 T22 -t T2m
X:(X13X27"'7Xn) = . (1)

Tn1i Tn2 7 Tam

Here the superscript T' denotes the vector/matrix transpose.

Many different chemical descriptors have been proposed and used to quan-
tify molecules [9,14,26]. For example, descriptors might characterize molecular
connectivity, electrostatic interactions, or molecular geometry, as in the popu-
lar programs Molconn-X [18] or Molconn-Z [19]. Descriptors can also define the
number of bonds along the shortest paths connecting an atom-pair (“topological
atom-pair descriptors”) [9], as in the large drug database MDDR. Atom-pair
descriptors have been used successfully in structure-activity studies [2,9]. They

also have been recently expanded to include torsions of four consecutive atoms,
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charges of atom pairs, and hydrophobic characteristics, in order to reflect physic-
ochemical and geometric features (see [2] for a short review).
A diversity score for two different compounds X; and X; can be measured

by the Fuclidean distance norm based on the compound descriptors:

X — Xl =

To avoid the dominance of a few large descriptors on the diversity score, scaling
becomes necessary if the chemical descriptors use different units and vary sig-
nificantly in their magnitudes. It is customary to scale data entries z;; by the
following formula:

Tij — 3
P (2)

i’ij =
where a; = maxi<i<n &i; and 8; = mini<;<, &;;. This definition (also termed
“standardization of descriptors”) makes each column in the range [0, 1].

Another scaling procedure arises from the multivariate statistical analysis. It

sets the scaled component Z;; as follows:

gy = L H, 3)
J

where p1; and o; are the mean and the deviation of the jth column of X, respec-

tively, defined by

1 1 &
= Y zi; and o;= — > (@i — ).
i=1 =1

This scaling effectively makes each column have a mean of zero and a standard

deviation of one.
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3. Database Optimization Problems

The similarity and diversity sampling problems are two fundamental optimiza-
tion problems that arise from database analyses. For a given target compound,
the similarity sampling problem is to find a sampling set that contains a small
number of most similar compounds to the target. Here compound X}y is said to
be the most similar to compound X in a dataset X if

K50 — Xjll = min [.X; — X

i#]

Clearly, each search requires a total of O(nm) floating-point operations (flops)
if X contains n compounds and each distance segment §;; = || X; — X;|| requires
O(m) flops to compute. An effective scheme is sought when n and m are large.
The task of similarity sampling is often performed to find drugs with similar
physiochemical and biological properties to a known drug.

In contrast to the above similarity problem, the diversity search problem is
to find “the most diverse subset” (or the representative set of the database) Sg
that contains ng representative compounds such that

> I - X =y YK - X

Xi,X;€S0 X;,X;€8

i<j i<j
where ng is a given number satisfying 0 < ng < n, and S denotes a subset of the
database X with ng compounds. An exhaustive search of the most diverse subset
requires a total of O(Cm°n3m) flops because there are C° possible subsets of S

of size ng and each subset takes O(n2m) flops. (Here C™ = n(n—1)(n—2)--- (n—

ng + 1)/ng!). Clearly, even for a small value of n (more than 100), it may take
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thousands of years to solve this problem. Hence, in practice, it is necessary to
look for heuristics or for approximate solutions in some more restricted feasible

sets.

Pharmaceutical companies often perform diversity sampling when they scan
huge databases to search for a specific pharmacological activity. Reducing the
dataset of n compounds to the small subset of ng representative elements is
likely to accelerate such searches. The “representative subset” Sy might also be
used to prioritize the choice of compounds to be purchased or/and synthesized,

resulting in an accelerated discovery process.

Our approach to the above database analysis problems is to create a 2D view
of the database so that similar and diverse compounds can be viewed simply. The
most challenging part of this approach is the construction of a 2D mapping that
retains the distance relationships of the database well. Based on the distance-

geometry approach, we define the following objective function:

E(Yl,Yg,...,Yn):%ZwU (dfj_ggjf, (4)

i<j
where Y; is the projection vector of X; into the I-D space, d;; = ||Y; — Yjl|
and 0;; = ||X; — Xj|| are the Euclidean distances in the [-D and m-D spaces,
respectively, w;; are the weights defined by w;; = 1/83; if 6 > fmin and wi; = 1
if 6;.1]- < Nmin- The latter case (very small original distance d;;) may occur when

two compounds in the datasets are very similar. We set the parameter 7,,;, to

a small positive number such as 7, = 10712,
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Theoretically, we define the best projection mapping (Y7*,Y5,...,Y*) in the

I-D space as the global minimum point of the objective function E. That is,

EXY Yy,...,Y*)= min E(Y1,Ys,...,Y,). b)
(1723 7n) V}I};'lérll%l (17 2, 7”) ()

Due to the difficulty of finding the global minimum point, especially for a large
database, in practice, we often solve the distance-geometry problem (5) by an
efficient local minimization algorithm, together with a good starting point close
to the global minimizer. Note that the objective function E defined in (4) is
smooth everywhere so that Newton algorithms such as TNPACK, which rely on
second-derivative information, are good choices for solving (5).

The approximation of distance segments d;; by d;; can be measured by the

relative error expression

|dij — 0ij| <ndij when 6;; > dmin
dij <& when 6;; < dmin, (6)

where 1, €, and dni, are small positive numbers less than one. Their selections
are related to both machine precision and mapping accuracy. For example, we
find that = 0.1, which specifies a 10% relative accuracy, dmin = 10712 and é =
108, which indicate very similar compounds, are satisfactory for our database
visualization application.

Let Ty be the total number of the distance segments d(Y;,Y;) satisfying
eq. (6). We introduce the percentage p of the distance segments satisfying eq. (6)

to assess the degree of distance preservation of our mapping:

Ty

P= =y X 100%. (7)
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Compared with other measures, such as relative errors [35] and percentage of
retained variation in a mapping as given in (19) [25], the value of p more directly
indicates the accuracy of the projection mapping. The greater the p value (the
maximum is 100%), the better the mapping and the more information can be
inferred from the projected views of the database compounds (assuming reliable

descriptors).

4. Projection by TNPACK

We minimize the objective error function E defined in (4) by our truncated
Newton program package, TNPACK [33,39]. In brief, TNPACK generates a

sequence of iterates {Y*} expressed in the form
YEH = vk L A\ PF, k=0,1,2,..., (8)

from an initial guess Y°, and P* is a descent direction generated by a “trun-
cated” preconditioned conjugate gradient scheme for solving the classic Newton
equation

HY®P =—g(Y").

The parameter A\, in eq. (8) is the steplength generated by a line search scheme
[30,40], and g and H are the gradient vector and Hessian matrix of the objective
function E, respectively.

The advantage of truncated-Newton (TN) methods is their ability to incorpo-
rate available second-derivative information to accelerate convergence. We have

found TN methods efficient in many molecular applications [37,38]. As in other
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Newton methods appropriate for large-scale applications, the curvature informa-
tion can be utilized efficiently so that the overall computational work is optimal.
The TN outer/inner iteration design can be particularly robust and efficient
for solving difficult optimization problems when a preconditioner is used in the
PCG inner loop and care is taken in determining the steplength A in eq. (8).
In the present applications, we simply use TNPACK with all default parameters
and a numerical procedure to approximate matrix/vector products. That is, the

product H(Y*)d is approximated by the first-order forward difference formula:

H(Yk)d% g(Yk +h(]? _Q(Yk)7 (9)

where d is a vector, and h is a small number such as h = 1078, Since the Hes-
sian matrix H(Y*) in TNPACK only appears in the calculation of the product
H(Y*)d, the approximation formula (9) leads to a linear dependency on the
number of compounds for TNPACK’s memory location.

We also use a simple preconditioner — a diagonal matrix consisting of the di-
agonal elements of the Hessian matrix for the present applications. We terminate

the TNPACK iteration process when the solution iterate Y* satisfies

lg(¥ )|l < (1 + |EYF)), (10)

where €, is a small positive number (we used 107%). For details, see [33,39].
We intend to further improve the performance of TNPACK through develop-
ing more efficient preconditioners and tailoring other components of TN to the

database application in the future work. We emphasize that other local opti-
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mization methods like limited-memory BFGS algorithms should work equally

well in our context.

5. Projection by Principal Component Analysis (PCA)

The accuracy of the I-D projection mapping generated by TNPACK in approxi-
mating database X depends on the selection of the initial guess Y. In this sec-
tion, we introduce PCA to generate a I-D projection mapping of database X. We
then use it as the starting point Y° of TNPACK, resulting in the PCA/TNPACK
protocol. Note that the PCA projection mapping is an “optimal” approximation
to the database matrix X in the sense that it retains the variation presented
in X in the l-dimensional (I-D) space as much as possible [25]. Hence, a PCA
generated initial guess can be much better than a randomly selected one for an
optimization algorithm for solving the application problem (5).

PCA is a classic tool for data reduction. In PCA, chemical descriptors are
regarded as random variables, and the input database matrix X is considered
their sampling matrix. In terms of the orthonormal eigenvectors of the covariance
matrix C of the database X, PCA transforms the highly correlated descriptor
variables into the uncorrelated variables called principal components (PCs).
By using the first [ PCs with [ << m, the database matrix X can then be
reduced to a smaller matrix with dimension n x I.

The m x m covariance matrix C' with elements {c;;} is defined by

1
n—

Cz'j =

1 Z(mki — 1) (Thj — B5) 5 (11)

k=1
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where p; and p; are the means of the columns associated with descriptors ¢ and

1 n 1 n
i = ka, and p; = - Zwkj . (12)
k=1 k=1

Since C' is a symmetric positive semi-definite matrix, it has the spectral decom-
position

c=vavTt, (13)

where V' = (v1,v2,...,0,), with v; € R™, is the m x m orthogonal eigenvector
matrix satisfying VVT = I,,,xm, and A is a diagonal matrix of the m ordered
eigenvalues

A 2A 22 A 20.

The jth principal component vector Y; of dimension n x 1 is defined by the

product of the original matrix X with the jth eigenvector v;:
Y; =Xv; forj=12,---,m. (14)
The m PCs Y1, Y5, ---,Y,, form the n x m matrix Y:
Y = (1, Y, - V).

Equation (14) can be written in the matrix form ¥ = XV. Since VVT =1, we

can express the dataset matrix X in terms of the PCs as:
X=vv™ (15)

Eq. (15) is a fundamental identity for the PCA data reduction. It can be

used to reduce the dimensionality from m to | while optimally approximating
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the original variances of X. In fact, we write eq. (15) as a sum of m matrices:

X =Y vpl, (16)
j=1

where Yju is an n x m matrix with rank of one. Note that the compound vector

X; is the transpose of the ith row vector of X, i.e.,
Xi=XTe;,

where e; is the n X 1 unit vector with 1 in the ith component and 0 elsewhere.
Therefore, from eq. (15) it follows that each chemical compound vector X; has

the following expression:
m m m
Xi=XTei=(Q Yio))Tei=) Vieiv; =) yij vy, (17)
Jj=1 Jj=1 Jj=1

where y;; = YjTei is the ith component of the jth PC Y}. This relationship im-
plies that the compound vector X; is transformed into the vector space spanned

by orthonormal eigenvectors {v;}, and can be simply denoted by

Xi = (yi17yi27 .- 7yim)T

According to expression (17), the I-th dimension projection Z; of X; can be

defined by using the first [ PCs as:
Zz': (yihyiQ;---;yil)T fOI‘iZI,Q,...,’I’L. (18)

Note that the eigenvalues A; of the covariance matrix C represent the vari-

ances of the PCs. Hence, the ratio (3! X))/ (X, ;) indicates the per-

j=1 j=1
centage of the variances of X that is retained in the [-D projected database

Z=(21,2,..., 7).
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In practice, the value of [ is chosen according to the following criterion in-
volving the threshold variance v,
QM- A) = (19)
j=1 j=1
The higher the « value, the better the approximation (that is, the better the

original variances are maintained). The relation of PCA to SVD is given in the

Appendix.

6. Numerical Examples

In this section, we investigate the performance and potential application of the
PCA/TNPACK combination for similarity and diversity sampling of chemical
compounds as well as several issues related to the interpretation of the projection.
We also compare accuracy and efficiency aspects of PCA/TNPACK to those of
a global optimization algorithm in solving the distance-geometry minimization
problem (5). All default values of TNPACK are used.

All numerical experiments are made on datasets selected from the large,
commercially available database MDDR, (http://www.mdli.com). Most compu-
tations are performed in double precision on a single R12000 300 MHz processor
of an SGI Origin 2000 computer at the New York University. Only the simu-
lated annealing applications (Section 6.8) are performed on a Dell Precision 610
workstation.

We use the package ARPACK [28] with all default parameters for comput-

ing the eigenvalue and eigenvectors required by the PCA and SVD procedures.
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ARPACK performs very well in our applications because it can compute the
first | required PCs, singular values, and singular vectors for defining the PCA
and SVD projection mappings in R!, with an order of In storage locations and

an order of nm? floating point operations (the database matrix is n x m).

6.1. Test Datasets

All datasets of our tests are selected from the Merck drug database, which con-
tains 7500 compounds retrieved from MDDR version 98.1 based on the assigned
label in the “Source” field in the database. MDDR contains over 82,000 potential
drug candidates. Most entries in the database have an MDDR registration num-
ber, chemical connectivity information, associated therapeutic category, mech-
anism of action, source/inventor, and literature citations. The compounds are
derived based on patent literature, journal articles, professional conventions and
symposia. There are about 25,000 unique atom-pair descriptors and only a small
number (several hundreds) are shared by most compounds in the MDDR.

For our tests, we select 300 atom-pair descriptors (i.e., m = 300) used by
most compounds. We use atom-pair [9] and topological torsion [13] descriptors
for all compounds. Atom pairs are substructure descriptors of a molecule de-
fined as AT; — AT; — r;;. The distance, r;;, is the distance in bonds along the
shortest path between an atom type AT; and an atom type AT;. The atom type
reflects element type, number of non-hydrogen atom neighbors, and number of
7 electrons. Topological torsions are substructure descriptors of a molecule and

are defined as AT; — AT; — ATy, — ATy, where 4, j, k,l are consecutively-bonded
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atoms. Topological torsion and atom-pair descriptors can effectively distinguish
closely related compounds [2,9] and are useful in similarity searching. Since the
atom-pair descriptors in our test datasets are small (from zero to 25 only), no

scaling is needed.

6.2. Role of Refinement

We first study the role of TNPACK refinement in improving the accuracy of
a 2D PCA mapping of a database in preserving the distance relationships of
the database. We randomly selected 832 chemical compounds from the Merck
MDDR to form a dataset called Merck setl (i.e., n = 832 and m = 300). Figure 1
compares the two 2D mappings for Merck setl generated respectively by PCA
alone and PCA/TNPACK. From the figure we see that the PCA mapping has
been significantly changed following the TNPACK refinement procedure. Table 1
(first data row, for | = 2) shows that following TNPACK minimization, the
accuracy p of the 2D mapping in approximating the distance relationships of
Merck set1 has increased from about 3 to 34%. This minimization process only
took about 14 seconds of CPU time.

Table 1 also shows that the projection accuracy of both PCA alone and
PCA/TNPACK can be improved significantly as the projection dimension / in-
creases (data shown for [ ranging from 2 to 65). The accuracy of the PCA/TNPACK
mapping in terms of p can be near maximal (100%) for I = 20, while PCA alone
requires | = 65 to reach this maximal accuracy. From Table 1 we also see that

the PCA program only took 0.2 to 6 seconds to compute the [-D PCA mappings
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for [ = 2 to 65, which is very small compared to the total CPU time of 14 to
1141 seconds. Moreover, TNPACK only took 8 to 46 iterations to locate mini-
mum values. Here the number of variables of the minimization target function

E ranges from 1664 (2 x 832) to 54080 (65 x 832).

6.3. Similarity and Diversity Applications

As an example of similarity and diversity sampling, we selected four pairs of
points that are close in the projection, as shown in Figure 2, and 12 distant points
(letters A to L in Figure 3) from the 2D PCA /TNPACK mapping for Merck set1,
respectively. Their corresponding chemical structures are also displayed in these
figures. From these figures we see that the chemical structures of the compounds
corresponding to the four pairs of nearby points have some resemblance, while
compounds corresponding to the 12 distant points are more dissimilar. According
to a general principle [21] that compounds with similar structures are likely
to share physicochemical and biological properties, we might predict that the
12 distant points belong to different therapeutic categories, while compounds
corresponding to each pair are in the same therapeutic category. See Table 2
for the therapeutic categories corresponding to the sampling points. Still, as
shown below (Figure 6), dissimilar structures can belong to the same therapeutic
group. Clearly, visual inspection of structures is only one aspect of a compound’s

functionality.
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6.4. Cluster Assessment

To test how the 2D PCA /TNPACK mapping can retain certain clusters of chem-
ical compounds, we construct the dataset Merck set2 (n = 342 and m = 300)
containing four clusters as shown below: select four distant target compounds
K, E, H and I according to Figure 3 and then construct clusters for each from the
Merck MDDR, (a dataset of 7500 compounds) such that a compound j belongs
to the cluster of a target compound ¢ if the corresponding Euclidean distance d;;
is less than 15, and each compound belongs to only one cluster. This produces
clusters for E, H, I, and K containing 17, 77, 239, and 9 compounds, respectively.

We then project these four clusters of compounds from the 300-dimensional
chemical space onto the 2D mapping space by PCA/TNPACK. The four clusters
are displayed in the 2D PCA/TNPACK mapping by using four colors (blue for
Cluster E, cyan for Cluster H, red for Cluster I, and green for Cluster K) in
Figure 4. This 2D mapping has an accuracy of p = 35% for n = 0.1. The view

shows that the four clusters are well retained in the 2D PCA/TNPACK mapping.

6.5. Structure and Medicinal Activity

To examine the relation between structural features (characterized by chemical
descriptors) and medicinal activities, we construct the dataset Merck set3 (n =
338 and m = 300) that contains four different therapeutic groups. The names
of the four groups and the number of compounds in each group are listed in

Figure 5.
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Figure 5 displays the distribution of the four categories based on the 2D
PCA/TNPACK mapping. The accuracy p for n = 0.1 (defined in (6)) of the
2D PCA/TNPACK mapping is 36%. With = 0.2, we have p = 90%. That is,
90% of the distance segments in the PCA /TNPACK mapping are within 20% of
the original distance values. This shows that the PCA/TNPACK mapping has

reasonably approximated the distance relationships presented in Merck set3.

From Figure 5 we note that the anthelmintic (circles, agents that destroy or
cause the expulsion of parasitic intestinal worms) and immunosuppressant (dia-
monds, agents that depress the immune response of an organism) groups contain
two separate clusters, while the antibacterial group and the immunostimulant
(agents that stimulate an immune response) group are more spread out — per-
haps having some similarities to other compounds. For example, some points
from the immunostimulant group are close to some points from the anthelmintic
group as shown in Figure 5. This offers the possibility that corresponding drugs

may have similar structures and similar medicinal activities.

Based on this mapping of Merck set3 in Figure 5, we select eight distant
points (two points per group) as shown in Figure 6. Their chemical structures
are also displayed in Figure 6. From this figure we see that compounds belong-
ing to the same therapeutic group may have very different chemical structures.
Clearly, structural properties are only one factor in determining complex biolog-

ical activity.
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6.6. PCA/TNPACK vs SVD/TNPACK

As shown in the Appendix, PCA and SVD can generate the same projection
mapping if the database matrix is scaled such that each column has a mean of
zero. For an unscaled database, PCA and SVD may produce different projection
mappings. Figure 7 compares the four 2D mappings for Merck set3, which is
unscaled, generated by SVD, PCA, SVD/TNPACK, and PCA/TNPACK. Merck
set3 contains four therapeutic groups and eight distant sampling points. The
values of accuracy p with n = 0.1 for these four projections are 10.03% (SVD),
10.04% (PCA), 36.68% (SVD/TNPACK), and 36.66% (PCA/TNPACK). Even
though different projections are generated by SVD and PCA, from Figure 7 we
see that the clusters corresponding to the four therapeutic groups are reasonably

maintained.

6.7. PCA Starting Point vs. Randomly Selected Starting Point

To confirm that PCA can provide TNPACK with a better starting point than
a randomly-generated point, we tested TNPACK for Merck Set 2 using the six

random starting points defined by:
XOF =54 10(k), k=1,2,3,4,5,6,

where &(k) is a random vector with 2n components (as generated by a pseudo-
random vector generator with seed k). Such starting points cover the search range
from zero to 5° (3125) in each dimension direction. These numerical experiments

are performed on a Dell Precision 610 workstation (a Pentium IIT Xeon 550 MHZ
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processor with 768MB RAM and 2MB cache) at the University of Southern
Mississippi. The numerical results in Table 3 show that with the PCA starting
point TNPACK located a lower minimum point in less CPU time than with the

random starting points.

6.8. Comparison to a Global Optimization Scheme

To demonstrate that the local minimum point found by PCA/TNPACK may
be a reasonable approximation to the global minimizer, we performed simple
numerical tests for two datasets using simulated annealing implemented by the
program SIMANN [22,23] (available to the public).

We first compare the performance of PCA/TNPACK with that of SIMANN
for solving the minimization problem (5) for Merck set2 (n = 342 and m = 300).
Tests were made using starting points generated either randomly or by PCA.
Default values of SIMANN were used. For example, we set the temperature
reduction factor to be 0.85, as suggested in [10], and the final temperature to be
lower than 10~2. The numerical results reported in Table 4 assess performance in
terms of the number of function evaluations and the CPU time. The total number
of gradient evaluations is also reported for TNPACK. Gradient evaluations in
TNPACK are performed in the line search and in each inner loop of TNPACK, in
which one matrix/vector product is evaluated by a finite difference of gradients
(9).

To compare computing time, we use the same starting point generated by

PCA for both SIMANN and TNPACK. We then set the starting temperature of
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SIMANN to 100, a value obtained after many numerical tests, so that SIMANN
locates the same local minimum as TNPACK. In this case, we see that TNPACK
is about 5288 times faster than SIMANN. With a randomly selecting starting

point, simulated annealing locates a higher minimum point than TNPACK.

Clearly, to allow SIMANN to find a lower minimum value than TNPACK, a
higher starting temperature must be used. However, it is difficult to find such a
starting temperature for a large-scale minimization problem, as no general rule

is available. The starting temperature depends on the size of problem and may

be higher than 10'3 [34].

To save computing time for the SIMANN application, we construct a small
dataset that contains the first 15 compounds of Merck Set2; this allows us to
conduct many tests with different starting temperatures that range from 10 to
1017, These tests produce the lowest value E = 1.635, which we believe to be
the global minimum value of E, using the starting temperature of 10'. The 2D
mapping defined by this global minimizer, which has an accuracy of p = 57.14,

is plotted in Figure 8.

For comparison, we also plot the 2D PCA/TNPACK mapping for this small
dataset in Figure 9. Here, the minimum of E found by PCA/TNPACK is 1.731,
and the 2D mapping has an accuracy of p = 58.1. The figure shows rather
similar projections except regarding points 8 and 10, between which the original
distance is 6.63: SIMANN approximates this distance well (value of 7.48) whereas

the PCA/TNPACK approach yields 1.56. Of course, in general the global opti-
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mization approach is essential; yet from a practical point of view, a local solution

can be helpful and can provide a first step for analysis.

7. Conclusions

We have described optimization problems that arise from database analyses and
formulated the PCA/TNPACK procedure for generating a projection mapping
of a database as a first step. Using PCA/TNPACK on Merck drug datasets,
we performed numerical experiments to explore several relevant issues related
to the projection and refinement protocol; these results demonstrate that the
PCA/TNPACK protocol can have a reasonable accuracy in approximating the
original distance relationships and retaining both the clusters of compounds
and the distribution patterns of therapeutic groups. Hence, the PCA/TNPACK
procedure is valuable for sampling similar and diverse compounds, and perhaps
ultimately for aiding the generation of drug candidates or the optimization of
bioactive compounds.

To compare the accuracy and efficiency of PCA/TNPACK with that of a
global minimization algorithm for solving the distance-geometry optimization
problem, we have experimented with simulated annealing as implemented in
the program SIMANN [23,22] for two small Merck datasets. Numerical re-
sults show that while the global minimizer can improve the accuracy of the
2D PCA /TNPACK mapping, the computing cost can be several thousand times
greater. It is far from trivial to find the global minimizer by SIMANN for a large

dataset. Thus, the local approach is a valuable first step.
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To further improve the performance of TNPACK, we plan to develop more
efficient preconditioners for TNPACK than the simple diagonal formulation used
here. We will also investigate how to overcome the memory limitation that comes
from the definition of the objective function E defined in (4), which requires an
order of n? memory locations for the calculation of E efficiently (n is the number
of compounds of a database). A possible solution to this problem has been sug-
gested in [36], that is, to divide the huge dataset and apply the PCA/TNPACK
procedure to each subset of database, followed by some suitable assembly tech-
nique. Another simple way to solve this problem is to define the objective func-
tion E by only using a banded distance matrix with a small band width so that
the memory requirement is reduced to an optimal order of n. Global optimiza-
tion approaches, of course, have greater potential for success in general for these

kinds of problems, and might be worth the investment in algorithm development.

Acknowledgments

This work is supported by the National Science Foundation (ASC-9157582 and
BIR 94-23827EQ), the National Institutes of Health (R01 GM55164) [to T.S.],
the Oak Ridge Associated Universities (0221709103) and the University of South-
ern Mississippi (2221709006) [to D.X.]. T. Schlick is an investigator of the

Howard Hughes Medical Institute.




PCA Combined with TNPACK for Dimensionality Reduction 29

APPENDIX: Relation of PCA to SVD

SVD is another classic technique used for data reduction in many practi-
cal applications. In [35,36], we described its application to visualize chemical
databases. In this section we show that PCA and SVD are closely related. In
particular, they generate the same projection mapping if each column of a data
matrix X has a mean of zero.

A database X can be modified into a database X = {&#;;} with a mean of

zero for its each column by defining each Z;; as
Tij = Tij — i, (20)

where p; is the mean of the jth column of X as defined in eq. (12). The SVD

decomposition of X can be expressed as

X=vuzvT, (21)
where Upxpn = (u1,u2,...,up) and Vixm = (v1,v2,...,0,) with u; € R™ and
v; € R™ are orthogonal matrices, and ¥ = diag{o1,02,...,0n} is a diagonal

matrix with the singular values arranged in decreasing order:

0'120'2>

.ZUT and UT+1:---:Um:0-

Here r indicates the rank of matrix X.
According to eq. (21), we define the [-D projection mapping Y; of each mod-

ified compound X; (i.e., the transpose of the ith row vector of X) as follows:

Y; = (011, 02Uz, - - - o1uig) " (22)
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where u;; is the ith component of the jth left singular vector u; (see [35] for
details). It is well known that the SVD projection mapping Y = (Y1,Y5,...,Y,)T

is an optimal approximation of X in the following sense
|V — X|| = min{||B — X]|| | for all n x m matrices B with rank I},

and that ||V — X|| = o741 [24].
Note that the covariance matrix of the database X is C = XTX. Hence,
combining the SVD factorization of X in eq. (21) with UTU = I and VTV =1,

we have
cv =XTXv =wusvhHTvzvtv =vsutusvliv = v 22,
or in vector form,
Cvj = 032-1)]- for j=1,2,...,m.

This shows that the right singular vectors v; are the eigenvectors of the covari-
ance matrix C with UJ2- as the corresponding eigenvalues.
Therefore, the PC mapping Y of the database X is defined by Y = XV, and

can be written as

Y =XV =UsvIv=Ux,
or in the vector form,
Yi=o0ju; forj=1,2,...,m. (23)

This shows that PCs are the products of singular values and the corresponding

left singular vectors.
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According to eq. (23), the components of PC Y; can be expressed as y;; =
ojui; for i = 1,2,...,n. Hence, the PCA mapping defined in (18) is identical to
the SVD mapping defined in (22). This shows that PCA and SVD generate the
same projection mapping for a database modified by eq. (20).

A database X whose columns have a mean of zero can be scaled by the
scaling procedure (3) so that the range of variance in each column of X is the
same. For a database scaled by (3), the total sum of all variances becomes m,
and 23:1 012- indicates the total variances retained in the projection mapping.
Hence, based on SVD, rule (19) for selecting the dimension [ can be simplified
as
Z 0'J2- > . (24)

For a database X whose columns have a mean of nonzero, the PCA and
SVD mappings are clearly different. In fact, PCA and SVD define two different
orthonormal rotation transforms that map X into two different spaces (in terms
of orthogonal vectors {v;}72,). They also have different coordinate scales for the
mapping points.

We use the efficient program package ARPACK [28] for computing spectral
decomposition for SVD and PCA. ARPACK allows users to compute only the
first [ eigenvalues and eigenvectors at a complexity of the order nm? (with n >

m) floating point operations per iteration; storage requirements are of order nl.
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Fig. 1. The 2D PCA and PCA/TNPACK mappings for Merck setl (n = 832, m

= 300).
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Pair 3 Pair 4

Fig. 2. Four similarity samples (Pair 1 to Pair 4) of chemical compounds based on the 2D

PCA/TNPACK mapping and their chemical structures.
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D

Fig. 3. A diversity sample (A-L) of chemical compounds based on the 2D PCA/TNPACK

mapping and their chemical structures.
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Fig. 4. The 2D PCA /TNPACK mapping for Merck set2 (n = 342, m = 300). Here set2 consists
of four clusters of compounds: Clusters E, H, I, and K with 17, 77, 239, and 9 compounds,

respectively.
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Fig. 5. The 2D PCA/TNPACK mapping for Merck set3 (n = 338,m = 300). Here set3

contains the four therapeutic groups as indicated in the figure.
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PCA/TNPACK for Merck set3 (n = 338, m = 300).
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Fig. 8. The 2D mapping of the global/local
minimizer located by SIMANN for the set con-
tiaining the first 15 compounds of Merck setl

(n = 15,m = 300)
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Fig. 9. The 2D mapping generated by the lo-
cal minimum point located by PCA/TNPACK
for the set contiaining the first 15 compounds

of Merck setl (n = 15, m = 300).
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Table 1. The accuracy of the PCA and PCA/TNPACK mappings as a function of projection
dimension ! for Merck setl (n = 832, m = 300), along with the performance of the PCA and
PCA/TNPACK (TN) programs. Here the minimization objective function E is defined in (4),

and the accuracy p is defined in (7) with = 0.1.

Final E Accuracy p TN CPU time (sec.)
Dimension I PCA TN PCA TN Itn. PCA Total
2 4.07 x 10*  1.80 x 10* 245 33.70 8 020 138
3 3.29 x 10¢  1.06 x 10* 2.89 4472 10 021 252
5 2.32 x 10¢  4.87x 103 7.52 63.16 11  0.33  39.0
8 1.71 x 104 2.17 x 103 17.07 80.80 14  0.57  63.0
12 1.17 x 10*  9.68 x 102 28.86 93.49 12  0.72  97.8
16 8.83 x 103 5.18 x 102 42.35 98.12 46  0.88  139.8
20 6.38 x 103 3.12x 102 53.10 99.50 29  1.01  168.0
25 4.98 x 103 2.01 x 102 61.40 99.88 19  3.26  367.8
30 3.51 x 108  1.11x 102 71.06 99.99 18  2.80  414.0
35 267 x 103 7.22x10  78.42 100 20 227 540.0
45 1.73 x 103 3.63x 10  87.13 100 16 4.50  393.0

65 7.32 x 102 1.01 x 10 95.69 100 19 6.28 1141.2
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Table 2. The therapeutic categories of the 20 sampling points selected in Figures 2 and 3.

Sampling Points

MDDR Reg. No.

Therapeutic Category

Pair 1, blue
Pair 1, red
Pair 2, blue
Pair 2, red
Pair 3, blue
Pair 3, red
Pair 4, blue
Pair 4, red
Point A
Point B
Point C
Point D
Point E
Point F
Point G
Point H
Point I
Point J
Point K

Point L

180311

190065

192077

192078

157851

160107

166899

166906

180311

192077

157851

170280

141090

149705

152273

146649

166899

144259

190519

188363

Angiotensin II Blocker

GH Growth Hormone, Somatotropin
Leukotriene Antagonist
Leukotriene Antagonist

HIV Protease Inhibitor

HIV Protease Inhibitor

Muscarinic M1 Receptor Agonist
Muscarinic M1 Receptor Agonist
Angiotensin II Blocker
Leukotriene Antagonist

HIV Protease Inhibitor
Immunomodulator AIDS
HMG-CoA Reductase Inhibitor
Thromboxane Antagonist

Renin Inhibitor

Steroid 5alpha Reductase Inhibitor
Muscarinic M1 Receptor Agonist
Carbonic Anhydrase Inhibitor
Elastase Inhibitor

Lipoxygenase Inhibitor
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Table 3. Comparison of the PCA starting point with the randomly selected starting points for

TNPACK. Here the objective function E is defined by (4) for Merck set2 (n = 342, m = 300).

Starting point Initial E Final E Tterations ~CPU time (sec.)
PCA 8.39 x 108 2.554 x 103 39 18
Seed 1 1.45 x 104 2.567 x 103 61 28
Seed 2 1.45 x 104 2.751 x 103 51 24
Seed 3 5.90 x 10>  2.732 x 108 57 26
Seed 4 1.74 x 108 2.584 x 103 59 29
Seed 5 9.94 x 1010 2.699 x 103 74 37
Seed 6 1.43 x 10'*  2.571 x 103 63 23

Table 4. Comparison of TNPACK with the simulated annealing global optimization program

SIMANN for minimizing objective function E defined in (4) for Merck set2 (n = 342, m = 300).

Methods Final E Final ||g|| E evals. gevals. CPU time
Start point randomly generated

SIMANN  3.22x10% 1.29x10~% 9,097,201 0 1409 min.

TNPACK 256 x 103 4.21 x 10~8 82 1970 0.76
Start point generated by PCA

SIMANN 2,55 x 10> 9.85x 10°% 9,028,801 0 1374

TNPACK 2.55 x 103 2.42 x 107 39 613 0.26




