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New splitting formulations for lattice summations
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We present a new formulation for the efficient evaluation of pairwise interactions for large
nonperiodic or spatially periodic infinite lattices. Our optimally designed splitting formulation
generalizes the Ewald method and its Gaussian core function. In particular, we show that a
polynomial multiplication to the Gaussian core function can be used to formulate desired
mathematical or physical characteristics into a lattice summation method. Two optimization
statements are examined. The first incorporates a pairwise interaction splitting into the lattice sum,
where the direct~real! and reciprocal space terms also isolate the near-field and far-field pairwise
particle interactions, respectively. The second optimization defines a splitting with a rapidly
convergent reciprocal space term that allows enhanced decay rates in the real-space term relative to
the traditional Ewald method. These approaches require modest adaptation to the Ewald formulation
and are expected to enhance performance of particle-mesh methods for large-scale systems. A
motivation for future applications is large-scale biomolecular dynamics simulations using
particle-mesh Ewald methods and multiple time step integration. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1412247#
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I. INTRODUCTION

The evaluation of a sum of point Coulomb charges a
higher-order dispersion lattices is fundamental to many fie
of chemical physics. For electronic structure calculation o
crystalline lattice, such a summation is required over all
clei for the nuclear-electron repulsion term.1 Likewise,
evaluation of the electrostatic potential for large material s
ence and biomolecular dynamics simulations has its m
significant computational bottleneck at the evaluation of
Coulomb lattice sum.2 Coulomb and lattice applications als
abound in crystallography and in fields such as hydrodyn
ics and astrophysics.

There has been a rich history on the efficient calculat
of the direct lattice sum;3–7 see Ref. 8 for a recent review o
biophysics applications. The underlying problems are
slow, conditional convergence of the direct summation o
large or infinite crystal lattice and the associatedN2 work.

Possibly the most successful method for reformulat
the Coulomb lattice sum was first proposed by Ewald,7 who
split the sum into a rapidly convergent sublattice sum an
second potential that requires a solution of Poisson’s eq
tion. At first glance, the replacement of a sum by a solut
of a partial differential equation in three dimensions wou
seem to be questionable. However, Ewald’s use of a Ga
ian core function results in a highly favorable reciproc
space decay in the Poisson kernel for a periodic lattice,
equally satisfactory decay of the real-space component.
combined effect is a mathematically consistent formulat
that is well suited for computational methods.

The basic Ewald formulation has largely remained u

a!Electronic mail: paul@biomath.nyu.edu; fax: 212-995-4152.
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changed for nearly 80 years. However, new applications
fields such as molecular dynamics, condensed matter p
ics, and material science impose increasing demands on
efficient use of computational formulations and mathem
cal constructions. Several studies have extended the Ew
formulation to higher-order dispersion effects9–13through the
incomplete gamma function, and recently to the splitting
the Yukawa potential.14 Studies of alternative non-Gaussia
core functions have been presented in Refs. 5 and 15; h
ever, the Ewald Gaussian function remains the standard
lattice sum formulations.

For a practical computational implementation to lar
crystal unit cells, a particle-mesh approach is typica
adapted to Ewald’s method.6,13,16–19The three basic particle
mesh computational formulations, namely particle–partic
particle mesh (P3M), particle-mesh Ewald~PME!, and
smooth PME, have recently been re-examined by Dese
et al.19 From a different perspective, formulations that sp
large lattice sums into far-field and near-field terms via
multipole expansion have been proposed in the fa
multipole framework ~FMM!;20,21 however, recent
evidence22,23 indicates that the PME method has an adva
tage in computational cost over FMM methods for molecu
dynamics simulations over 20 000 particles. An applicat
of the FMM method to the real-space sum of the Ewa
method has also been implemented.24

Our goal is to build upon the success of Ewald’s Gau
ian formulation and expand its favorable properties to cre
new splitting methods that are advantageous in certain ap
cations and offer similar, if not better, convergence. Name
we examine the incorporation of new properties, such as
cluding a physical-space pairwise-interaction splitting in
2 © 2001 American Institute of Physics
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the real/reciprocal-space splitting. We also show that a h
degree polynomial multiplied by the Ewald Gaussian c
function can be optimally designed to result in a more e
cient lattice sum. In the adaptation of the Ewald method
higher order dispersion terms,12 polynomial/Gaussian core
functions have been used; here we generalize the Ewald
mulation by using several different functionals.

Systematic construction of core functions, their Four
transforms, and switch functions for the real space sum
presented. First, the splitting of the lattice sum is stud
where the real space sublattice is designed to isolate n
field particle interactions. This splitting characteristic is n
found in the Ewald formulation; it is a disadvantage in b
molecular simulations, limiting computational speedu
when multiple-time-step~MTS! integration is used.25,26

Thus, a modification that addresses this weakness is expe
to offer advantages in the implementation of PME/MTS a
proaches. Second, we formulate an optimization problem
design a core function with a more rapid rate of decay in
reciprocal space while maintaining an equivalent, or bet
rate of decay for the real-space sum~compared to Ewald’s
Gaussian function!. We examine properties of optimal cor
functions and suggest several new avenues to optimally
sign an efficient lattice sum to meet desired properties.

In Sec. II we present a formulation of the Ewald-typ
splitting of the Coulomb potential and establish its relevan
to the lattice sum and our optimization statements. Sec
III proposes general core functions and presents the ne
sary integral evaluations for constructing their Fourier tra
forms and switch functions for the real-space sum. Sec
IV introduces the optimization statements for the pairwi
interaction splitting and reciprocal-space decay rate. Prel
nary results are also presented, along with the mathema
constructions. Specifically, Sec. IV A addresses the pairw
interaction splitting and Sec. IV B extends the pairwise int
action splitting to a multilevel splitting to account for mo
than two force components. In Sec. IV C, we present
analysis that allows for a construction of a core function t
has an optimized rate of convergence in reciprocal-space
contrast the results to the traditional Ewald method. Th
appendices provide the technical details that allow a syst
atic construction of the core functions and their transform
Section V summarizes the formulations and results.

II. SPLITTING FORMULATION

We consider a neutral system ofN point charges
q1 ,q2 ,...,qN , at positionsr1 ,r2 ,...,rN , in a unit cell. The
electrostatic energy of the system is defined by the inte
tion of each point charge with all the other point charges
the infinite periodic lattice,

1

2 (
i , j 51

N

qi qj(
unu

8 1

ur i j 1nu
. ~1!

Here r i j is the particle–particle separation, and the prim
symbol in the summation (( unu8 ) indicates that forunu50 we
omit the i 5 j interaction. The Ewald sum relies on a cons
tent mathematical splitting of the sum into a near-field s
and a global solution of a partial differential equation.
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Our presentation here of the Ewald sum formulation
appropriate for our proposed developments. We start with
splitting of the Coulomb potential in three dimension
G(r2r 8)51/ur2r 8u, where r2r 8 is an interpair distance
vector andG(r2r 8) is the Green’s function associated wi
Poisson’s equation, by introducing a particle core functi
s(r2r 8), and a new multi-centered charge distributio
r(r ),

r~r !5(
j

qjs~r2r j !. ~2!

The distribution of particle core functions is effective
handled by the linear superposition of locally centered so
tions of Poisson’s equation. For a compact spherica
symmetric core function,s(r ), the far field solution to Pois-
son’s equation in 3D space, namely,

2¹2f~x!54ps~x!, ~3!

can be approximated by a multipole expansion.27 Here we
use reduced units where nondimensional Gaussian units
implied. The multipole expansion, here stated in Cartes
coordinates (xP$x,y,z%) to be consistent with the literature
is given in its general form~a Legendre polynomial expan
sion is used in FMM!,

f~x!5 (
n50

`

(
l 50

n

(
k50

n2 l
~21!n

l !k! ~n2 l 2k!!

3 H E E E x0
l y0

kz0
n2 l 2ks~x0 ,y0 ,z0!dx0dy0dz0J

•

]n

]xl]yk]zn2 l 2k F1

r G for r .a; ~4!

here x is interchangeable withr . The integration above
is contained in a volume inside the spherer 5a,
within which all the charge resides. The truncation of t
expansion has decreasing residual error for increas
radial values of R, R25(x2x0)21(y2y0)21(z2z0)2,
where r 25x21y21z2. If the charge distribution is spheri
cally symmetric, we expand around the center of charge a
since the integration of the odd terms vanish, we are left w
the simplified form,

f~r !5
As

r
1

Bs

r 3 1OS 1

r 5D , ~5!

where

As54pE
V

s~r !r 2dr , ~6a!

Bs54pE
V

s~r !r 4dr , ~6b!

andV is a volume containing the charge. After we normali
the core function to a unit net charge we have,f̃(r )
5As

21f(r→`)'1/r ; i.e., the normalized potential asymp
totically approaches the Coulomb potential in the far fie
We can rewrite the above expressions such that the Coul
potential is split into two terms,

1

r
5

S~r !

r
1f̃~r !. ~7!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Here the switch function,S(r ), can be defined to be a de
creasing function ofr , i.e., the normalized potential,f̃(r ),
has the same far field solution as 1/r , namely,

S~r !/r 51/r 2As
21f~r !;OS 1

r pD , p.1, r→` ~8!

or equivalentlyS(r→`)'1/r p21. Our goal is to define a
suitable normalized core function that produces rapid de
of S(r ), expressed as

2¹2f̃~r !54ps̃~r !54pAs
21s~r !, ~9!

S~r !512r f̃~r !. ~10!

The Ewald Gaussian core function,g(r ,b)5exp(2b2r2), is
ideal for this purpose. The solution of Poisson’s equat
subject to the unit normalized Gaussian right-hand side,
an unbounded domain, gives a decay inS(r ) that is faster
than any algebraic power of 1/r @or first order exponential
exp(2ak)#, i.e.,

s̃~r ;b!5
b3

p3/2exp~2b2r 2!, ~11!

f̃~r !5~12erfc~r ,b!!/r , ~12!

S~r !5erfc~r ,b!, ~13!

where erfc(r,b) is the complementary error function that d
cays as exp(2b2r2) in the far field.

For a periodic lattice, we solve Poisson’s equation, w
a charge distribution given by Eq.~2!, for periodic boundary
conditions; the particle core and switch functions in the u
cell are extended periodically by linear superposition. Fo
general unit normalized core functions̃(r ), we define the
Fourier transform as

ŝ~k!5E
V

dr s̃~r !exp~2 ik•r !. ~14!

Equivalently, we express its Fourier series as

s̃~r !5
1

V (
k52`

`

ŝ~k!exp~ ik•r !, ~15!

where V is volume of the cubic unit cell,k52pn/L,
V5L3, k5uku52punu/L, andn5(nx ,ny ,nz), nx ,ny ,nz are
integers. The solution to Poisson’s equation, Eq.~9!, can be
written as

f̃~r !5
4p

V (
kÞ0

ŝ~k!

k2 (
j 51

N

qj exp~ ik•~r2r j !!, ~16!

whereqj is the net charge assigned to particlej centered at a
physical space coordinater j .

For periodic applications, the Gaussian function ha
highly favorable decay rate in its Fourier series expans
i.e., faster than any algebraic power of 1/k ~or first order
exponential!, namely,

ĝ~k,b!5expS 2
k2

4b2D . ~17!
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However, the Ewald formulation is limited, in the sense th
only a one-dimensional optimization is possible—an adju
ment of the Gaussian-width parameterb. To allow general
spherically-symmetric core functions with flexible prope
ties, we introduce additional degrees of freedom. We fi
solve Poisson’s equation for a generals(r ) in an unbounded
domain. For a general spherically-symmetric core funct
s(r ) in an unbounded domain, we solve Poisson’s equa
with established techniques from electrostatic theory28 ~see
also Refs. 5 and 22!. An integral equation for the solution o
Poisson’s equation, Eq.~3!, with a spherically-symmetric
core function is given as

f~r !5
4p

r E
0

r

dj~j2s~j!!14pE
r

`

dj~js~j!!. ~18!

To evaluate the periodic lattice sum, we must also ha
the Fourier transform ofs(r ) available. In principle, the
transform can be computed numerically; however, an e
cient computational formulation would likely require an an
lytical expression. For a normalized spherically-symmet
core function, the Fourier transform can be written as6

ŝ~k,b!5
4p

k E
0

`

us̃~u,b! sin~ku!du. ~19!

The core function is normalized to guarantee a decay in
real space switch function.

The above formulation leads directly to the usual re
reciprocal space splitting for a periodic lattice summation

1

2 (
i , j 51

N

qiqj(
unu

8 1

ur i j 1nu
5Edir1Erecip2Eself, ~20!

Edir5
1

2 (
i , j 51

N

qiqj(
unu

8 S~ ur i j 1nu!
ur i j 1nu

, ~21!

Erecip5
4p

2V (
ukuÞ0

ŝ~k!

uku2
P~k!P~2k!,

P~k!5(
j 51

N

qj exp@ ik•r j #, ~22!

Eself5
4p

2 (
i 51

N

qi
2E

0

`

r s̃~r ,b!dr. ~23!

The first term (Edir) is the real space~direct! term; Erecip is
the reciprocal space term, andEself is the self-energy correc
tion to the Poisson solution with a charge distribution giv
by Eq. ~2! and stated for a spherically-symmetric core fun
tion; for further details, see Refs. 2, 6, and 29. For a m
general unit cell, an additional term is added to the elec
static energy per cell which depends on the net dipole m
ment of the unit cell and its geometry.2,18,29,30

For nonperiodic particle simulations, the splitting r
mains valid and we must solve Poisson’s equation for a m
ticentered charge density with appropriate far field bound
conditions. Nonperiodic solutions with regards to latti
sums have been recently addressed in Refs. 31 and 32
mixed periodic and nonperiodic charge densities, Poisso
solution can be efficiently computed by rapidly convergi
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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spectral methods, recently introduced within the context
electronic structure calculation;33,34 such methods offer an
alternative to the Fourier series expansion.

III. OPTIMAL CORE FUNCTIONS

A. Overview

Core functions other than Ewald’s Gaussians, tailored
specific applications, are the subject here. We briefly rev
below the necessary requirements for an efficient lattice s
mation. Given a core function,s(r ), that decays suitably
fast @which implies a rapid decay ofS(r )#, we derive a so-
lution of Poisson’s equation on an infinite domain,f(r ), and
thus a switch function,

S~r !512r f̃~r ! ~24!

for use in an Ewald-type splitting. For the formulation to
competitive relative to the Ewald method,S(r ) should decay
as exp(2b2r2) and thus can be evaluated by appropriate tr
cation. For the reciprocal term, the Fourier transform
s(r ), namely ŝ(k), must decay suitably fast in reciproc
space to maintain an efficient solution to Poisson’s equa
in a periodic lattice. To remain competitive to the Ewa
method,ŝ(k) should decay as exp(2k2/4b2). The rapid de-
cay of ŝ(k) reflects the smoothness of the core function a
ultimately states the well established fact from approxim
tion theory35 that the Fourier series of the periodic extensi
of an ‘‘infinitely’’ smooth function decays faster than an
algebraic power ofk; the Gaussian is exceptional in th
regard since it decays faster than any first order expone
function. For nonperiodic lattice sums, the rapid decay
ŝ(k) is a favorable property since it implies that the gra
ents are not large in magnitude; thus, a standard grid met
such as finite elements or spectral elements, requires
resolution. The underlying goal of a well formulated co
function is a large degree of smoothness in the solution
Poisson’s equation, subject to a charge distribution given
Eq. ~2!, while maintaining a rapid physical space decay
the switch and core functions.

Studies on several non-Gaussian core functions, wh
include functions with rigid cutoffs, can be found in Refs.
15, and 22. We do not expect rigid cutoff formulations to
competitive relative to the Ewald method since their no
smooth character will lead to algebraic convergence in
Fourier series expansion ofs(r ); truncated polynomial core
functions have recently been examined in Ref. 36. Likew
the exponentially converging core functions studied in Re
(exp(2ar)) are not expected to be competitive with Ewald
method since their Fourier series decay with algebraic r
as well.

B. Core functions and integral evaluations

A class of core functions that retain the favorable pro
erties of the Ewald Gaussian is given by

s~r ;b,n!5Anr 2n exp~2r 2b2!, n50,1,2,..., ~25!

whereAn
2154p*0

`r 2n12 exp(2b2r2)dr is a normalizing con-
stant. The Fourier transform given by Eq.~19! is obtained
from known definite integrals37
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`

x2n11 exp~2b2x2! sin~ax!

5~21!n
Ap

~2b!2n12 expS 2
a2

4b2DH2n11S a

2b D , ~26!

which gives

ŝ~k;b,n!5
4pAn

k
~21!n

Ap

~2b!2n12

3expS 2
k2

4b2DH2n11S k

2b D . ~27!

Here the functions$H2n11(x)% are the odd Hermite polyno
mials.

The integral expressions involved in Eq.~18! are rou-
tinely obtained as well. In Appendix A we derive recursio
relations for the fast evaluation of the switch functions as
ciated withs(r ;b,n). The first three switch functions~cor-
responding ton50,1,2) are

S~r ;b,0!5erfc~br !, ~28a!

S~r ;b,1!5erfc~br !14pA1 exp~2b2r 2!
r

~2b2!2 ,

~28b!

S~r ;b,2!5erfc~br !14pA2 exp~2b2r 2!

3S r 3

~2b2!2 1
~5•324•2!r

~2b2!3 D , ~28c!

where A1
215(4•3)p3/2/(2b2)22b and A2

21

5(4•5•3)p3/2/(2b2)32b; see Appendix A for detailed deri
vations.

Though forn.0 the switch function and Fourier trans
form of the core function both converge slower than t
Ewald method (n50), they converge faster than any firs
order exponential. The usefulness of the core functio
emerges from the functions’ series expansion,

s~r ;b!5(
i 50

n

aiAir
2i exp~2r 2b2!. ~29!

The only constraint imposed on the series, Eq.~29!, is a
normalization condition that enforces( i

nai51; the coeffi-
cientsai are found from a suitably chosen optimization sta
ment based on functionals derived from either the swi
function or Fourier transform. Both the Fourier transfor
and the switch function are linear operations and after o
mization are given as

ŝ~k;b!5(
i 50

n

ai ŝ~k;b,i !, ~30!

S~r ;b!5(
i 50

n

aiS~r ;b,i !. ~31!

The coefficients can be computed to design core functi
that approximate the functionf (r )exp(2r2b2), wheref (r ) is
an even function ofr .
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



p-
u-
c
r
ce
se
al

rg
th

m
te
e

al
te

th

s
d

tim

he
re
th
oc
p

a

th

se
o

e

-
he

dis-
the
nt

nt is
n,

on
t,
ch

ar-
ald

ith

8316 J. Chem. Phys., Vol. 115, No. 18, 8 November 2001 P. F. Batcho and T. Schlick
IV. OPTIMIZATION STATEMENTS

A. Pairwise interaction splitting

We are interested in tailoring the Ewald splitting to a
plications of MTS integration in molecular dynamics sim
lations. Other time integration strategies such as symple
mixed implicit-explicit methods38 can also benefit from ou
tailored formulation. In MTS schemes, the various for
components governing the particle’s motion are split ba
on their time scales; i.e., slower force components are ev
ated less frequently.26 Our recent application of MTS to PME
formulations25,39has revealed a severe limitation on the la
est possible timestep. That is, the updating frequency of
reciprocal term~considered to be the ‘‘slow force’’! cannot
be too large.25 This is not surprising since the reciprocal ter
in the Ewald formulation has fast components associa
with near-field particle separations, along with its isolat
long-range interactions. Recently, Procacciet al.40 have in-
vestigated the limitations of the fast component of the Ew
reciprocal term on MTS schemes and found outer times
limitation of approximately 8 fs, which is in agreement wi
our PME studies.25

Our goal of isolating all near-field particle interaction
into the real space sum—a spatial separation—is expecte
translate to a temporal separation—isolating the fastest
scales of the electrostatics in the direct~real! space sum.

We begin the construction by simply noting that t
switch function offers an opportunity to formulate a co
function that isolates near and far field interactions into
real and reciprocal space terms, respectively. The recipr
and real space potentials and their respective force com
nents,F(r )52¹U(r ), are

U recip5
1

r
~12S~r !!, ~32!

Udir5
S~r !

r
, ~33!

Frecip5
x

r 3 ~12S~r !!2
x

r 2

dS~r !

dr
, ~34!

Fdir5
x

r 3 S~r !1
x

r 2

dS~r !

dr
, ~35!

where x is the coordinate vector;x5(xux ,yuy ,zuz) with
unit vectorsui . We note that a core function that results in
switch function with the form,

Sc~r !5H 1 r<r c

0 r .r c

has no force or potential contribution associated with
reciprocal term forr ,r c . A switch function with this step-
wise character will effectively isolate the near-field pairwi
interaction in the real space sum and meet our desired g
Alternatively, to isolate the near-field interaction@or make
Frecip vanish, i.e., Eq.~34!# the switch function need only b
equal to 1 and havedS(r )/dr50 for r<r c ; for r .r c the
switch functionS(r ) can be nonzero.
Downloaded 15 Nov 2001 to 128.122.250.106. Redistribution subject to 
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1. Inverse statement

With the series expansion associated with Eq.~31!, we
optimize the coefficientsai to match a desired switch func
tion. A least-squares fit to the switch function is given by t
linear algebra statement,

Mi j aj5bi , ~36!

where

Mi j 5E
0

`

drS~r ;b,i !S~r ;b, j !, bi5E
0

`

drS~r ;b,i !Sc~r !.

The series expansion is not expected to converge at the
continuity due to the smooth basis-set associated with
S(r ;b,i ) functions, i.e., a Gibb’s phenomena will be prese
at the step interface. A modified least-squares stateme
recommended for the near-field target switch functio
Sc(r )51.0, where the integration is taken over a regi
r ,2.5 units. By utilizing the normalization constrain
( i

nai51, on the coefficients of the expansion for the swit
function, i.e.,

FIG. 1. ~Top! the optimized switch function designed to isolate the ne
field pairwise interaction in the real space sum is compared to the Ew
solution and several radial weighted functions (b50.55). ~Bottom! the core
function resulting from the pairwise particle splitting is plotted along w
the Ewald core function at the sameb value.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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S~r ,b!5(
i 50

n

ai erfc~br !1aipi exp~2b2r 2!, ~37!

we are left with an equivalent approximation forS(r ,b)
'1 in the near-field region as

erf~br !'(
i 51

n

aipi~r !exp~2b2r 2!; for r ,r c , a050,

~38!

pi~r !54pAi~P2i 12~r !2rP2i 11~r !!. ~39!

Herepi(r ) are the odd polynomials obtained from the rec
sion relation associated with the polynomialsPi(r ) derived
in Appendix A for the switch functions. The rapid deca
in the switch,;exp(2b2r2), is contained within our basis
set and will maintain the well localized core and swit
function for efficient implementation of this new lattice su
formulation.

FIG. 2. ~Top! the logarithm of reciprocal force component for the tw
particle interaction.~Bottom! the logarithm ofS(r )/r . Here the switch func-
tion is optimized to minimize the reciprocal force for near-field partic
separations withb50.55; a comparison is shown to the Ewald method w
the sameb value.
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In Fig. 1 we present the switch and core functions res
ing from an expansion withn59 terms in our least-square
fit with b50.55. Figure 2 plots the the logarithm of th
reciprocal force andS(r )/r . The above results are encoura
ing for isolating the near-field force into the real space su
The results indicate that the new core function, posed as
inverse problem, captures the desired features of a pairw
interaction splitting for the lattice sum formulation. For th
b50.55 case, the practical real space sum cutoff values
below 10 radial units and negligible reciprocal forces a
maintained to approximately 3 radials units.

For an effective lattice summation, we must also exa
ine the effect of the optimization on the rate of decay of t
Fourier spectrum for the core function. In Fig. 3~a! we plot
the logarithm of the Poisson kernel for the (n,b)
5(9, 0.55) approximation. The error of a givenk vector is
larger than an equivalent Ewaldb value; however, the deca
is still rapid and faster than any first order exponential.

FIG. 3. ~Top! the spectrum of Poisson kernel is shown for the optimizat
of the pairwise interaction splitting. Here the switch functionS(r ) is opti-
mized to isolate the near-field interaction in the real space sum. Sev
Ewald solutions are presented for similarb values, the optimized solution
was constructed withb50.55. ~Bottom! the direct formulation (b50.6) is
used for the pairwise interaction splitting and the decay of the Pois
kernel is plotted for several different cutoff values~r c52.5, 3.5, and 4.5!
along with the core function forr c52.5 in the lower left corner.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2. Direct statement

Our core function above is qualitatively zero up to
certain cutoff value and then has a single wavelike sh
~Fig. 1!. The associated numerical error is small, as show
Fig. 2. Guided by these encouraging results, we analyz
core function with these features and present an exact s
ment for the pairwise interaction splitting.

Note that a switch function Eq.~24! meets the desired
pairwise interaction splitting if the potentialf(r ) is zero~or
S51! for r<r c . From Eq.~18!, we see thatf(r ) is zero for
r<r c if the core function is given by

s~r !5H 0 r<r c

s~r 2r c! r .r c
~40!

and obeys the constraint

E
r c

`

rs~r !dr50. ~41!

This is also the qualitative form of the core function fou
from our optimization above. A core function that can
designed to meet this exact pairwise interaction splitting
given by our polynomial/Gaussian expansion,

s~r !5H 0 r<r c

~a1A1~r c!~r 2r c!
21a2A2~r c!~r 2r c!

4!

3exp~2b2~r 2r c!
2! r .r c

, ~42!

wherea1 anda2 are coefficients, andA2(r c) andA4(r c) are
normalizing constants for the basis core functions. We m
now satisfy the two constraints,

a11a251, ~43a!

C1A1~r c!a11C2A2~r c!a250. ~43b!

The first constraint satisfies the normalization conditio
and the second ensures the splitting condition Eq.~41!, i.e.,

Ci5E
r c

`

r ~r 2r c!
2i exp~2b2~r 2r c!

2!dr. ~44!

The solution forai can be found from the linear algebra
statement,

a15C2A2~r c!/~C2A2~r c!2C1A1~r c!!, ~45a!

a252C1A1~r c!/~C2A2~r c!2C1A1~r c!!. ~45b!

The normalization constantsA1(r c) and A2(r c) are
given in Eq.~52! and Eq.~53! below, and the constantsCi

are readily obtained through their definite integrals~see Ap-
pendix B!,

Ci5P2i 11~0!1r c

Ai 21
21

4p
, i 51,2,3,..., ~46!

whereAi
21 and Pn(0) are given in Appendix A. Evaluating

these expressions leads to

C15
2

~2b2!2 1r c

Ap

4b3 , ~47a!
Downloaded 15 Nov 2001 to 128.122.250.106. Redistribution subject to 
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C25
8

~2b2!3 1r c

3Ap

8b5 . ~47b!

Evaluating Eq.~18! for the potentialf(r ) defines our
switch function. The Fourier transform is solved by evalu
ing Eq. ~19! for the shifted core function so that the recipr
cal term can be evaluated. The piecewise smooth charact
the core function does not effect the rapid decay of the P
sion kernel in reciprocal space or the rapid decay of
switch function in physical space. Both favorable propert
of the Ewald method are retained. We defer the derivation
Appendix B and present the results here.

The solution of Poisson’s equation, Eq.~3!, for the
piecewise smooth core function is an exercise in integ
calculus. In Appendix B we establish the detailed formu
tions for a core function given by

s~r ;b,r c ,n!

5H 0 r<r c

~r 2r c!
2n exp~2b2~r 2r c!

2!r .r c , n51,2,3,...
.

~48!

For the core functionss(r ;b,r c ,1) and s(r ;b,r c ,2) we
havef(r ;b,r c ,n)50 for r<r c , and forr .r c we have

f~r ;b,r c ,1!5
~A1

211r c
2A0

21!erf~bu!14r c /~2b2!2

r

2
exp~2b2u2!

r
@P4~u!12r c~u2/~2b2!

12/~2b2!2!1r c
2P2~u!#1P3~u!

3exp~2b2u2!1r cF u

2b2 exp~2b2u2!

1
Ap

2b~2b2!
erfc~bu!G , ~49!

f~r ;b,r c ,2!5
~A2

211r c
2A1

21!erf~bu!116r c /~2b2!3

r

2
exp~2b2u2!

r
@P6~u!12r c~u4/~2b2!

14u2/~2b2!218/~2b2!3!1r c
2P4~u!#

1P5~u!exp~2b2u2!

1r cF S u3

2b2 1
3u

~2b2!2Dexp~2b2u2!

1
3Ap

2b~2b2!2 erfc~bu!G , ~50!

whereu5r 2r c . Next, we define the appropriate normaliz
tion of the core functions so that the switch functions w
decay to zero in the far field. In the far field, the first terms
Eqs.~49! and ~50! dominate and are given by
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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f~r→`;b,r c ,1!'
A1

211r c
2A0

2114r c /~2b2!2

r

1OS erfc~br !

r D , ~51a!

f~r→`;b,r c ,2!'
A2

211r c
2A1

21116r c /~2b2!3

r

1OS erfc~br !

r D , ~51b!

respectively.
The normalization that guarantees that the switch fu

tion will decay as exp(2b2r2) in the far field is therefore,

A1~r c!51/~A1
211r c

2A0
2114r c /~2b2!2!, ~52!

A2~r c!51/~A2
211r c

2A1
21116r c /~2b2!3!. ~53!

Lastly, we arrive at a switch function that defines the pa
wise interaction splitting for the core function given in E
~42!,

S~r ;b,r c!5H 1 r<r c

12ra1A1~r c!f~r ;b,r c ,1!

2ra2A2~r c!f~r ;b,r c ,2! r .r c .

~54!

The core, switch, and potential functions are piecew
smooth; they are also continuous by construction atr 5r c :
$s(r ),S(r ),f(r )%PC0; it can also be established th
$S(r ),f(r )%PC1 at r 5r c .

The Fourier transform of the core function given in E
~48! is readily found from a change of variables and kno
definite integrals~see Appendix B! to result in

ŝ~k;b,r c ,n!5
4p

k
expS 2

k2

4b2D F S cos~krc!
~21!nAp

~2b!2n12

1sin~krc!
G~n11!

22n12bn11DH2n11S k

2b D
1S r c cos~krc!

G~n11!

22nbn

1r c sin~krc!
~21!nAp

~2b!2n11 DH2nS k

2b D G .
~55!

The Fourier transform of the total core function is therefo

ŝ~k;b,r c!5a1A1~r c!ŝ~k;b,r c,1!1a2A2~r c!ŝ~k;b,r c,2!.
~56!

Note that we have effectively established a reciprocal-sp
filter which incorporates the pairwise interaction splittin
into the periodic lattice, i.e.,

ŝ~k;b,r c!5F~k;b,r c!ŝEwald~k;b!, ~57a!

ŝEwald~k;b!5expS 2
k2

4b2D , ~57b!

whereF(k;b,r c) is readily established from the above e
pressions.
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In Fig. 3~b! we plot the Poisson kernel for the dire
pairwise interaction formulation forb50.6 and cutoff values
r c of 2.5, 3.5, and 4.5. The results show that the decay of
reciprocal-space sum is insensitive to the cutoff value; f
thermore, the decay of the largek vectors atb50.6 is
bounded by the Ewald (b50.7) result. As compared to th
inverse statement forb50.55 @Fig. 3~a!#, we have a favor
able reciprocal-space decay rate with our higherb50.6
value. The oscillations in the Poisson kernel are somew
explained by Eq.~55! since sine and cosine functions a
apparent in the formulation. The core function derived w
the direct formulation, forb50.6 andr c52.5, is also plotted
in Fig. 3~b!; we see qualitatively the same functional for
found from the inverse statement.

Lastly, we note that the core function that results in
minimal departure from the traditional Ewald formulatio
and that satisfies the necessary continuity conditions, is g
by

s~r !5H 0 r<r c

~a1A1~r c!~r 2r c!1a2A2~r c!~r 2r c!
2!

3exp~2b2~r 2r c!
2! r .r c .

~58!

We present the resulting potentials, transforms, and co
cients in Appendix C for the core function given in Eq.~58!.

B. Multilevel splitting of the pairwise interaction

The analysis above establishes a systematic way of
mulating a two-level splitting of the Coulomb potential s
that the two force components separate the near-field an
field interactions. Within the context of biomolecular dynam
ics, there is a hierarchy of time scales associated with
force field potentials; optimal MTS schemes34 generally re-
quire a separation of temporal scales so that the various f
components can be grouped into comparable dynam
ranges. Typically, a three level force splitting MTS scheme
used and each level is integrated with a different timest
The Coulomb potential has a wide range of time scales
are not generally well separated. It would therefore be
vantageous to have a procedure that would split the elec
static potential into a hierarchy of scales that is more co
patible with the nonelectrostatic force field potentials.

Formulating the Ewald-type method such that the rec
rocal term has a negligible~or zero! force contribution for a
pairwise interaction&4 Å is a first step to multilevel time
scale separation. However, the fastest modes in molec
dynamics are associated with bonded interactions~particle
separations of'1 – 1.5 Å). The next level of time scale
occurs for hydrogen bonds and nearby nonbonded te
~e.g., pairwise separations of'2.5– 4.5 Å). It would there-
fore be desirable to further split the Coulomb term to mo
optimally match the molecular midfield interaction tim
scales.

We proceed by noting that our formulation above is
lates the near and midfield pairwise interaction into the r
space sum. The separation of the bonded particle separ
and the midfield interactions from the real-space sum can
accomplished by introducing a new switch function,S1(r ),
where the original switch function is given byS2(r ),
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1

r
5

S1~r !

r
1

S2~r !2S1~r !

r
1f recip~r !. ~59!

The reciprocal potential,f recip(r ), is the normalized poten
tial stated in Eq.~7! and remains unmodified; its convergen
rate remains dictated by theS2(r ) parameters. The construc
tion of the new switch function is formally the same as t
original function; however, it is constructed for a pairwi
interaction cutoff that is considerably shorter than the or
nal; i.e.,

S1~r !5H 1 r<r c1,r c2

50 r .r c1 ,

wherer c2 is the designed cutoff for the original switch fun
tion. This switch function, which is equal to 1, has a ze
derivative with respect tor and isolates all Coulombic inter
actions in its respective region. We forceS1(r ) to decay
rapidly at the desired pairwise separation by following t
procedure outlined in the previous section and choosin
large relativeb. In Fig. 4, we present a switch functio
S1(r ;b52.6, n513) formulated from a defined cutoff o
r c151.25 radial units, and an original pairwise interacti
splitting that was constructed fromS2(r )5( i 53

8 aiS2(r ;b
50.6,i ) with a cutoff of r c253.0 radial units. Figure 4 illus-
trates the desired goal of defining a systematic procedure
multilevel pairwise interaction splitting through well define
analytical functions.

C. Optimized convergence in reciprocal space

In Sec. III A we optimized the core function subject
the minimization of a functional relative to a desired pro
erty in the switch function. The same type of minimizatio
can be established with respect to the Fourier transform
the core function. From Eqs.~30! and ~27!, we have

kŝ~k;b!5(
i 50

n

4paiAi~21! i
Ap

~2b!2i 12

3expS 2
k2

4b2DH2i 11S k

2b D . ~60!

By taking x5 k/2b and ŝ(k;b)5 f (x) we arrive at

x f~x!5(
i 50

n

biĤ2i 11~x!exp~2x2!, ~61!

where f (x) is an even function of x, bi

5(21)i4p3/2aih2i 11Ai /(2bci), hi is the constant of nor-
malization for the Hermite polynomialshi5(Ap2i i !) 1/2,
Ĥ2i 11(x) are the normalized Hermite polynomials, an
ci5(2b)2i 12. Furthermore, we know from approximatio
theory that this weighted Hermite polynomial expansion
convergent iff (x) is integrable; the expansion converges
an exponential rate ifx f(x) is smooth and all its derivative
satisfy

x f~x!5O~exp~ax2!!, uxu→` ~62!

for somea,21/2.35 With this result, we can optimize th
Fourier transform ofŝ(k;b) so that its decay rate will be
faster than the Ewald~b! method, i.e.,ŝ(k;b)'ŝ(k;bopt
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,b,0), while maintaining the rapid physical space dec
exp(2b2r2), of the switch and core functions. The orthogon
property of the Hermite polynomials makes the coefficie
of the expansion easily defined by

bi52E
0

`

x f~x!Ĥ2i 11~x!dx, ~63!

where

ŝ~k;b!5
2b

k (
i 50

n

biĤ2i 11S k

2b DexpS 2
k2

4b2D , ~64!

ai5~21! i2bcibih2i 11
21 /~4p3/2Ai !. ~65!

The core and switch functions are defined by the coefficie
ai , Eq. ~29!, and Eq.~31!.

The scaling is taken such that a target function
f (x)5exp(2x2) recovers the Ewald formulation in a one
term expansion. Here we examine a decay in the Fou
spectrum given by the function,

f ~x;a!5exp~2ax2!. ~66!

There are many possible optimized functions subject to
criteria that f (x),exp(2x2) and thatf (x) is smooth;a.1
insures a faster decay of the Fourier spectrum relative to
Ewald formulation at the sameb value. The greaterf (x)
deviates from the Ewald function, the greater number
terms are required in the series expansion to approxim
f (x) to a sufficient accuracy. For numerical implementatio
of Poisson’s equation with accuracies given byŝ(k;b)/k2

.1025, we found that a modest approximation tof (x) suf-
fices. The coefficients typically result in a minimization th
closely meets the( i 50

n ai51 constraint and therefore a re
caling of the coefficients can be made after the minimizati

In general, we found that a least-squares fit on the reg
of the x line of interest gave robust results; Fig. 5 prese
the optimized and Ewald Poisson Kernel,ŝ(k;b)/k2, for the
target function f (x;a51.7,n513,b50.98) along with the
Ewald (b50.5,0.6,0.7) spectrum. The results of the op
mized Fourier spectrum are encouraging and indicate th

FIG. 4. The switch functions associated with a multi-level pairwise inter
tion splitting. The switch functionS2(r ) was formulated to isolate all nea
field interactions below'3 radial units. The switch functionS1(r ) is opti-
mized to isolate the near-field interactions below'1.25 radial units.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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largeb ~e.g.,b50.98! can maintain a reciprocal space dec
roughly equivalent to the Ewald (b50.6) spectrum. The par
ticle core function, reciprocal force, and the logarithm of t
S(r )/r function are given in Fig. 6 The decay of theS(r )/r
function indicates that the real space cutoff is approxima
equivalent to the Ewald (b50.7) result. Thus the new cor
function has a reciprocal space decay equivalent to a Ew
(b50.6) result and a real space decay equivalent to
Ewald (b50.7); i.e., a more efficient lattice sum than Ewa
(b50.6).

The decay rate of the Fourier spectrum at largerk de-
pends on the size of the expansion. Larger expansions
better approximations to the rapidly decaying target funct
and a more accurate fit at higherk values. However, a large
series expansion leads to a larger effective real space c
due to the higher degree polynomial; the exp(2b2r2) term
will always dominate the polynomial at sufficient radial di
tances. For largerb values, where a relatively small cuto
value is found, we are interested in maintaining rapid de
in the reciprocal space by the optimization. In Fig. 7 w
present the Poisson kernel and logarithm ofS(r )/r for the
target functions f (x;a53.0,n519,b51.25) and f (x;a
53.0,n514,b51.25). The n514 optimization offers a
slightly reduced decay rate of the Poisson kernel for largk
but an improved real-space decay with lower effective cut

V. SUMMARY

We have examined the formulation of specialized sp
tings of a lattice sum through two optimization statemen
Both formulations were cast in an Ewald-type approa
where the Coulomb potential is split into a real space sub
tice and a second term which is the solution of Poisso
equation. In the first case, a core function and its Fou
transform, were formulated to establish a pairwise interac
splitting, namely the reciprocal potential and its force m
vanish when particle separations are less than a spec

FIG. 5. The spectrum of Poisson kernelŝ(k;b)/k2 as a result of the opti-
mization of the Fourier spectrum decay rate. Here the Fourier transform
the core function is approximated by the functionf (x;a)5exp(2ax2). A
least squares fit is made on the lineuku,5.5 with (a,b,n)5(1.7, 0.98, 13)
and comparison is made to several Ewald solutions. The Ewald formula
is equivalent toa51.0 within the normalization used here.
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value. This splitting was studied through an inverse sta
ment ~Sec. IV A 1!, where the switch function was opti
mized, and a direct statement~Sec. IV A 2! where an exact
pairwise interaction splitting was recovered. The direct sta
ment offers favorable properties with respect to the inve
statement and is currently being evaluated for application
biomolecular dynamics simulation. An interesting outcom
of the pairwise interaction splitting is that the core functio
exhibit no self-interaction and if the cutoff value,r c , is
larger than the distance between bonded pairs in a molec
dynamics simulation, there is no need for the addition of
exclusion sum to correct the reciprocal term.

The second optimization statement was directed at m
mizing the reciprocal space convergence rate relative t
rapidly decaying Fourier transform. The optimization of t
Fourier spectrum decay rate demonstrated an improvem
over the Ewald method, where a lower real space cu
value was achieved while maintaining a favorable recipro
space decay rate.

In both optimizations, the core function and its Fouri
transform were given by a series expansion, namely a Ga
ian function multiplied by a polynomial. The core functio

of

n

FIG. 6. Comparison of the core function, reciprocal force, andS(r )/r func-
tion for the optimization of the rate of decay of the Fourier spectrum rela
to f (x;a51.7,b50.98,n513). ~Top! the particle core function and its loga
rithm. ~Bottom! the reciprocal force, along with log(S(r)/r). Comparison to
the Ewald method~b50.5, 0.6, and 0.7 solutions! is shown.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. Optimization of the rate of de-
cay of the Fourier spectrum relative t
f (x;a53.0,b51.25). A comparison
of the Poisson kernel in reciproca
space and the logarithm of theS(r )/r
function is given relative to the Ewald
b50.5, 0.6, and 0.7 solutions.~Top!
the solution for a 20-term expansion
~Bottom! solution for a 16-term ex-
pansion is shown.
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was stated as an even polynomial ofr multiplied by the
Ewald Gaussian function. All formulations incorporate t
favorable decay rates of the Ewald method in the recipro
and real space sums. For implementation into a particle-m
algorithm, the formulation is not expected to introduce s
nificant obstacles. The charge mesh assignment is typic
done through a weighting function that is independent of
core function itself. Furthermore the core function, its Fo
rier transform, and the switch function can be tabulated o
to a cubic spline for rapid evaluation if needed; alternative
the use of defined recursion relations can be used for effic
calculation.

In general, faster decay rates in the real-space
reciprocal-space sums were shown relative to the Ew
method. The necessary background formulations were
sented for rapid evaluation of the core and switch functio
and the core function’s Fourier transform. Future directio
of study will focus on incorporating the new lattice summ
tions into a particle-mesh algorithm as well as the charac
ization of a time scale separation for the lattice.
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APPENDIX A: EVALUATION OF SWITCH FUNCTIONS

The introduction of the weighted Gaussian core fun
tions, Eq.~25!, requires the evaluation of Poisson’s soluti
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given by the integral representation of Eq.~18! in Sec. III. To
this aim, the following definite and indefinite integrals a
useful:

E
0

r

exp~2a2r 2!dr5
Ap

2a
erf~ar !, ~A1!

E
r

`

exp~2a2r 2!dr5
Ap

2a
erfc~ar !, ~A2!

E r exp~2a2r 2!dr52
1

2a2 exp~2r 2a2!1C. ~A3!

The definite integrals

E
r

`

r n exp~2a2r 2!dr, n53,5,..., ~A4!

E
0

r

r n exp~2a2r 2!dr, n52,4,... ~A5!

are evaluated by factoring outr n21 from the integrand and
integrating by parts once. With the results from the lowen
moments we can construct the hierarchy of integrals given

E
0

r

r 2n12 exp~2a2r 2!dr

5
An

21

4p
erf~ar !2P2n12~r !exp~2a2r 2!; n51,2,...,

~A6!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E
r

`

r 2n11 exp~2a2r 2!dr

5P2n11~r !exp~2a2r 2!; n51,2, . . . , ~A7!

wherePn(r ) can be found from the recursion relation

P0~r !50, P1~r !5
1

2a2 , ~A8!

Pn~r !5
r n21

2a2 1
n21

2a2 Pn22~r !. ~A9!

The normalizing constants are given by

A0
215

p3/2

a3 , ~A10!

An
215

2n11

2a2 An21
21 . ~A11!

Finally we have for the radially symmetric core function

sn~r !5Anr 2n exp~2a2r 2!; n50,1,2,. . . , ~A12!

a switch function given by

Sn~r !5124pE
0

r

r 2sn~r !dr24pr E
r

`

rsn~r !dr, ~A13!

S0~r !5erfc~r !, ~A14!

Sn~r !5erfc~r !14pAn~P2n12~r !2rP2n11~r !!

3exp~2a2r 2!; n51,2, . . . . ~A15!

APPENDIX B: EVALUATION OF THE DIRECT
PAIRWISE INTERACTION

In Sec. IV A 2 we introduced a piecewise smooth co
function that can be formulated to exactly satisfy the pa
wise interaction splitting, namely the reciprocal potential a
force component vanish for a particle separation less tha
specified valuer c . The formulation requires the evaluatio
of the Fourier transform and radial symmetric solution
Poisson’s equation for a core function of the form

s~r ;b,r c ,n!

5H 0 r<r c

~r 2r c!
2n exp~2b2~r 2r c!

2!r .r c , n51,2,3,...
.

~B1!

The Fourier transform requires a closed form solution

E
r c

`

r ~r 2r c!
2n exp~2b2~r 2r c!

2!sin~kr !dr . ~B2!

With a change of variablesu5r 2r c we have

E
0

`

~u1r c!u
2n exp~2b2u2!sin~k~u1r c!!du, ~B3!

and noting that sin(k(u1rc))5sin(ku)cos(krc)1cos(ku)
3sin(krc) we are left with four integrals to evaluate. To th
aim we use the following integrals,37
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d
a

o

E
0

`

xm21 exp~2bx2!sin~gx!dx

5

g expS 2
g2

4b D
2b (m11)/2 GS 11m

2 D 1F1S 12
m

2
;
3

2
;

g2

4b D ,

E
0

`

xm21 exp~2bx2!cos~gx!dx

5
b2m/2

2
GS m

2 DexpS 2
g2

4b D 1F1S 1

2
2

m

2
;
1

2
;

g2

4b D ,

E
0

`

x2n exp~2b2x2!cos~gx!dx

5
~21!nAp

~2b!2n11 expS 2
g2

4b2DH2nS g

2b D ,

E
0

`

x2n11 exp~2b2x2!sin~gx!dx

5
~21!nAp

~2b!2n12 expS 2
g2

4b2DH2n11S g

2b D .

We can therefore evaluate the following definite integrals

E
0

`

u2n11 exp~2b2u2!sin~ku!du

5
~21!nAp

~2b!2n12 expS 2
k2

4b2DH2n11S k

2b D , ~B4!

E
0

`

u2n11 exp~2b2u2!cos~ku!du

5
G~n11!

2bn11 expS 2
k2

4b2D 1F1S 2
2n11

2
;
1

2
;

k2

4b2D ,

~B5!

E
0

`

u2n exp~2b2u2!sin~ku!du

5
kG~n11!

2bn11 expS 2
k2

4b2D 1F1S 122n

2
;
3

2
;

k2

4b2D , ~B6!

E
0

`

u2n exp~2b2u2!cos~ku!du

5
~21!nAp

~2b!2n11 expS 2
k2

4b2DH2nS k

2b D . ~B7!

Noting that the confluent hypergeometric functio

1F1(a;b;z) can be reduced to more familiar speci
functions,41 namely,

1F1S 1

2
2

1

2
n;

3

2
;x2D522nHn~x!/x,

1F1S 2
1

2
n;

1

2
;
1

2
x2D522n/2 exp~x2/4!Dn~x!.
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Furthermore, the Weber function has the relati
exp(x2/4)Dn(x)522n/2Hn(x/&). These relations establish

1F1S 122n

2
;
3

2
;

k2

4b2D5
2b

k
222nH2nS k

2b D , ~B8!

1F1S 2
2n11

2
;
1

2
;

k2

4b2D5
1

22n11 H2n11S k

2b D . ~B9!

Evaluation of the cases forn5 1 and 2 lead us directly to th
result of Eq.~56! in Sec. IV A 2.

Next, we evaluate the solution to Poisson’s equati
f(r ), where the core function is our piecewise smooth fu
tion Eq. ~B1!. An integral expression for the potentialf(r ),
for a spherically symmetric core function, was presented
Sec. II and is given here for the piecewise smooth case,

f~r !5
4p

r E
r c

r

dj~j2!s~j2r c!14pE
r

`

dj~j!s~j2r c!.

~B10!

For the first term in Eq.~B10! we make the change of var
ables v5j2r c and u5r 2r c , and note that (u1r c)

2

5u212urc1r c . From the results of Appendix B we have

E
0

u

v2n12 exp~2b2v2!dv

5
An

21

4p
erf~bu!2P2n12~u!exp~2b2u2!; n51,2,3,...,

~B11!

E
0

u

v2n exp~2b2v2!dv

5
An21

21

4p
erf~bu!2P2n~u!exp~2b2u2!, ~B12!

and with the application of integration by parts we have

E
0

u

v2n11 exp~2b2v2!dv

52
u2

2b2 exp~2b2u2!1
2n

2b2 E
0

u

v2n21 exp~2b2v2!dv,

which leads directly to

E
0

u

v3 exp~2b2v2!dv

5S 2
u2

2b2 2
2

~2b2!2Dexp~2b2u2!1
2

~2b2!2 , ~B13!

E
0

u

v5 exp~2b2v2!dv

5S 2
u4

2b2 2
4u2

~2b2!2 2
8

~2b2!3Dexp~2b2u2!1
8

~2b2!3 .

~B14!

With these results we are able to evaluate analytical exp
sions for the first term in Eq.~B10! with n51 and 2. Lastly
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n

s-

we evaluate the second term in the integral equation forf(r )
by settingv5j2r c and examine the definite integral,

E
r

`

js~j2r c!dj5E
r 2r c

`

~v1r c!v
2n exp~2b2v2!dv.

To this aim the following integrals are readily established

E
r 2r c

`

v2n11 exp~2b2v2!dv

5P2n11~r 2r c!exp~2b2~r 2r c!
2!, ~B15!

and by applying integration by parts and settingu5r 2r c we
have

E
u

`

v2n exp~2b2v2!dv5
u2n21

2b2 exp~2b2u2!1
2n21

2b2

3E
w

`

v2n22 exp~2b2v2!dv

which leads directly to

E
u

`

v2 exp~2b2v2!dv5
u

2b2 exp~2b2u2!

1
Ap

2b22b
erfc~bu!, ~B16!

E
u

`

v4 exp~2b2v2!dv5S u3

2b2 1
3u

~2b2!2Dexp~2b2u2!

1
3Ap

~2b2!22b
erfc~bu!. ~B17!

With the above results we arrive at the complete express
for the Poisson’s solution given in Sec. IV A 2, Eqs.~49! and
~50!.

APPENDIX C: POTENTIALS, TRANSFORMS, AND
INTEGRAL COEFFICIENTS FOR A PAIRWISE
INTERACTION CORE FUNCTION

Here we present the potentials and integral coefficie
for a core function that results in a minimal departure fro
the tradition Ewald formulation, Eq.~58!,

s~r !5H 0 r<r c

~a1A1~r c!~r 2r c!1a2A2~r c!~r 2r c!
2!

3exp~2b2~r 2r c!
2! r .r c .

An important check of the potential functions and resulti
switch functions are that they satisfy the following continu
conditions:

$s~r !,S~r !,f~r !%PC0, at r 5r c , ~C1a!

$S~r !,f~r !%PC1, at r 5r c . ~C1b!

The detailed integral evaluations are easily derived from
results in Appendices A and B, and with integration by pa

The optimization coefficientsa1 anda2 are given by Eq.
~45a! and Eq.~45b!, and for the coefficientsC1 andC2 , see
Eq. ~44!, we have
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C15
Ap

4b3 1
r c

2b2 , ~C2a!

C25
2

~2b2!2 1
r cAp

4b3 . ~C2b!

For normalization coefficientsA1(r c) andA2(r c) we have

A1
21~r c!5

11r c
2b2

2b4 1
r cAp

2b3 , ~C3a!

A2
21~r c!5

Ap

4b3 S r c
22

3

2b2D1
r c

b4 . ~C3b!

The potential functions associated with ther 2r c and (r
2r c)

2 moments, after some algebraic manipulation, are,
spectively, given as,f(r ;b,r c ,1)5f(r ;b,r c ,2)50 for r
<r c , and forr .r c we have

f~r ;b,r c ,1!5
1

r F r cAp

2b3 erf~bu!1
11r c

2b2

2b4 G
2

exp~2b2u2!

r F ~u1r c!
2

2b2 1
1

b2G
1S u

2b2 1
r c

2b2Dexp~2b2u2!

1
Ap

4b3 erfc~bu!, ~C4a!

f~r ;b,r c ,2!5
1

r F Ap

4b3 S r c
22

3

2b2Derf~bu!1
r c

b4G
2

exp~2b2u2!

r F3u24r c

4b4 2
u~u1r c!

2

2b2 G
1

u21urc12

2b2 exp~2b2u2!

1
r cAp

4b3 erfc~bu!, ~C4b!

whereu5r 2r c and the switch function is given by Eq.~54!
in Sec. IV A 2.

Lastly, the Fourier transform of the core function
given by the sum of the transforms for ther 2r c and
(r 2r c)

2 moments,

ŝ~k;b,r c!5a1A1~r c!ŝ~k;b,r c,1!1a2A2~r c!ŝ~k;b,r c,2!,

~C5!

which are, respectively, given as
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ŝ~k;b,r c,1!5
4p

k
expS 2

k2

4b2D Fcos~krc!S 1

2b
H2S k

2b D
1

r cAp

~2b!2 H1S k

2b D D 1sin~krc!

3S r c

4b
H1S k

2b D2
Ap

~2b!3 H2S k

2b D D G ,
~C6a!

ŝ~k;b,r c,2!5
4p

k
expS 2

k2

4b2D Fcos~krc!S r c

4b
H2S k

2b D
2

Ap

~2b!4 H3S k

2b D D 1sin~krc!

3S 1

16b2 H3S k

2b D2
r cAp

~2b!3 H2S k

2b D D G ,
~C6b!
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