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Abstract: Multiple time step (MTS) algorithms present an effective integration approach to reduce the computational
cost of dynamics simulations. By using force splitting to allow larger time steps for the more slowly varying force
components, computational savings can be realized. The Particle-Mesh-Ewald (PME) method has been independently
devised to provide an effective and efficient treatment of the long-range electrostatics interactions. Here we examine the
performance of a combined MTS/PME algorithm previously developed for AMBER on a large polymerase �/DNA
complex containing 40,673 atoms. Our goal is to carefully combine the robust features of the Langevin/MTS (LN)
methodology implemented in CHARMM—which uses position rather than velocity Verlet with stochasticity to make
possible outer time steps of 150 fs—with the PME formulation. The developed MTS/PME integrator removes fast terms
from the reciprocal-space Ewald component by using switch functions. We analyze the advantages and limitations of
the resulting scheme by comparing performance to the single time step leapfrog Verlet integrator currently used in
AMBER by evaluating different time-step protocols using three assessors for accuracy, speedup, and stability, all
applied to long (i.e., nanosecond) simulations to ensure proper energy conservation. We also examine the performance
of the algorithm on a parallel, distributed shared-memory computer (SGI Origin 2000 with 8 300-MHz R12000
processors). Good energy conservation and stability behavior can be demonstrated, for Newtonian protocols with outer
time steps of up to 8 fs and Langevin protocols with outer time steps of up to 16 fs. Still, we emphasize the inherent
limitations imposed by the incorporation of MTS methods into the PME formulation that may not be widely appreciated.
Namely, the limiting factor on the largest outer time-step size, and hence speedup, is an intramolecular cancellation error
inherent to PME. This error stems from the excluded-nonbonded correction term contained in the reciprocal-space
component. This cancellation error varies in time and introduces artificial frequencies to the governing dynamics motion.
Unfortunately, we find that this numerical PME error cannot be easily eliminated by refining the PME parameters (grid
resolution and/or order of interpolating polynomial). We suggest that methods other than PME for fast electrostatics may
allow users to reap the full advantages from MTS algorithms.
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Introduction

Molecular dynamics (MD) simulations play an important role in
elucidating essential functional properties in key biologic pro-
cesses. Because of the crucial link between structure and function,
structural information derived from experimental studies can be
refined and interpreted at atomic resolution using all-atom com-
puter simulations. The vision of the late Peter Kollman in intro-
ducing the AMBER force field,1 among his many other important
contributions, paved the way to numerous biomolecular discover-
ies both for protein and nucleic acid systems. Molecular modeling
and simulation has already become a powerful vehicle for refining
experimental models and for predicting in advance of experiment

new features that are of biologic importance (see the text2 and
references,3–17 for example).

Modeling protein/DNA complexes using all-atom force fields
presents a considerable challenge to the methodology, due to the
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heavy amount of computations involved in simulating long trajec-
tories (several nanoseconds or more). The development of reliable
and efficient methods for simulating biomolecules is thus an im-
portant but challenging task. Several efficient approaches have
been suggested and examined for treating the expensive non-
bonded computations; these include fast multipole,18 PME,19 and
multigrid methods.20–22 In tandem, multiple time step (MTS)
methods23–26 have been developed on the basis of splitting the
forces into classes according to their range of interaction, thus
enabling the update of the associated forces in an efficient manner.
Here, we examine performance of a recent MTS/PME integrator
implemented in AMBER27 to uncover inherent limitations in
MTS/PME algorithms. AMBER’s PME integrator is based on the
work of Darden and coworkers.28,29 The MTS relies on ideas from
Batcho et al.,30 who adapted features of the LN algorithm in
CHARMM,31 and the update of Qian and Schlick,27 who added
switch functions to define the force classes. Switch functions have
been used by Zhou et al.32 and by Qian and Schlick,27 because it
had been shown that the reciprocal-space Ewald component con-
tains fast terms and the direct-space Ewald component contains
slow terms.32–34 Smooth switch functions thus might push the fast
terms to the direct-space component and slow terms into the
reciprocal-space component, as shown in Figure 1.

Besides AMBER’s protein benchmark system, we use a poly-
merase �/DNA complex,31 which we simulated recently to iden-
tify the large-scale motions thought to be crucial for repair mech-
anisms during DNA synthesis and repair. The enzyme’s function
of filling in DNA gaps is thought to involve an “induced fit”
mechanism, in which the enzyme alternates between open and
closed states. The possible large-scale motion associated with the
experimentally observed open and closed enzyme/DNA complex
has been modeled using the CHARMM program (see ref. 35 for
details). Here, we have ported the system to the AMBER program
in the initial goal of producing an economical and reliable simu-
lation protocol suitable for long trajectories. By applying the
MTS/PME scheme to model the polymerase �/DNA system and
comparing it with the single time step (STS) leapfrog Verlet
integrator used in AMBER, we show that inherent speedup limi-
tations emerge from the intramolecular PME cancellation error.

The need for a correction term arises because some near-
neighbor nonbonded interactions are omitted from the Coulomb
potential to avoid double counting these interactions in other terms
of the potential. In practice, these excluded terms are subtracted
from the Coulomb potential as evaluated by PME. While in the
direct-space sum, these excluded Coulombic interactions are sim-
ply omitted, in the reciprocal-space term, they are calculated only
to a finite degree of accuracy due to the cutoff in the reciprocal-
space grid; thus, the subtraction of the excluded terms does not
exactly cancel the implicitly-contained analog (in the reciprocal-
space summation). This cancellation error varies in time, and
introduces artificial frequencies to the governing dynamics motion.

Unfortunately, we find that this numerical PME error cannot be
easily eliminated by refining the PME parameters (grid resolution
and/or order of interpolating polynomial). Although we emphasize
that the marriage between MTS and PME is questionable in terms
of immediate practical gains, adapting successful MTS elements
for an alternative long-range electrostatic treatment (e.g., refs. 21,
22, 36–38) and may be more fruitful.

The outline of this article is as follows. The next section
describes the developed MTS/PME method. Ideas from the MTS/

Figure 2. Biomolecular system. (A) The dihydrofolate reductase
(DHFR) protein used as a benchmark to test the MTS/PME algorithm.
The total solvated system size is 22,930 atoms (2489 protein atoms,
20,430 water molecules, and 11 ions). (B) The pol �/DNA complex
used as a large-scale test system for our MTS/PME algorithm is shown
at left; key protein residues in the active site are yellow, and DNA
atoms are red. The enzyme’s various domains are shown. At right, the
solvated model of pol �/DNA complex in a cubic domain is illustrated.
The system consists of 11,399 bulk water molecules (gray), 42 Na�

(yellow), and 20 Cl� (green) counterions.

Figure 1. Force-splitting strategy for the MTS/PME algorithm. At
left, forces are drawn before smooth switches are applied. The curve
crossing indicates slow components in the direct term and fast com-
ponents in the reciprocal term. After the switches are applied, the
resulting splitting is shown at right. The Coulomb force is switched
between distances a and b, whereas the van der Waals is switched
between v1 and v2.
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Langevin (LN) CHARMM implementation31 motivate the force
splitting strategy used in ref. 27. Expected advantages and limita-
tions are also discussed. Then we report performance of the MTS/
PME integrator on biomolecular systems with AMBER 6.0; per-
formance is analyzed in terms of various accuracy (based on static
or average quantities), stability (dynamic information), and
speedup assessors. Parallelization issues are examined, as are the
inherent speedup limitations in MTS/PME algorithms (stemming
from an outer time-step limit to manage the intramolecular can-
cellation error for large systems).

Method

Overview

The Verlet/Störmer method,39,40 with all its variants, is at the heart
of most MD simulations due to its favorable numerical properties.
Here we briefly sketch the main ideas, starting from the original
Verlet algorithm, on which most force splitting strategies are
based. We refer the interested reader to a general introduction on
the subject,2 and to an earlier article27 for more details about the
proposed MTS/PME algorithm.

In classical dynamics, the motion of a molecular system obeys
Newton’s classical equation of motion:

MẌ�t� � F�X�t�� � ��E�X�t��. (1)

Here, the position vector X � R3N denotes the coordinates of each
atom; M is the diagonal mass matrix, with the masses of each atom
repeated three times along the diagonal. The dot superscripts
denote differentiation with respect to time, t, F is the total force,
and E is the potential energy.

The Verlet algorithm uses the following discretization for the
trajectory positions to advance in time:

Xn�1 � 2Xn � Xn�1 � �t2Fn. (2)

In the scheme above, superscripts n denote the finite-difference
approximations to quantities at time step n�t. Different Verlet
variants have been devised, based on the flexibility in defining
corresponding velocity propagation formulas consistent with eq. (2).

In an effort to reduce the computational cost when using the
Verlet algorithm, an attractive idea is to use the multiple time step
(MTS) algorithms mentioned earlier. Because the total force term
F in eq. (1) reflects components varying in their ranges of inter-
action, efficiency in MD simulations can be achieved by splitting
the force into several classes, for example fast, medium, and slow,
and using different update frequencies for them. Thus, the force
components Ffast, Fmed, Fslow are associated with corresponding
time steps ��, �tm, and �t, where the integers k1 and k2 relate the
time steps by

k1 � �tm/��, k2 � �t/�tm. (3)

We also introduce the ratio r:

r � k1k2 � �t/��, (4)

between the outer and inner time step. This ratio provides an upper
limit on overall speedup.

In the context of PME, the challenge is to define the medium
and slow classes because the direct PME has slow components
while the reciprocal PME component has fast terms.27 We discuss
this crucial point in the next section.

Recent work on the LN algorithm in CHARMM (see earlier, and
the general ref. 2 for more details) has shown that force splitting by
extrapolation rather than impulses41,42 and the use of position rather
than velocity Verlet43,44 are advantageous in terms of stability and
accuracy. In addition, the introduction of stochasticity by using Lan-
gevin dynamics rather than Newtonian dynamics41 alleviates severe
resonance effects and results in better numerical behavior. The Lan-
gevin equation extends eq. (1) and is given by:

MẌ�t� � ��E�X�t�� � �MẊ�t� � R�t�, (5)

where � is the collision parameter, or damping constant. The
random-force vector R is a stationary Gaussian process with sta-
tistical properties given by:

�R�t�� � 0, �R�t� R�t	�T� � 2�kBTM��t � t	�, (6)

where kB is the Boltzmann constant, T is the target temperature,
and � is the Dirac symbol for the delta function.

The LN method can be sketched as follows for a three-class
force-splitting scheme:

LN Algorithm

Xr
0 
 X

Fslow 
 ��Eslow(Xr)
For j � 1 to k2

Xr � Xr
j 4 X �

�tm

2
V

Fmed � ��Emed(Xr)
F 4 Fmed � Fslow

For i � 1 to k1

X 4 X �
��

2
V

V 4 (V�M�1��(F�Ffast(X)�R))/(1����)

X4 X �
��

2
V (7)

End
End

Note here the use of extrapolation (a slow-force contribution is
made each time the fast force is evaluated in the inner loop, i.e.,
every �� interval), position Verlet in the inner loop, and Langevin
dynamics (random and frictional terms). The Gaussian random
force R is chosen each inner time step by a standard procedure
(e.g., Box/Muller method45) according to the target temperature. In
the next subsection, we describe an extension of the LN algorithm
above tailored for PME algorithms.

Force-Splitting Considerations

In PME methods, the Coulomb force is summed from a direct
term, a reciprocal term, and correction terms (see Appendix for the
exact expressions of each term):
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Fc � Fdirect � Freciprocal � Fcor,self � Fcor,ex � Fcor,� (8)

As noted by Stuart et al.,34 Batcho et al.,30 Zhou et al.,32, and
Qian and Schlick,27 the direct term has a “tail” (slow terms),
whereas the reciprocal term has a “head” (fast terms). This behav-
ior, illustrated in Figure 1, means that simply assigning the recip-
rocal term into the slow class and the direct term into the medium
class limits the time step that can be used in an MTS/PME
algorithm. Indeed, compared to the outer time step �t � 150 fs
used in the Langevin/MTS protocol in CHARMM, the AMBER
MTS/PME protocols discussed here show limits of �t � 6 fs and
16 fs for Newtonian and Langevin dynamics, respectively. Thus,
the idea of using switch functions27,32 appears attractive. Besides
possibly allowing large time steps, a separate smooth switch func-
tion on the van der Waals force results in an improved represen-
tation over force-splitting methods applied to truncated van der
Waals terms, as in Batcho et al.30

We thus use a three-level force-splitting strategy that assigns
switched forces into the different classes (see Fig. 1 for illustration):

Ffast � Fbond � Fangle � Ftorsion,

Fmed � Fdirect
switched � Fvdw

switched,

Fslow � Freciprocal
switched ,

where expressions for the various terms can be found in the
Appendix.

Thus, the switched direct-space and switched van der Waals
forces are assigned to the medium class, and the switched recip-
rocal-space forces are assigned to the slow class. In addition,
extensions to constant temperature and pressure simulations were
implemented, as well as a parallel version of the integrator. The
resulting MTS/PME algorithm for Newtonian and Langevin dy-
namics can be sketched as follows:

MTS/PME Algorithm

Xr
0 
 X

Fslow 
 ��Eslow(Xr)
Pt � 0
For j � 1 to k2

Xr � Xr
j 4 X �

�tm

2
V

Fmed � ��Emed(Xr)
F 4 Fmed � Fslow

For i � 1 to k1

X 4 X �
��

2
V; SHAKE�X, V,

��

2 � ;

Pt�Pt�get P�X, V�

V 4 V(1����)�M�1��(F�Ffast(X)�R)

X4 X �
��

2
V; SHAKE�X,V,

��

2 � (9)

End
End
Pt � Pt/(k1k2)
scalX(X, Pt, P0, k1k2��)

For Newtonian dynamics, R and � are zero. Note here the
similarity to the LN algorithm (see above) and the added SHAKE
steps after each coordinate update. In addition, various MD en-
sembles were added to treat constant pressure and temperature
ensembles. Besides the microcanonical ensemble (constant energy
and volume, NVE), other ensembles that can be mimicked by the
MTS/PME approach implemented in AMBER27 are canonical
(constant temperature and volume, NVT) and isothermal-isobaric
(constant temperature and pressure, NPT). The implementations
involve a weak coupling barostat for constant P and weak coupling
thermostat for constant T, respectively, proposed by Berendsen
and coworkers (see ref. 2 for a detailed discussion). In the algo-
rithm sketched above, Cartesian positions were scaled to accom-
modate for constant pressure.

Results and Discussion

Biomolecular Systems

The two systems on which we examine the performance of various
MTS/PME protocols are AMBER’s standard benchmark system,
the dihydrofolate reductase (DHFR) solvated protein, which has a
total of 22,930 atoms, and our pol �/DNA model31 (Fig. 2). The
latter involves the protein complexed to the primer/template DNA
for a total of 40,673 atoms (11,399 bulk waters, 42 Na� ions, and
20 Cl� ions). All computations are performed on SGI Origin
2000/3000 computers with 8 300-MHz R12000 processors. Before
the detailed algorithmic testing reported here, we have verified that
the migration of the pol �/DNA model from CHARMM to AM-
BER has been successful (see Fig. 3A–C and corresponding cap-
tion).

Accuracy: Comparison with Single Time Step

We now compare the accuracy of several MTS/PME protocols by
examining the average of different energy components after run-
ning dynamics trajectories relative to the single-time step (STS)
leapfrog Verlet integrator with �t � 0.5 as a reference. Figure 4
compares performance of the different Newtonian and Langevin
MTS protocols as well as the STS scheme at �t � 2 fs over 400
ps relative to STS at �t � 1 fs.

We observe that in all cases relative errors are less than 2.5%,
with smaller values for Newtonian protocols (relative to Langevin
dynamics), as expected.

Stability Limits and the Numerical PME Error

Determination of Stability Limit

We next examine the stability limits of our proposed MTS/PME
algorithm. All calculations are performed on trajectories of
length 400 ps to ensure that energy is well conserved. MTS/
PME tests based on short trajectories of several picoseconds32

can be misleading in detecting instabilities. Various MTS/PME
protocols are considered in Figure 5, including those combina-
tions near the stability limit (e.g., Newtonian protocol of 2/4/8
fs, Langevin protocol of 1/3/15 fs, � � 5 ps�1). All experiments
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reported involve constant energy simulations so as not to in-
troduce additional complications (e.g., Berendsen thermostat,
see ref. 2). In Table 1, two assessors commonly used for energy
conservation,27 namely the relative energy drift rate 	 and the
relative energy error 
, are reported for these protocols. The
drift rate 	 in the least square sense (denoted by �) is defined
as follows:

Etot
i

Etot
0 �

	

tu
ti � b0, (10)

where ti � i�t at step i, b0 is a parameter, and tu is the preferred
time unit to make 	 unitless. The energy error is measured from the
expression

Figure 3. Tests on the polymerase � system. (A) Spectral density analysis for the water (left), protein
(middle), and DNA (right) atoms of the pol �/DNA complex over a 12-ps trajectory. Spectral densities
are compared from the LN algorithm in CHARMM (1/2/150 fs, � � 10 ps�1), single time step leapfrog
Verlet integrator in AMBER (1 fs), and our MTS/PME method in AMBER (1/2/4 fs). Velocities of solute
atoms are recorded every 2 fs. The overall similar trend in the spectra indicates successful migration from
CHARMM to AMBER. (B) Spectral density analysis for the protein of the pol �/DNA complex over a
2-ps trajectory. The velocity Verlet in CHARMM and single time step leapfrog Verlet integrator in
AMBER, both with a 1-fs time step, are compared. Velocities of solute atoms are recorded every 2 fs.
Stretching frequencies are absent due to the application of SHAKE (constrained dynamics) on all bonds
involving hydrogen. By comparing the spectra of two STS Newtonian schemes, successful migration from
CHARMM to AMBER is further validated. (C) Energy conservation for pol �/DNA after 400 ps and
equilibration, using MTS/PME protocol of 1/3/6 fs. Strict conservation of energy is achieved with the
aforementioned protocol that represents a reliable conservative choice for the AMBER integrator.
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 �
1

NT
�
i�1

NT �Etot
i � Etot

0

Etot
0 �, (11)

where Etot
i is the total energy at step i, Etot

0 is the initial energy, and
NT is the total number of sampling points.

For the energy drift 	, a small log10	 value (low energy drift
rate) is a good indicator of energy conservation. For the energy
error 
, a value of log10
 � �2.5 is considered acceptable in

terms of numerical accuracy.37 We observe in Table 1 that all
protocols examined are acceptable in terms of the energy conser-
vation assessors. They all exhibit small log10	 values and log20

values that are less than �2.5. For the MTS/PME Newtonian
protocol of 2/4/8 fs and the Langevin protocol 1/3/15 fs with � �
5 ps�1, log10
 approaches �2.5 (threshold value). Indeed, for
protocols with a larger outer time step than 8 fs (Newtonian), or 16
fs (Langevin), we find in Table 3 that log10
 
 �2.5 and energy
is no longer preserved.

A PME Source for Instabilities

The stability limits noted above—an outer time step of 8 fs in
Newtonian protocols and 16 fs in Langevin protocols—can usu-
ally be detected only in simulations of length 400 ps or longer. A
source of this instability not emphasized previously is the intramo-
lecular cancellation error.33 The need for a correction term arises
because some near-neighbor nonbonded interactions are omitted
from the Coulomb potential to avoid double counting these inter-
actions in other terms of the potential. In practice, these excluded
terms are subtracted from the Coulomb potential as evaluated by

Figure 4. The deviation of energy components relative to the refer-
ence trajectory (single time step leapfrog Verlet Newtonian integration
with �t � 1.0) for various MTS/PME protocols as indicated by
triplets �� /�tm/�t fs (� in ps�1) and the single time step leapfrog
Verlet protocol at �t � 2.0 performed on the dihydrofolate reductase
(DHFR) protein. All simulations are 400 ps in length.

Figure 5. Energy conservation of various different protocols of the MTS/PME algo-
rithm developed, performed on the dihydrofolate reductase (DHFR) protein for 400 ps.
Evolution of total energy and accumulative average (thick line) is shown for each
protocol. For references, the mean energies for the four protocols bottom to top are
�56,917 � 159, �56,942 � 153, �57,253 � 75 and �57,527 � 15 kcal/mol,
respectively.

Table 1. Energy Conservation Assessors for the Various Protocols
Examined in Figure 5.

Protocol log10
 log10	

MTS 1/3/6 fs �3.69 �6.35
MTS 2/4/8 fs �2.95 �4.96
MTS 1/3/15 fs: Langevin, � � 5 ps�1 �2.66 �6.31
MTS 1/2/16 fs: Langevin, � � 16 ps�1 �2.67 �6.23
STS 2.0 fs �4.18 �6.25
STS 1.0 fs �4.10 �6.10

MTS: multiple time steps; STS: single time step leapfrog Verlet.
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PME. While in the direct-space sum, these excluded Coulombic
interactions are simply omitted, in the reciprocal-space term, they
are calculated only to a finite degree of accuracy due to the cutoff
in the reciprocal-space grid; thus, the subtraction of the excluded
terms does not exactly cancel the implicitly-contained analog (in
the reciprocal-space summation). This cancellation error varies in
time and introduces artificial frequencies to the governing dynam-
ics motion. Unfortunately, we find that this numerical PME error
cannot be easily eliminated by refining the PME parameters (grid
resolution and/or order of interpolating polynomial).

Procacci et al.33 have devised a simple water system to examine
the cancellation error for a single water molecule in a cubic box
with side length of 64 Å, in which the total electrostatic energy
corresponds exactly to the intramolecular cancellation error. In
Qian and Schlick,27 this error was further examined in AMBER
using a single water molecule system.

Figure 6A (which uses default parameters of PME in AMBER)
shows the magnitude of the cancellation error and its associated
frequencies. The two characteristic periods on the order of 110 and
200 fs (inverse of the frequencies captured) impose an upper
bound on the outer time step of 35 fs for linear stability (period
over �)27,43 and 25 fs to avoid fourth-order resonance (period over
�2�).27,41

Attempts to Suppress PME Error Source

To rule out other sources of errors, we have attempted to suppress
this error by refining the PME parameters. It is possible that
high-accuracy PME parameters might reduce the size of such
cancellation errors and consequently dampen the instabilities from
the integration. Specifically, we have systematically refined key
PME parameters (1) the direct-space grid—by decreasing the
tolerance of the direct sum part,29 that by default in AMBER 6.0
is �dir � 10�5; (2) the reciprocal-space grid—by refining the size
of the charge grid upon which the reciprocal sums are interpolated,
a grid that by default for the water system is 64 � 64 � 64 Å3 (i.e.,
a refinement by a factor of 2 corresponds to 128 � 128 � 128 Å3

for the water system); and (3) the order of the B-spline interpola-
tion polynomial commonly used with the PME—by increasing the
AMBER 6.0 default value of 4. Double-precision calculations are
used throughout.

Although refining the direct-space grid does not affect the
electrostatic energy in the single water molecule system (data not
shown), we find that the combination of the other refinements
(reciprocal-space grid resolution and B-spline order) appears to
succeed in suppressing the cancellation error captured in the above
system—see Figure 7C, which reveals no characteristic periods.
However, a detailed examination of the systematic refinement
steps in Figures 6, 7, and Table 2 reveals that the finite computer
precision limits the result reported even though the error and its
related frequencies remain unaltered. That is, although the oscil-
lations around the mean error have been dampened, the mean value
remains at approximately �0.0006 kcal/mol, with the same char-
acteristic periods present in the spectra, although at smaller relative
magnitudes. Thus, it can be conjectured, based on the refinement
steps reported in Table 2, that the combined effect of doubling the
resolution of the reciprocal-space grid and increasing the order of

the interpolation polynomial by two terms still produces artifacts
from the PME cancellation term.

We also remark that additional refinements performed in re-
sponse to a referee’s suggestions, namely increasing the order of
the B-spline interpolation polynomial from 4 to 12 and trying
force-interpolated PME, have not succeeded in decreasing the
lowest PME cancellation error that is reported in Table 2 (data not
shown).

The CPU times associated with these refinements indicate that
increasing the resolution of the reciprocal-space grid in the single
water molecule system is costly (Table 2), but this example is not
representative since a direct-space term is absent in the single
water molecule.33 In general, the direct-space term is the dominant
part of the calculation; thus, for example, a refinement of the
reciprocal-space resolution by a factor of two in the DHFR system
yields an increase of the CPU times by no more than 35%, see
Table 3. The change in CPU time when increasing the order of the
interpolating polynomial is insignificant (Table 2); the slight de-
crease in the water system does not occur for larger systems.

Figure 6. The intramolecular cancellation error (EELEC) for the
default PME parameters in AMBER (A), PME refinement by increas-
ing the order of the interpolating polynomial from 4 to 5 (B), PME
refinement by increasing the order of the interpolating polynomial
from 4 to 6 (C). Left: electrostatic energies of the single water
molecule33 calculated with a single time step of �t � 0.5 fs in
AMBER 6.0 by leapfrog Verlet. Right: the spectral analysis of the
autocorrelation function of electrostatic energy that reveal two char-
acteristic periods on the order of 110 and 220 fs.
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We have also checked whether any suppression of cancellation
error can be achieved for large systems the size of polymerase
�/DNA (as introduced earlier). The same refinements of PME
parameters (namely, the increase in the reciprocal-space grid res-
olution and the increase in the order of the interpolation polyno-
mial) on the DHFR benchmark are examined in Table 3. We see
that high-accuracy PME runs fail to suppress the cancellation error
in larger systems, and the same stability limits mentioned above
remain.

We have also experimented with subtraction of the intramolec-
ular excluded correction term from the switched direct-space
rather than the switched reciprocal-space term. Such a comparison
has been performed,46 and only a slight difference was noticed.
Conceptually, the advantage of this subtraction in direct-space
rather than reciprocal-space might be that the correction is ac-
counted for more often, because the direct-space is assigned to the
medium class and is propagated with smaller time steps. However,
because the force is fluctuating more often, instabilities may also
develop.

Additional tests (not reported in tables) reveal that the time step
stability limits remain essentially the same whether the correction
is done in the medium class or in the slow class. The reported
energy drifts in Table 3 indicate that the subtraction of the ex-
cluded correction in direct-space, as in the case of reciprocal-
space, results in significant energy drifts for both Newtonian and
Langevin protocols that are above the stability limits mentioned
(i.e., 8 fs for Newtonian, 16 fs for Langevin). These findings
strengthen our conclusion that the excluded error accumulates no
matter where the subtraction of the intramolecular excluded cor-
rection term is performed.

Speedup

An analytical estimate for the maximal MTS speedup can be
derived as follows.27 We assume that evaluating the slow forces
requires Cm amount of work and that the nonbonded computation
dominates in total CPU cost. For MTS with an outer time step �t,
the total CPU cost can therefore be estimated approximately by
(k2 � 1)Cm. For a STS protocol with time step ��0, the total CPU
cost to cover a time interval �t is Cm(�t/��0) � k1k2Cm(�� /
��0). Therefore, the limiting MTS speedup is given by the ratio of
these two estimates, which is

k1k2

k2 � 1 � ��

��0
� . (12)

In Figure 8, experimental results for the DHFR protein bench-
mark and pol �/DNA complex are plotted along with the analytical
estimate for various MTS/PME protocols. We observe that in
practice, the analytical estimate is not an upper bound; namely, it
is possible to perform better than this estimate with well-tuned
protocols.27 When deriving the estimates, it was assumed that the
nonbonded pair list is the same size for both the STS reference
integrator and the MTS/PME protocols. However, by tuning the
parameters of the switch functions, we could decrease the direct-
space cutoff from the default value used in AMBER (i.e., from 8
to 7 Å) without a significant loss in accuracy. This reduces the
nonbonded list maintenance time for the electrostatic force update
and yields greater speedups compared to the analytical estimate.
Table 4 reports the speedup factors, also plotted in Figure 8, for
both DHFR and pol �/DNA.

Parallelization

A parallel version of the proposed MTS/PME algorithm is avail-
able for use in AMBER 6.0. The scalability of the algorithm was
tested on an SGI Origin 2000 and SGI Origin 3000 computers.
Relative to the STS integrator, the MTS/PME protocol requires
more communication because of additional Message Passing In-
terface (MPI) calls to accommodate the multiple time steps. In
MTS/PME, the percentage of work spent on the nonbonded com-
putations are the part originally designed to scale well on multiple
processors, the scalability of MTS/PME schemes is poorer than for
STS schemes. Table 5 shows this trend. By increasing the number
of processors, less time is spent on nonbonded computations in
MTS/PME relative to STS and therefore a deviation from linear
scalability results.

Figure 7. The intramolecular cancellation error (EELEC) for increas-
ing the resolution of the reciprocal-space grid in AMBER’s PME by a
factor of 1.125 from the default value of a charge grid of 64 � 64 �
64 Å3 (A), a factor of 2.0 (B), and a combination of a factor of 2.0 and
an increase in the order of the interpolating polynomial from 4 to 6 (C).
Left: electrostatic energies of the single water molecule33 calculated
with a single time step of �t � 0.5 in AMBER 6.0 by leapfrog Verlet.
Right: the spectral analysis of the autocorrelation function of electro-
static energy.
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Moreover, the nonbonded pairlist is accessed twice within a
macrostep interval �t (as the slow and medium forces are recal-
culated) to compute a subtracted switched correction term for each
Coulombic force evaluation. These additional operations impair
the scalability of MTS relative to STS integrators. Figure 9 shows
the MTS/PME scalability with a 1/3/6 fs protocol, relative to STS,
as applied to the solvated dihydrofolate reductase protein and
polymerase �/DNA systems.

Conclusions

The MTS/PME algorithm described here builds on features of the
LN algorithm in CHARMM (i.e., position rather than velocity
Verlet; Langevin dynamics to mask mild instabilities) and is
tailored to PME by using switch functions. By tuning the smooth

switches, a balance can be reached such that near-field contribu-
tions are removed from the reciprocal term while far-field contri-
butions are removed from the direct term. Applying the smooth
switches to both Coulomb and Van der Waals force terms is also
preferable to using cutoffs in modeling biomolecular systems.

The performance analyses on both the dihydrofolate reductase
(DHFR) protein benchmark and the large polymerase �/DNA
complex have demonstrated the accuracy, speedup, and stability
characteristic of different protocols, but have also identified a
fundamental limitation inherent to MTS/PME algorithms due to
the numerical approximation in the PME27,30,33 approach.
Namely, the intramolecular cancellation term in PME methods
contributes to make MTS algorithms unstable beyond relatively
small time steps (e.g., 8 fs or less for Newtonian, 16 fs for
Langevin dynamics) (see Figs. 6, 7 and Table 2 for these error
illustrated on a simple water system).

Table 2. Electrostatic Energies and CPU Times for the Single Water System in High Accuracy
PME Runs.

PME protocol
Mean elec energy

(kcal/mol)
RMS of elec energy

(kcal/mol)

CPU
(5-ps trajectory)

(seconds)

STS 0.5 fs: def �0.0008 0.0009 4639
STS 0.5 fs: �1p �0.0006 0.0003 4429
STS 0.5 fs: �2p �0.0006 0.00004 3721
STS 0.5 fs: *1.25r �0.0005 0.0002 11069
STS 0.5 fs: *1.5r �0.0006 0.0001 18424
STS 0.5 fs: *2r �0.0007 0.00002 43373
STS 0.5 fs: *2r � 2p �0.0006 0.0000004 45489

def: default PME parameters; *1.25, *1.5, *2r: factor of 1.25, 1.5, 2 greater resolution of the
reciprocal-space grid (i.e., grid dimensions of 80 � 80 � 80 Å3, 96 � 96 � 96 Å3, and 128 � 128 �
128 Å3, respectively); �1p, �2p: increase in the order of the interpolating polynomial from 4 (cubic
spline) to 5 or 6.

Table 3. Energy Conservation Assessors and CPU Times for the Solvated DHFR Model in High Accuracy
PME Runs.

Protocol log10
 log10	
CPU (1 ps trajectory)

(seconds)

MTS 1/2/8 fs: def �3.32 �5.34 883
MTS 1/2/8 fs: *2r �3.57 �5.36 1183
MTS 1/2/8 fs: �2p �3.37 �5.40 948
MTS 1/2/10 fs: def �1.92 �3.92 849
MTS 1/2/10 fs: *2r �1.92 �3.91 1078
MTS 1/2/10 fs: �2p �1.92 �3.92 890
MTS 1/2/12 fs: def �0.54 �1.14 808
MTS 1/2/12 fs: *2r � 2p �0.83 �2.75 1060
MTS 1/2/12 fs: *2r � 2p (d) �0.22 �2.21 1069
MTS 1/2/18 fs: Langevin, � � 16 ps�1, def �1.92 �3.81 838
MTS 1/2/18 fs: Langevin, � � 16 ps�1, *2r � 2p (d) �1.93 �4.22 1036

def: default PME parameters; *1.25r, *1.5r, *2r: factor of 1.25, 1.5, 2 greater resolution of the reciprocal-space grid
(i.e., grid dimensions of 80 � 80 � 80 Å3, 96 � 96 � 96 Å3, and 128 � 128 � 128 Å3, respectively); �1p, �2p:
increase in the order of the interpolating polynomial from 4 (cubic spline) to 5 or 6. The suffix (d) indicates
subtraction of the excluded correction term from direct-space, rather than from reciprocal-space.
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The intramolecular Coulomb interactions between certain pairs
of atoms within the same molecule are excluded in the force field,
and therefore should be subtracted from the Coulomb summation.
The contribution from intramolecular Coulomb interactions is au-
tomatically included in the reciprocal space summation when
using the PME methodology for the electrostatics. The subtraction
of the excluded correction term, computed exactly, cannot pre-
cisely cancel the addition to the reciprocal-space Ewald summa-
tion that is computed approximately due to the cutoff in reciprocal
space. The cancellation error that is produced as a consequence
causes instabilities when the time step becomes larger. Table 4
illustrates the speedup limitations that are encountered, and Table
5 demonstrates the scalability problems associated with the incor-
poration of MTS into the PME.

In an earlier section (Tables 2, 3, Figs. 6, 7) we attempted to
suppress the intramolecular cancellation error by increasing the

accuracy of the PME computation (i.e., refining the grid used in
both the direct and reciprocal spaces and increasing the order of
the interpolating polynomial). Indeed, for the small, constructed
system of a single water molecule in which the cancellation error
is the total energy,27,33 it might appear that we can suppress the
error by increasing the reciprocal-space grid by a factor of two and
increasing the order of the B-spline interpolating polynomial from
4 to 6. However, this only reflects the suppression of the oscilla-
tions around the mean and not the presence of artificial periods, as
discussed earlier. We have verified that performing these refine-
ments on the polymerase �/DNA system (see Table 3) does not
allow us to increase the outer time step beyond the limits men-
tioned above. Constructing a suitable correction potential to at-
tempt a suppression of this instability, as suggested by Procacci et
al.33 for the single water molecule system, is an involved task for
large biomolecular systems.

Based on these findings, we conclude that this contributor of
instabilities in MTS/PME protocols—the intramolecular cancella-
tion error—cannot easily be controlled in general. In systems the
size of the polymerase �/DNA complex, the instabilities at large
outer time steps do not disappear by attempting to suppress the
cancellation error with high accuracy PME runs. Perhaps some
augmentation to the PME formulations are possible,47 but this

Table 4. Speedup for the Efficient MTS/PME Protocols and the Single
Time Step Leapfrog Verlet Integrator with �t � 2.0 fs, Relative to the
Single Time Step Leapfrog Verlet Integrator with �t � 1.0 fs for the
DHFR and pol � Systems, as Calculated over 1 ps.

Protocol DHFR pol �

MTS 2/4/78 fs 3.15 3.08
MTS 1/3/15 fs: Langevin, � � 5 ps�1 2.82 2.74
MTS 1/3/6 fs 2.38 2.27
MTS 1/2/8 fs 2.18 2.10
STS 2.0 fs 1.91 1.92

Table 5. Percentage of Time Spent in Nonbonded Computations.

Processors STS (%) MTS (%) Ratio of MTS/STS

1 95.41 88.44 0.93
2 93.34 82.88 0.89
4 88.79 72.12 0.81
8 78.61 53.77 0.68

Figure 8. Speedup for various MTS/PME protocols, relative to the
single time step integrator by leapfrog Verlet with �t � 1.0 fs. All
simulations are 1 ps in length and use a single processor. Speedup
factors are based on simulations performed on the SGI Origin 2000
with 8 300-MHz R12000 processors. The simulations were performed
on the dihydrofolate reductase (DHFR) protein and polymerase
�/DNA systems. Results of a theoretical estimate based on eq. (12) are
also given for reference.

Figure 9. Parallel scalability of different STS by leapfrog Verlet and
MTS (as described in the text) protocols, implemented in AMBER 6.0
and tested on an SGI Origin 3000 computer relative to a single
processor. All simulations were performed for 1 ps. Speedup ratios
exclude setup times.
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remains to be tested. Artifacts from the periodic boundary condi-
tions (e.g., references 48–51) may also be an issue that is difficult
to address in practice. We thus suggest that the larger time steps
needed to make MTS algorithms advantageous (e.g., references
25, 31, 32, 52–56) can be accomplished by methods other than the
PME for fast electrostatics.

Appendix

The Ewald summation consists of the following terms for the
Coulomb potential,2

EC � Edirect � Ereciprocal � Ecor,self � Ecor,ex � Ecor,� (13)

where

Ereal �
1

2 �
i, j�1

N

qiqj �
�n�

	 erfc���rij � n��
�rij � n� ; (14)

Erecip. �
1

2�L3 �
�m��0

exp���2�m�2/�2�

�m�2 G�m�G��m�,

G�m� � �
j�1

N

qjexp�2�im � xj�; (15)

Ecor.self �
��

��
�
j�1

N

qj
2; (16)

Ecor.ex � �
1

2 �
i, j�Ex.

N

qiqj

erf���rij��
�rij�

; (17)

Ecor.� �
2�

�1 � 2��L3 ��
j�1

N

qjxj�2

. (18)

Here, � is the Ewald constant, qi is the partial charge on atom
i, and erfc(x) is the complementary error function (erfc(x) �

2/�� �
x

� exp��u2�du). For the reciprocal term we sum over Fourier

modes where m � 2�k/L, V � L3, m � �m� � 2��k�/L, and k �
(kx, ky, kz), kx, ky, kz are integers, and L3 is the volume of the cubic
domain. The non-Coulomb potentials in the system are:

ENC � Er � E� � E� � ELJ � EHb, (19)

where

Er � �
i, j�SB

Sij�rij � r� ij�
2 (20)

E� � �
i, j,k�SBA

Kijk��ijk � �� ijk�
2 (21)

E� � �
i, j,k,l�SDA

�
n

Vnijkl

2
�1 � cos�n�ijkl�� (22)

ELJ � �
i�j

4�ij�
ij
12

rij
12 �


ij
6

rij
6� �

1

Escale
1,4 �

i�j

4�ij�
ij
12

rij
12 �


ij
6

rij
6 �

(23)

EHb � �
i�j

�Cij

rij
12 �

Dij

rij
10� . (24)

Smooth switches are employed using the following switch
function for the switch interval [r0, r1],

S�r, r0, r1� � 	 1 if r � r0,
x2�2x � 3� � 1 if r0 � r � r1,

0 if r � r1,
(25)

where x � (r � r0)/(r1 � r0).
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