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We present a new formulation for the efficient evaluation of pairwise interactions for large
nonperiodic or spatially periodic infinite lattices. Our optimally designed splitting formulation
generalizes the Ewald method and its Gaussian core function. In particular, we show that a
polynomial multiplication to the Gaussian core function can be used to formulate desired
mathematical or physical characteristics into a lattice summation method. Two optimization
statements are examined. The first incorporates a pairwise interaction splitting into the lattice sum,
where the directreal) and reciprocal space terms also isolate the near-field and far-field pairwise
particle interactions, respectively. The second optimization defines a splitting with a rapidly
convergent reciprocal space term that allows enhanced decay rates in the real-space term relative to
the traditional Ewald method. These approaches require modest adaptation to the Ewald formulation
and are expected to enhance performance of particle-mesh methods for large-scale systems. A
motivation for future applications is large-scale biomolecular dynamics simulations using
particle-mesh Ewald methods and multiple time step integration2001 American Institute of
Physics. [DOI: 10.1063/1.1412247

I. INTRODUCTION changed for nearly 80 years. However, new applications in
fields such as molecular dynamics, condensed matter phys-
The evaluation of a sum of point Coulomb charges andcs, and material science impose increasing demands on the
higher-order dispersion lattices is fundamental to many fieldgicient use of computational formulations and mathemati-
of chemical physics. For electronic structure calculation of 8.5 constructions. Several studies have extended the Ewald
crystalline lattice, such a summation is required over all NUtormulation to higher-order dispersion effétt&through the

clei for the nuclear-electron repulsion tefmLikewise, . ; ;.

: . . . .incomplete gamma function, and recently to the splitting of
evaluation of the electrostatic potential for large material sci- Yuk tentia Studi f alt i G ;
ence and biomolecular dynamics simulations has its mosq1e ukawa potential. Studies ot alternative non-t>aussian

significant computational bottleneck at the evaluation of the*ore functions have be_en prese_nted in Refs. 5 and 15; how-
Coulomb lattice surf.Coulomb and lattice applications also €Ver: the Ewald Gaussian function remains the standard for
abound in crystallography and in fields such as hydrodynam@ttice sum formulations.

ics and astrophysics. For a practical computational implementation to large
There has been a rich history on the efficient calculatiortrystal unit cells, a particle-mesh approach is typically
of the direct lattice sum;’ see Ref. 8 for a recent review on adapted to Ewald’s methdd->16-1°The three basic particle-
biophysics applications. The underlying problems are thamesh computational formulations, namely particle—particle—
slow, conditional convergence of the direct summation of garticle mesh (BM), particle-mesh Ewald(PME), and
large or infinite crystal lattice and the associalfdwork. smooth PME, have recently been re-examined by Deserno
Possibly the most successful method for reformulatinget al'° From a different perspective, formulations that split
the Coulomb lattice sum was first proposed by Ewaldio  |arge Jattice sums into far-field and near-field terms via the
split the sum into a rapidly convergent sublattice sum and ?nultipole expansion have been proposed in the fast-
second potential that requires a solution of Poisson’s equarhultipole framework (FMM):2%21  however, recent

tion. At first glance, the replacement of a sum by a solution 8223 indicates that the PME method has an advan-

. . . L . 4 evidenc
of a partial differential equation in three dimensions would a0e in computational cost over EMM methods for molecular
seem to be questionable. However, Ewald’s use of a Gausg-g P

ian core function results in a highly favorable reciprocal-dynamicS simulations over 20000 particles. An application
space decay in the Poisson kernel for a periodic lattice, anff the FMM method to the real-space sum of the Ewald
equally satisfactory decay of the real-space component. TH&€thod has also been implementéd.

combined effect is a mathematically consistent formulation ~ Our goal is to build upon the success of Ewald’s Gauss-
that is well suited for computational methods. ian formulation and expand its favorable properties to create

The basic Ewald formulation has largely remained un-new splitting methods that are advantageous in certain appli-
cations and offer similar, if not better, convergence. Namely,

¥Electronic mail: paul@biomath.nyu.edu; fax: 212-995-4152. we Fj'xamme thFT‘ |ncorporat|0r_1 Of_ new propgrtles, Sfuf:h a; In-
DElectronic mail: schlick@nyu.edu cluding a physical-space pairwise-interaction splitting into
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the real/reciprocal-space splitting. We also show that a high-  Our presentation here of the Ewald sum formulation is
degree polynomial multiplied by the Ewald Gaussian coreappropriate for our proposed developments. We start with the
function can be optimally designed to result in a more effi-splitting of the Coulomb potential in three dimensions,
cient lattice sum. In the adaptation of the Ewald method taG(r—r’)=1/r—r’|, wherer—r’ is an interpair distance
higher order dispersion termi$,polynomial/Gaussian core vector andG(r—r’) is the Green’s function associated with
functions have been used; here we generalize the Ewald foRoisson’s equation, by introducing a particle core function,
mulation by using several different functionals. o(r—r'), and a new multi-centered charge distribution
Systematic construction of core functions, their Fourierp(r),
transforms, and switch functions for the real space sum are
presented. First, the splitting of the lattice sum is studied p(I’):Z gjo(r—r;). (2
where the real space sublattice is designed to isolate near- !
field particle interactions. This splitting characteristic is notThe distribution of particle core functions is effectively
found in the Ewald formulation; it is a disadvantage in bio- handled by the linear superposition of locally centered solu-
molecular simulations, limiting computational speedupstions of Poisson’s equation. For a compact spherically-
when multiple-time-step(MTS) integration is used®?®  symmetric core functiong(r), the far field solution to Pois-
Thus, a modification that addresses this weakness is expectedn’s equation in 3D space, namely,
to offer advantages in the implementation of PME/MTS ap-  _y2(x)=47o(x), 3)
proaches. Second, we formulate an optimization problem to
design a core function with a more rapid rate of decay in the
reciprocal space while maintaining an equivalent, or better,

rate of decay for the real-space syoompared to Ewald’s
Y P u P coordinates Xe {X,Yy,z}) to be consistent with the literature,

Gaussian function We examine properties of optimal core i | fornta L p | |
functions and suggest several new avenues to optimally dés given in its general formta Legendre polynomial expan-

sign an efficient lattice sum to meet desired properties. sion is used in FMM’

In Sec. Il we present a formulation of the Ewald-type ! (=n"
splitting of the Coulomb potential and establish its relevance (x)= 2 Eo kEo KI(n—1—Kk)!
to the lattice sum and our optimization statements. Section
IIl proposes general core functions and presents the neces-
sary integral evaluations for constructing their Fourier trans-
forms and switch functions for the real-space sum. Section
IV introduces the optimization statements for the pairwise- ) -
interaction splitting and reciprocal-space decay rate. Prelimi- axiay gz’ ¥ | r
nary results are also presented, along with the mathematicgkre x is interchangeable withr. The integration above
constructions. Specifically, Sec. IV A addresses the pairwisgs contained in a volume inside the sphere=a,
interaction splitting and Sec. IV B extends the pairwise interwithin which all the charge resides. The truncation of the

action splitting to a multilevel splitting to account for more expansion has decreasing residual error for increasing
than two force components. In Sec. IVC, we present aiadial values of R, R%=(x—Xq)2+(y—Yo)?+ (z—2)?,

analysis that allows for a construction of a core function thatyherer?=x2+y?+z2. If the charge distribution is spheri-
has an optimized rate of convergence in reciprocal-space anglly symmetric, we expand around the center of charge and,

contrast the results to the traditional Ewald method. Thregince the integration of the odd terms vanish, we are left with
appendices provide the technical details that allow a systemhe simplified form,

atic construction of the core functions and their transforms. A B
Section V summarizes the formulations and results. d(r)=—"+—45+0
r r

can be approximated by a multipole expansibiiere we
use reduced units where nondimensional Gaussian units are
implied. The multipole expansion, here stated in Cartesian

f f f XoY625 '~ o(X0.¥0.20)d%0dY0dZo

1

for r>a; 4

! 5
=L 5)
II. SPLITTING FORMULATION where

We consider a neutral system dfi point charges A,,:47-rf o(r)rédr, (6a)
d1,02,---,0yn, at positionsrq,ro,...,ry, in a unit cell. The @
electrostatic energy of the system is defined by the interac- 4
tion of each point charge with all the other point charges in B,,:47-rfgo-(r)r dr, (6b)

the infinite periodic lattice, ) o ]
and() is a volume containing the charge. After we normalize

E qiq (1) the core function to a unit net charge we hawi(r)
! '% |r +n| =At¢(r—»)~1Ir; i.e., the normalized potential asymp-
totically approaches the Coulomb potential in the far field.
e can rewrite the above expressions such that the Coulomb
potential is split into two terms,

Herer;; is the particle—particle separation, and the prim
symbol in the summationy, ) indicates that fofn|=0 we
omit thei=j interaction. The Ewald sum relies on a consis-
tent mathematical splitting of the sum into a near-field sum 1 _ ﬂ_’_ B(r). @
and a global solution of a partial differential equation. ro

Downloaded 15 Nov 2001 to 128.122.250.106. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8314 J. Chem. Phys., Vol. 115, No. 18, 8 November 2001

Here the switch function$(r), can be defined to be a de-

creasing function of, i.e., the normalized potentia(r),
has the same far field solution as lhamely,

rp ’ p>11

[—0

®)

S(r)/r=1/r—A,,1¢(r)~o(

or equivalentlyS(r —»)~1/P~1. Our goal is to define a

suitable normalized core function that produces rapid deca\yv

of S(r), expressed as
—VZh(r)=47T(r)=4mA,  a(r), (9)
S(r)=1-re¢(r). (10)

The Ewald Gaussian core functiog(r, 3) =exp( 82, is

ideal for this purpose. The solution of Poisson’s equation
subject to the unit normalized Gaussian right-hand side, fO{he

an unbounded domain, gives a decayS{r) that is faster
than any algebraic power of rlfor first order exponential,
exp(—ak)], i.e.,

3

G(r;p)= Emexﬂ B?r?), (11)
d(r)=(1—-erfdr,B))/r (12)
S(r)=-erfdr,B), (13

where erfc(,B) is the complementary error function that de-
cays as expf 8r?) in the far field.

P. F. Batcho and T. Schlick

However, the Ewald formulation is limited, in the sense that
only a one-dimensional optimization is possible—an adjust-
ment of the Gaussian-width paramej&rTo allow general
spherically-symmetric core functions with flexible proper-
ties, we introduce additional degrees of freedom. We first
solve Poisson’s equation for a genesdl) in an unbounded
domain. For a general spherically-symmetric core function
o(r) in an unbounded domain, we solve Poisson’s equation
ith established techniques from electrostatic th&b(gee
also Refs. 5 and 22An integral equation for the solution of
Poisson’s equation, Eq3), with a spherically-symmetric
core function is given as

¢>(r)— f df(fza(f))+477f dé(éo(§)). (19
To evaluate the periodic lattice sum, we must also have
Fourier transform ofr(r) available. In principle, the
transform can be computed numerically; however, an effi-
cient computational formulation would likely require an ana-
lytical expression. For a normalized spherically-symmetric
core function, the Fourier transform can be writtefi as

~ 77 « ~ .

a(k,ﬁ)zTJ ua(u,B) sin(ku)du. (19

0

The core function is normalized to guarantee a decay in the
real space switch function.

The above formulation leads directly to the usual real/
reciprocal space splitting for a periodic lattice summation,

For a periodic lattice, we solve Poisson’s equation, with N ,

a charge distribution given by E¢R), for periodic boundary

conditions; the particle core and switch functions in the unit
cell are extended periodically by linear superposition. For a

general unit normalized core functién(r), we define the
Fourier transform as

[r(k)=f dro(ryexp(—ik-r). (14
Q
Equivalently, we express its Fourier series as
1 o _
a(n=y > s(k)explik-r), (15)
k=—o

where V is volume of the cubic unit cellk=2mn/L,

V=L3 k=|k|=27|n|/L, andn=(n,,n,,n,), n,,n,,n, are
integers. The solution to Poisson’s equation, &), can be
written as

2 otk )2 g expik-(r—r)),  (16)
k#0 =1

wheregq; is the net charge assigned to particleentered at a
physical space coordinate.

For periodic applications, the Gaussian function has a

1
5”21 qiqj% |rij—+n|:Edir+ Erecip_ Eseifs (20)
rii+n|)
Edir E i J% |I|’ J—I—n|| ' (21)
4 )
Erech= o lgoa—(F—P(k)P( k),
N
P(k)=j21 q;explik-r;], (22)
Ecor= 2 q fwr?i(r,ﬁ)dr- (29

The first term Eg;) is the real spacédirect) term; E g, is

the reciprocal space term, abd,; is the self-energy correc-
tion to the Poisson solution with a charge distribution given
by Eqg.(2) and stated for a spherically-symmetric core func-
tion; for further details, see Refs. 2, 6, and 29. For a more
general unit cell, an additional term is added to the electro-
static energy per cell which depends on the net dipole mo-
ment of the unit cell and its geometry®293°

For nonperiodic particle simulations, the splitting re-

highly favorable decay rate in its Fourier series expansionfains valid and we must solve Poisson’s equation for a mul-

i.e., faster than any algebraic power ok 1for first order
exponential, namely,

k2
@(k,ﬂ)=exr1(—4—ﬂ2). (17)

ticentered charge density with appropriate far field boundary
conditions. Nonperiodic solutions with regards to lattice
sums have been recently addressed in Refs. 31 and 32. For
mixed periodic and nonperiodic charge densities, Poisson’s
solution can be efficiently computed by rapidly converging
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spectral methods, recently introduced within the context of = i b o .
electronic structure calculatiofi?* such methods offer an Jo X exp( — BX7) sin(ax)

alternative to the Fourier series expansion.
2

v a a
Ill. OPTIMAL CORE FUNCTIONS =(—l)”(25)WeXD( ~ a2 Haneal 55 (26)
A. Overview . .
which gives
Core functions other than Ewald’s Gaussians, tailored to
specific applications, are the subject here. We briefly review F(k: Bn) = 477An(_ 1)" Vm
below the necessary requirements for an efficient lattice sum- T k (2B)%"*2

mation. Given a core functiony(r), that decays suitably K2 K
fast [which implies a rapid decay d§(r)], we derive a so- ><exp( - )H2n+1< ) (27

lution of Poisson’s equation on an infinite domadgh(r), and 4B° 2B
thus a switch function, Here the functiongH,,. 1(x)} are the odd Hermite polyno-
S(r)=1-ra(r) (24 ~ mials.

_ o ) The integral expressions involved in E{.8) are rou-
for use in an Ewald-type splitting. For the formulation to betinely obtained as well. In Appendix A we derive recursion
competitive relative to the Ewald methds(r) should decay re|ations for the fast evaluation of the switch functions asso-

as exp{-r?) and thus can be evaluated by appropriate trungiated witho(r: 8,n). The first three switch function&or-
cation. For the reciprocal term, the Fourier transform ofresponding tm=0,1,2) are

a(r), namelyo(k), must decay suitably fast in reciprocal

space to maintain an efficient solution to Poisson’s equation  S(r;8,0)=erfa(gr), (289
in a periodic lattice. To remain competitive to the Ewald ;
method,5 (k) should decay as expk?/43?). The rapid de- e B.1)=erfd Br)+ 4mA: expl — B2r2) ———

cay of (k) reflects the smoothness of the core function and A0 oLAr) 1EXp(= 7T (2B%)*
ultimately states the well established fact from approxima- (280)

tion theory” that the Fourier series of the periodic extension . _ _ p2,2
of an “infinitely” smooth function decays faster than any S(riB.2)=erfa fr) +4mA, exp(— 5717
algebraic power ok; the Gaussian is exceptional in this r3 (5-3—4-2)r
regard since it decays faster than any first order exponential X (23%)? + (2?3 ’
function. For nonperiodic lattice sums, the rapid decay of

(k) is a favorable property since it implies that the gradi-Where AL t=(4-3)m%%(28%)%2p and At
ents are not large in magnitude; thus, a standard grid method; (4-5- 3)7¥%(28%)*2; see Appendix A for detailed deri-
such as finite elements or spectral elements, requires le¥ations.

resolution. The underlying goal of a well formulated core ~ Though forn>0 the switch function and Fourier trans-
function is a large degree of smoothness in the solution oform of the core function both converge slower than the
Poisson’s equation, subject to a charge distribution given bfFwald method 1=0), they converge faster than any first-
Eq. (2), while maintaining a rapid physical space decay inorder exponential. The usefulness of the core functions

(280

the switch and core functions. emerges from the functions’ series expansion,

Studies on several non-Gaussian core functions, which h
include functions with rigid cuto'ffg, can be found in Refs. 5, cr(r;,3)=2 aAr? exp —r2g?). (29)
15, and 22. We do not expect rigid cutoff formulations to be i=0

competitive relative to the Ewald method since their NON-r  onlv constraint imoosed on the series E29), is a
smooth character will lead to algebraic convergence in the y P ' '

; ; . . . normalization condition that enforcesl'a;=1; the coeffi-
Fourier series expansion of(r); truncated polynomial core . . T

. . ) . . _cientsa; are found from a suitably chosen optimization state-
functions have recently been examined in Ref. 36. Likewise

. . . L ent based on functionals derived from either the switch
the exponentially converging core functions studied in Ref.

o . . function or Fourier transform. Both the Fourier transform

(exp(—ar)) are not expected to be competitive with Ewald’s . . ) . .
; ) . . : : and the switch function are linear operations and after opti-
method since their Fourier series decay with algebraic rates . .. .
Mmization are given as

as well.
n
B. Core functions and integral evaluations fr(k;ﬁ)=20 ao(k;B,1), (30
i=
A class of core functions that retain the favorable prop-
erties of the Ewald Gaussian is given by " .
, ) S(r;B)=2, &S(r:B,i). (3D
o(r;B,n)=Ar"exp—r<pg%), n=0,1.2,.., (25 i=0

whereA, '=47[5r2"" 2 exp(— B2r?)dr is a normalizing con-  The coefficients can be computed to design core functions
stant. The Fourier transform given by E@9) is obtained that approximate the functiof(r)exp(—r28?), wheref(r) is
from known definite integrafé an even function of.
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IV. OPTIMIZATION STATEMENTS 1. Inverse statement

A. Pairwise interaction splitting With the series expansion associated with B1), we
optimize the coefficients; to match a desired switch func-
tion. A least-squares fit to the switch function is given by the
linear algebra statement,

We are interested in tailoring the Ewald splitting to ap-
plications of MTS integration in molecular dynamics simu-
lations. Other time integration strategies such as symplecti
mixed implicit-explicit method® can also benefit from our
tailored formulation. In MTS schemes, the various force
components governing the particle’s motion are split basegyhere
on their time scales; i.e., slower force components are evalu-
ated less frequentR? Our recent application of MTS to PME B
formulationg>*°has revealed a severe limitation on the Iarg-'vIij B f
est possible timestep. That is, the updating frequency of the
reciprocal term(considered to be the “slow forcg’cannot  The series expansion is not expected to converge at the dis-
be too large® This is not surprising since the reciprocal term continuity due to the smooth basis-set associated with the
in the Ewald formulation has fast components associate®(r;8,i) functions, i.e., a Gibb’s phenomena will be present
with near-field particle separations, along with its isolatedat the step interface. A modified least-squares statement is
long-range interactions. Recently, Procaetial*® have in- recommended for the near-field target switch function,
vestigated the limitations of the fast component of the EwaldS.(r)=1.0, where the integration is taken over a region
reciprocal term on MTS schemes and found outer timestep<<2.5 units. By utilizing the normalization constraint,
limitation of approximately 8 fs, which is in agreement with ={'a;=1, on the coefficients of the expansion for the switch
our PME studie$® function, i.e.,

Our goal of isolating all near-field particle interactions
into the real space sum—a spatial separation—is expected to
translate to a temporal separation—isolating the fastest time 14 ' . ' '
scales of the electrostatics in the diréetal) space sum.

We begin the construction by simply noting that the l...(n=9,p=055 . |7 %(r; ) i
switch function offers an opportunity to formulate a core 19(”_)
function that isolates near and far field interactions into the N g

Mijaj:bi, (36)

ocdrS(r;,B,i)S(r;,B,j), bi=fowdr8(r;,8,i)sc(r).

0

-
()

= i i
; i X = —_— imiz
real and reciprocal space terms, respectively. The reciprocal Cg v Opt ?d
and real space potentials and their respective force compo- % } _
nents,F(r)=—-VU(r), are E
1 5 1
Urecipzr(l_s(r))y (32 (% - )
S(r) -
Ugir=—"7" (33
8 10
X x dS(r)
Frecipzr_s(l_s(r))_ 2 dr (34 0.03s; ‘ |
X x dS(r) Y f : E E
Fdir:r_ss(r)+ 2 ar (35 0,02k N
where x is the coordinate vectorx=(Xuy,yuy,zu;) with Z 0.015 w3 1
unit vectorsu; . We note that a core function that results in a % 0.01 )
switch function with the form, 5 ’
D 0.005 1
1 r<r, 8
Sc(r)=
C( ) O r.>rC 0 : :
has no force or potential contribution associated with the ~~0-008[ i NS o 5";3,',?%35) ]
reciprocal term for <r.. A switch function with this step- -0.01 ; - . .
wise character will effectively isolate the near-field pairwise 0 2 4 6 8 10

. o . r
interaction in the real space sum and meet our desired goal.

Alternatively, to isolate the near-field interactipor make FIG. 1. (Top) the optimized switch function designed to isolate the near-

_ - . - ; field pairwise interaction in the real space sum is compared to the Ewald
Frec'p vanish, i.e., Eq(34)] the switch function need only be solution and several radial weighted functiogs=(0.55). (Bottom) the core

qual to 1l and have (r)/dr=0 for r<rc; for r>r; the  fynction resulting from the pairwise particle splitting is plotted along with
switch functionS(r) can be nonzero. the Ewald core function at the sargevalue.
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1
! ‘\ —  Optimized
ok W\ Ewald(0.5)| |
------ Ewald(0.6)
b ---  Ewald(0.7) |
2 x
k=1 Boglhiioa S N _
8 ®
T S i
‘6 &
ie]

iy 1 S ................... ................. Jmrme Ewa_lld_(0.55) | ]
: : ——  Optimized
_8 1 L 1 1
0 2 4 6 8 10 = .
0 ‘| .a. Direct r,= 2.5)
ok '.‘_,“ ,,,,, H Direct(r, = 3.5) ||
* {| mm Direct(r =4.5)
S ;
-4 g = PO R .
,.| 103
_5»46"02 ..... J
g
: : —6'|a ! \ ....... i
L 0 —
Optimized 78 L e o NG A 4
EWaId(OB) 0% zI e . ] 0 | |
-7p{ " Ewald(0.4) o 1 2 3 4 5 6
==+ Ewald(0.55) k
'80 é "1 6 8 * 10 FIG. 3. (Top) the spectrum of Poisson kernel is shown for the optimization
r of the pairwise interaction splitting. Here the switch functigfr) is opti-

mized to isolate the near-field interaction in the real space sum. Several
FIG. 2. (Top) the logarithm of reciprocal force component for the two- Ewald solutions are presented for similarvalues, the optimized solution
particle interaction(Bottom) the logarithm ofS(r)/r. Here the switch func-  was constructed witi8=0.55. (Bottom) the direct formulation =0.6) is
tion is optimized to minimize the reciprocal force for near-field particle used for the pairwise interaction splitting and the decay of the Poisson
separations witl8=0.55; a comparison is shown to the Ewald method with kernel is plotted for several different cutoff valugs=2.5, 3.5, and 4.6

the sames value. along with the core function for,=2.5 in the lower left corner.
n
— 2.2 i i i -
S(r,,B)—E a; erfo( Br) + a;p; exp( — B2r?), (37 InFig. 1 we present the switch and_ core functions result
i=0 ing from an expansion witlh=9 terms in our least-squares

fit with 8=0.55. Figure 2 plots the the logarithm of the

reciprocal force an&(r)/r. The above results are encourag-

ing for isolating the near-field force into the real space sum.
n The results indicate that the new core function, posed as an

erf(Br)~ 2>, aipi(r)exp(—B%?); for r<r¢, ay=0, inverse problem, captures the desired features of a pairwise
=1 interaction splitting for the lattice sum formulation. For the

(38) B=0.55 case, the practical real space sum cutoff values are
() =47A(Pyi v o(F) =Py 4 4(F)). (39) belpw _10 radial units_, and negligiple rec_iprocal forces are
maintained to approximately 3 radials units.

Herep;(r) are the odd polynomials obtained from the recur- For an effective lattice summation, we must also exam-

sion relation associated with the polynomi&gr) derived ine the effect of the optimization on the rate of decay of the

in Appendix A for the switch functions. The rapid decay Fourier spectrum for the core function. In FigaBwe plot

in the switch,~exp(—B%?), is contained within our basis- the logarithm of the Poisson kernel for then,p)

set and will maintain the well localized core and switch =(9, 0.55) approximation. The error of a givénvector is

function for efficient implementation of this new lattice sum larger than an equivalent Ewaglvalue; however, the decay

formulation. is still rapid and faster than any first order exponential.

we are left with an equivalent approximation f&r,R3)
~1 in the near-field region as
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2. Direct statement 8 37

. . o Co=—r—gmtrleooc. 47b
Our core function above is qualitatively zero up to a 27 (2p%)% 8Bt 479

certain cutoff value and then has a single wavelike shape

(Fig. 1). The associated numerical error is small, as shown in  Evaluating Eq.(18) for the potentialé(r) defines our

Fig. 2. Guided by these encouraging results, we analyze switch function. The Fourier transform is solved by evaluat-

core function with these features and present an exact statig Eq.(19) for the shifted core function so that the recipro-

ment for the pairwise interaction splitting. cal term can be evaluated. The piecewise smooth character of
Note that a switch function Eq24) meets the desired the core function does not effect the rapid decay of the Pos-

pairwise interaction splitting if the potentiai(r) is zero(or ~ sion kernel in reciprocal space or the rapid decay of the

S=1) for r<r.. From Eq.(18), we see thats(r) is zero for ~ switch function in physical space. Both favorable properties

r<r. if the core function is given by of the Ewald method are retained. We defer the derivations to
Appendix B and present the results here.
a'(l‘)=‘ 0 r<re (40) The solution of Poisson’s equation, E(B), for the
o(r—rey) r>rg piecewise smooth core function is an exercise in integral

calculus. In Appendix B we establish the detailed formula-

and obeys the constraint tions for a core function given by

J ro(r)dr=0. (41) a(r;B8,re,n)
e
. o . 0 r=r,
This is also the qualitative form of the core function found = o 5 5 )
from our optimization above. A core function that can be (r=ro)exp(—=p(r—r))r>r., n=123,...

designed to meet this exact pairwise interaction splitting is (48)
given by our polynomial/Gaussian expansion,
For the core functionsr(r;B,r.,1) and o(r;B,r.,2) we

0 r=re have ¢(r;B,r.,n)=0 forr<r., and forr>r; we have
O'(I’)Z (alAl(rc)(r_rc)2+a2A2(rc)(r_rc)4), (42)
Xexp(—BA(r—ry)?)  r>r, (AL Y+r2A, Yerf(Bu) +4r 1(28%)?

B(rip.rc.1)= .
wherea; anda, are coefficients, anfl,(r.) andA,(r.) are

normalizing constants for the basis core functions. We must exp( — B2u?) 5 5
now satisfy the two constraints, - ; [P4(u)+2r(us/(28%)
a;+a,=1, (433 +2/(28%)?) +12P,(u) ]+ P4(u)
ClAl(rc)al+ C2A2(rc)a220. (43b) - u -
X exp(— BUc) +r | ==z exp(— B°u
The first constraint satisfies the normalization condition, =BT+ 23 =)
and the second ensures the splitting condition Edj), i.e., J7
. ‘ + Werfo(ﬁu) , (49
Ci=f r(r—ro)? exp(—B2(r—rgy)?)dr. (44)
r

c

(A Y+r2A Herf(Bu) +16r./(28%)°
r

The solution fora; can be found from the linear algebraic H(r;B,re,2)=

statement,
_ p2,,2
81= CoAol(1 I (CoPo(1 )~ C1AL(T ), (453 - SR o)+ 2r(uti2?)
= —C1A1(r)/(CoAL(re) —C1A (). (45b)

+40%/(287)2+8I(28%)%) +r2P4(u)]
The normalization constanté&\q(r.) and A,(r;) are

given in Eq.(52) and Eq.(53) below, and the constant; + Ps(u)exp( — Bu?)
are readily obtained through their definite integrase Ap- w3
pendix B), +r + )ex — 322
c ﬁf (2/32)2 q IB )
Ay
Ci=Pyi1(0)+r,—, i=1.23,.., (46) 3y
4 + ———=—erfq fu) |, 50
whereAi_1 andP,(0) are given in Appendix A. Evaluating
these expressions leads to whereu=r —r.. Next, we define the appropriate normaliza-
tion of the core functions so that the switch functions will
2 V7 decay to zero in the far field. In the far field, the first terms in

Ci= (473

(2B%)? +r°4_33’ Egs.(49) and (50) dominate and are given by
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AL HIEAG HAr g 1(287)?
r

o erfc(,Br))'

B(r—;B,rc, 1)~

r

A t+r2art+16r./(28%)°
r

O(erfo(ﬂr)),

P(r—=;B,rc,2)~

r

respectively.

The normalization that guarantees that the switch func:
tion will decay as expt 8r?) in the far field is therefore,

(51a

(51b

New splitting formulations for lattice summations 8319

In Fig. 3(b) we plot the Poisson kernel for the direct
pairwise interaction formulation fg8=0.6 and cutoff values
r. of 2.5, 3.5, and 4.5. The results show that the decay of the
reciprocal-space sum is insensitive to the cutoff value; fur-
thermore, the decay of the larde vectors atB=0.6 is
bounded by the Ewaldg=0.7) result. As compared to the
inverse statement fo8=0.55[Fig. 3@)], we have a favor
able reciprocal-space decay rate with our highter 0.6
value. The oscillations in the Poisson kernel are somewhat
explained by Eq.(55) since sine and cosine functions are
apparent in the formulation. The core function derived with
the direct formulation, foB=0.6 andr.=2.5, is also plotted
in Fig. 3(b); we see qualitatively the same functional form
found from the inverse statement.

Lastly, we note that the core function that results in a

Aq(ro)=1(AT Hr2Ag +ar (28%)2), (52)  minimal departure from the traditional Ewald formulation,
Aot =LA, 1 12A; 14 160 1(27)°). (59) z;;d that satisfies the necessary continuity conditions, is given
Lastly, we arrive at a switch function that defines the pair- 0 r<r
wise interaction splitting for the core function given in Eq. ¢ 5
(42)- U'(r): (alAl(rc)(r_rc)+a2A2(rc)(r_rc) ) (58)
1 r=r, xXexp(—BA(r—ro)?)  r>re.
S(r:Bro=1{ 1-raAi(ro ¢(r;B,re,1) (54 We present the resulting potentials, transforms, and coeffi-

—raAx(ro)p(r;B,re,2) r>re.

cients in Appendix C for the core function given in E§8).

The core, switch, and potential functions are piecewisgs \yitilevel splitting of the pairwise interaction

smooth; they are also continuous by constructiom=at . :
{a(r),S(r),¢(r)}eCP it can also be established that

{S(r),¢(r)}eC atr=r.

The analysis above establishes a systematic way of for-
mulating a two-level splitting of the Coulomb potential so

The Fourier transform of the core function given in Eq. that the two force components separate the near-field and far
(49) is readily found from a change of variables and knownfield interactions. Within the context of biomolecular dynam-

definite integralgsee Appendix Bto result in

4 k? —1)"
&(k;ﬁ,rc,n)=%ex;<—4—ﬂz> cos(krc)((zﬁ)%\_/j
) I'(n+1) k
+Sm(krc)22nTBn+l H2n+1<ﬁ>
I'(n+1)
+ I’CCOSKI‘C)ZTIBr1
_ (-7 k
+rCS|n(krc)(2ﬁ)W>H2n(ﬁ”.

(59
The Fourier transform of the total core function is therefore

o(KBre)=aiAq(r) (K B,re, 1)+ aAx(re) a(k; B.rc,2).

(56)

ics, there is a hierarchy of time scales associated with the
force field potentials; optimal MTS scheniégenerally re-
quire a separation of temporal scales so that the various force
components can be grouped into comparable dynamical
ranges. Typically, a three level force splitting MTS scheme is
used and each level is integrated with a different timestep.
The Coulomb potential has a wide range of time scales that
are not generally well separated. It would therefore be ad-
vantageous to have a procedure that would split the electro-
static potential into a hierarchy of scales that is more com-
patible with the nonelectrostatic force field potentials.
Formulating the Ewald-type method such that the recip-
rocal term has a negligibleor zerg force contribution for a
pairwise interactions4 A is a first step to multilevel time
scale separation. However, the fastest modes in molecular
dynamics are associated with bonded interacti(pesticle
separations of=1-1.5A). The next level of time scales
occurs for hydrogen bonds and nearby nonbonded terms

Note that we have effectively established a reciprocal-spaci®-d., pairwise separations ef2.5-4.5A). It would there-
filter which incorporates the pairwise interaction splitting fore be desirable to further split the Coulomb term to more

into the periodic lattice, i.e.,

(ki B.re) =F(KB.rc) oewad Ki B), (579

k2
Oewad K; B) = exn( - 4—ﬁ2) , (57b)

optimally match the molecular midfield interaction time
scales.

We proceed by noting that our formulation above iso-
lates the near and midfield pairwise interaction into the real
space sum. The separation of the bonded particle separation
and the midfield interactions from the real-space sum can be

whereF(k; B,r.) is readily established from the above ex- accomplished by introducing a new switch functi®@(r),

pressions.

where the original switch function is given [8s(r),
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1 Si(r)  Sy(r)—Sy(r) <3,0), while maintaining the rapid physical space decay,
=t ; + Preci) - (59 exp(—F4?, of the switch and core functions. The orthogonal
property of the Hermite polynomials makes the coefficients
The reciprocal potentiakpeir), is the normalized poten- of the expansion easily defined by
tial stated in Eq(7) and remains unmodified; its convergence

r_ate remains dlctatgd by t@.(r) parameters. The construc- bi=2f XF(X)Fyi 1 (X)X, (63
tion of the new switch function is formally the same as the 0

original function; however, it is constructed for a pairwise

interaction cutoff that is considerably shorter than the origi-

nal; i.e., 5k 8) 2,8% bi] ( k ) F{ K2 ) o
B)= - 2 biHaiva| 5o l€xA — 7],
1 rngl<rC2 0-( rﬁ Kk “ it12i+1 2,8 € 4ﬂ2
S = )
() =0 r>res, a;=(—1)'2Bcibjh, /(47°°A;). (65)

wherer ¢, is the designed cutoff for the original switch func- The core and switch functions are defined by the coefficients
tion. This switch function, which is equal to 1, has a zerog, | Eq.(29), and Eq.(31).

derivative with respect to and isolates all Coulombic inter- The scaling is taken such that a target function of

actions in its respective region. We for@&(r) to decay  f(x)=exp(~x?) recovers the Ewald formulation in a one-

rapidly at the desired pairwise separation by following theterm expansion. Here we examine a decay in the Fourier
procedure outlined in the previous section and choosing 8pectrum given by the function,

large relativeB. In Fig. 4, we present a switch function )

S,(r;8=2.6,n=13) formulated from a defined cutoff of f(X; @) = exp( — ax®). (66)
r.=1.25 radial units, and an original pairwise interactionThere are many possible optimized functions subject to the
splitting that was constructed fromB,(r)=32_,a;S,(r;8 criteria thatf(x) <exp(—x?) and thatf(x) is smooth;a>1
=0.6j) with a cutoff ofr,= 3.0 radial units. Figure 4 illus- insures a faster decay of the Fourier spectrum relative to the
trates the desired goal of defining a systematic procedure f@&wald formulation at the samg value. The greatef(x)
multilevel pairwise interaction splitting through well defined deviates from the Ewald function, the greater number of

analytical functions. terms are required in the series expansion to approximate
f(x) to a sufficient accuracy. For numerical implementations
C. Optimized convergence in reciprocal space of Poisson’s equation with accuracies given dgk; 8)/k?

. . . >10"°, we found that a modest approximationftx) suf-
In_S_ec_. ”I.A we opt|m|z_ed the core function S.UbJeCt 0 fices. The coefficients typically result in a minimization that
the minimization of a functional relative to a desired prop- N o .

closely meets th&;_,a;=1 constraint and therefore a res-

erty in the switch function. The same type of minimization __. 1 o
. ; . aling of the coefficients can be made after the minimization.
can be established with respect to the Fourier transform o . .
In general, we found that a least-squares fit on the region

the core function. From Eq¢30) and(27), we have of the x line of interest gave robust results; Fig. 5 presents

n R the optimized and Ewald Poisson Kerné(k; 8)/k?, for the
k&(kiﬁ)=20 47TaiAi(_1)|Wi+_2 target functionf(x;a=1.7n=13,8=0.98) along with the
o Ewald (8=0.5,0.6,0.7) spectrum. The results of the opti-
k2 k mized Fourier spectrum are encouraging and indicate that a
X ex% - @2‘) H2i+1( ﬁ) . (60)

1.2 T T T
By takingx= k/28 anda(k;8)=f(x) we arrive at ' '

n
Xf(x) =2, biFzi. 1(x)expl —x¥), 6D _ ol
1773

where f(x) is an even function of x, b & 06k
=(—1)'473%ahy . 1A 1(2Bc), h; is the constant of nor- g
malization for the Hermite polynomial; = (\/72'i!) 2, o4
Hji+1(x) are the normalized Hermite polynomials, and ~§ :
c;=(2B)%*2. Furthermore, we know from approximation & o.2}
theory that this weighted Hermite polynomial expansion is ;
convergent iff (x) is integrable; the expansion converges at o=
an exponential rate i f(x) is smooth and all its derivatives _ _
satisfy 05 2 4 6 8 10

xf(x)=O(exp(ax?)), |x|—o (62) r

_ 35 \p s . L FIG. 4. The switch functions associated with a multi-level pairwise interac-
for somea< —1/2.* With this result, we can optimize the tion splitting. The switch functiors,(r) was formulated to isolate all near

Fourier transform ofo(k;8) so tha’F its decay rate will be fielq interactions below~3 radial units. The switch functios,(r) is opti-
faster than the Ewal@) method, i.e.,o(k;8)~d(K;Bop:  mized to isolate the near-field interactions belewt.25 radial units.
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T § ' ' value. This splitting was studied through an inverse state-

' — %"Igﬂi(zoeg) 1 ment (Sec. IVA 1), where the switch function was opti-
........ Ewald(0.6)| | mized, and a direct stateme(8ec. VA2 where an exact

| === Ewald(0.7)| | pairwise interaction splitting was recovered. The direct state-

1 : ment offers favorable properties with respect to the inverse
B statement and is currently being evaluated for application in
_ biomolecular dynamics simulation. An interesting outcome
of the pairwise interaction splitting is that the core functions
exhibit no self-interaction and if the cutoff value,, is
4 larger than the distance between bonded pairs in a molecular
dynamics simulation, there is no need for the addition of an
: LN exclusion sum to correct the reciprocal term.

v R The second optimization statement was directed at mini-
: 1 : o mizing the reciprocal space convergence rate relative to a
0 1 2 3 4 5 6 rapidly decaying Fourier transform. The optimization of the

k Fourier spectrum decay rate demonstrated an improvement
FIG. 5. The spectrum of Poisson kerréefk; 8)/k? as a result of the opti- Over the Ewald method, where a lower real space cutoff
mization of the Fourier spectrum decay rate. Here the Fourier transform o¥alue was achieved while maintaining a favorable reciprocal
the core function is approximated by the functibfx; a)=exp(—ax?). A space decay rate.

least squares fit is made on the liig<5.5 with («,8,n)=(1.7, 0.98, 13) In both optimizations, the core function and its Fourier
and comparison is made to several Ewald solutions. The Ewald formulation !

is equivalent toa= 1.0 within the normalization used here. transform were given by a series expansion, namely a Gauss-
ian function multiplied by a polynomial. The core function

largeB (e.g.,8=0.98 can maintain a reciprocal space decay
roughly equivalent to the Ewalg3= 0.6) spectrum. The par- : : —
ticle core function, reciprocal force, and the logarithm of the L |— optimized

0.07 T T T T

S(r)/r function are given in Fig. 6 The decay of tisr)/r 0.06 . Ewglg 82 N
function indicates that the real space cutoff is approximately |

0.05

| === Ewald(0.7
equivalent to the Ewaldg=0.7) result. Thus the new core = E - |
function has a reciprocal space decay equivalent to a Ewald:::’h0 04
(B=0.6) result and a real space decay equivalent to the.% AR
Ewald (8=0.7); i.e., a more efficient lattice sum than Ewald §
(B=0.6).

The decay rate of the Fourier spectrum at largete-
pends on the size of the expansion. Larger expansions offer
better approximations to the rapidly decaying target function
and a more accurate fit at highewvalues. However, a larger
series expansion leads to a larger effective real space cutofi
due to the higher degree polynomial; the expr?) term
will always dominate the polynomial at sufficient radial dis- 450
tances. For largep values, where a relatively small cutoff
value is found, we are interested in maintaining rapid decay
in the reciprocal space by the optimization. In Fig. 7 we 350
present the Poisson kernel and logarithmS¢f)/r for the
target functions f(x;«=3.0n=19,8=1.25) and f(X;«
=3.0n=14,3=1.25). The n=14 optimization offers a 250
slightly reduced decay rate of the Poisson kernel for l&rge g
but an improved real-space decay with lower effective cutoff. =

V. SUMMARY

100
We have examined the formulation of specialized split-

tings of a lattice sum through two optimization statements.
Both formulations were cast in an Ewald-type approach 0 i i ; .
where the Coulomb potential is split into a real space sublat- 0 0.02 004 006 0.08 0.1
tice and a second term which is the solution of Poisson’s _ _ _

equation. In the first case, a core function and its FourieF_'G- 6. Comparison of the core function, reciprocal force, 8ag/r func-

transform. were formulated to establish a pairwise interactiorﬁ'on for the optimization of the rate of decay of the Fourier spectrum relative
’ p o f(x;a=1.78=0.98n=13). (Top) the particle core function and its loga-

split_ting, namely the reCiprOCal potential and its force ml{S_trithm. (Bottom) the reciprocal force, along with lo§()/r). Comparison to
vanish when particle separations are less than a specifiagke Ewald method8=0.5, 0.6, and 0.7 solutiohés shown.
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- : : . . ,
1 ! m— Qptimized
I -1r | == Ewald(0.5)[1
0 «  Ewald(0.6)
k- -2+ Ewald(0.7)| -
~-2F 8
% £
g° ) 1
R 8

FIG. 7. Optimization of the rate of de-
. cay of the Fourier spectrum relative to
f(x;@=3.08=1.25). A comparison

0 -8 1 ) 3 1 5 5 7 8 of the Poisson ker_nel in reciprocal

r space and the logarithm of tt®r)/r
O . : : . function is given relative to the Ewald

1t “_ —  Optimized B=0.5, 0.6, and 0.7 solutiongTop)
0 L S 2 ] v Ewald(0.5)| the solution for a 20-term expansion.

X N Ewald(0.6) (Bottom) solution for a 16-term ex-
4 ol e SN S e === Ewald(0.7)| ] S
: : L i pansion is shown.

&-\—2- e_s--
=3 =
= = ~—
v o4
3_4 2_5.
=5F
TSP DTSRIV PIIOT PRV 0
-6
~ 0 SSURNIS PR PO W | W
-8 -8
~0 0 1 2 3 4 5 6 7 8

was stated as an even polynomial ofmultiplied by the given by the integral representation of E#j8) in Sec. IIl. To

Ewald Gaussian function. All formulations incorporate thethis aim, the following definite and indefinite integrals are

favorable decay rates of the Ewald method in the reciprocalseful:

and real space sums. For implementation into a particle-mesh

algorithm, the formulation is not expected to introduce sig- f

nificant obstacles. The charge mesh assignment is typically

done through a weighting function that is independent of the

core function itself. Furthermore the core function, its Fou- % N

rier transform, and the switch function can be tabulated or fit exp(—a’r?)dr= 5, erfdar), (A2)

to a cubic spline for rapid evaluation if needed; alternatively, '

the use of defined recursion relations can be used for efficient 1

calculation. f r exp(— a?r?)dr=— z—zexp(— ra®)+C.  (A3)
In general, faster decay rates in the real-space and @

reciprocal-space sums were shown relative_to the Ewalgpq gefinite integrals

method. The necessary background formulations were pre-

sented for rapid evaluation of the core and switch functions, = -

and the core function's Fourier transform. Future directions | ' exp—a‘r9)dr, n=35,.., (A4)

of study will focus on incorporating the new lattice summa-

tions into a particle-mesh algorithm as well as the character- r

ization of a time scale separation for the lattice. fo rexp —a?r?)dr, n=24,... (A5)

rexp(—azrz)dr= ﬁerf(ar), (A1)
0 2a

ACKNOWLEDGMENTS are evaluated by factoring ouf~* from the integrand and
integrating by parts once. With the results from the lower
The work is supported by NSF award ASC-9318159,moments we can construct the hierarchy of integrals given as
NIH award R0O1 GM55164, and a John Simon Guggenheim

H r
fellowship. r20+2 exp( — a2r2)dr
0
APPENDIX A: EVALUATION OF SWITCH FUNCTIONS Al _—
= 4—erf(ar)— Ponco(r)exp(—ar); n=12,..,
The introduction of the weighted Gaussian core func- m
tions, Eq.(25), requires the evaluation of Poisson’s solution (AB)
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f r2ntlexp— a?r?)dr J x*~Lexp(— Bx?)sin(yx)dx
r 0
=Ponsa(nexp—a’r?); n=12,..., (A7) ¥
_ . YR T 28] 1+ 3 92
whereP,(r) can be found from the recursion relation _ B M El1— LA
23(;/,4-1)/2 2 1m1 2!214ﬁ y
Po(r)201 Pl(r):ﬁv (A8) o0
f x*~Lexp— Bx?)coq yx)dx
pn-1 _ 0
Pol)= 557 + 7 Preall). " s “r(Sed - Z) 2L ).
P55 =555 1
The normalizing constants are given by 2 2 4B 2 2'2°4p
312 on
Aal:_s' (A10) x exp(— B2x?)cog yx)dx
(634
o2+l _CYNm L
An ZWAH—:L' (All) (ZB)2n+l 4[_}2 2n 2,8 '
Finally we have for the radially symmetric core function *
Y vy f X2 L exp( — B2x?)sin( yx)dx
on(N)=Ar?"exp—a?r?); n=0,1.2..., (A12) 0
a switch function given by (=1 N _7_2 H Y
(23)2n+2 ex 4321l o)

r o
= —_— 2 -
Sh(r)=1 477f0r on(r)dr =4 fr Fop(r)dr, (A13) We can therefore evaluate the following definite integrals as:

So(r) =erfd(r), (A14) fwuZ”“exp(—,Bzuz)sin(ku)du
S(r)=erfa(r) + 4mAy(Pany 2(1) — TPy 1(1)) ° - 2
22 n=12,.... A15 _=D _k_) (L)
Xexq o ) n ( ) (2B)2n+2 ex 4,82 H2n+1 2B ) (84)

APPENDIX B: EVALUATION OF THE DIRECT »
PAIRWISE INTERACTION J u?"*lexp — B2u?)cogku)du
0

In Sec. IVA2 we introduced a piecewise smooth core I(n+1) 2 2n+1 1 K2
function that can be formulated to exactly satisfy the pair- —Hex;{ _ _2) ( )
wise interaction splitting, namely the reciprocal potential and 2p" ap T2 2ap
force component vanish for a particle separation less than a (B5)
specified valueg .. The formulation requires the evaluation
of the Fourier transform and radial symmetric solution to
Poisson’s equation for a core function of the form

fwuzn exp( — B?u?)sin(ku)du
0

a(r;B,re,n) kI'(n+1) p( kz) (1—2n 3 k2> 6)
=TT eXQ — 52 — 5752
[0 rSI’C 2:3n+1 4,82 171 2 2 4B2
Cl(r=ro®exp —BAr—r)Ar>r., n=12,3,... o
¢ ¢ ¢ J u2"exp(— B2u?)cog ku)du
(B1) 0
The Fourier transform requires a closed form solution to (-1)"m K2 Kk
. - e _4_132) 2“(%)' &7
fr(r—rC)Z”exq—ﬂz(r—rc)z)sin(kr)dr. (B2)
e Noting that the confluent hypergeometric function
With a change of variables=r —r, we have 1F1(a_1;b;i)1 can be reduced to more familiar special
functions;™ namely,
(u+r)uexp — B2u?)sin(k(u+r.))du, (B3) 1 1 3
fo ¢ =p ‘ 1F1 E_En;i;xz =2""Hp(X)/X,

and noting that sidk(u+r.))=sinku)coskr.)+cosku)
xsin(kr,) we are left with four integrals to evaluate. To this T Y B )
aim we use the following integrafg, 1P| —5Ni5i X | =2 T expxADa(x).
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Furthermore, the Weber function has the

P. F. Batcho and T. Schlick

relationwe evaluate the second term in the integral equatio{o)

exp(/4)D,(x)=2""2H,(x/v2). These relations establish, by settingv =£—r, and examine the definite integral,

1-2n 3 k*\ 28
11( > ;E;W) , (B8)
1F1(_

= T2-2ﬂ|_|2n(_

2n+1 1 k2 1
7;5;4—32 :WHZM—I 28" (B9)

Evaluation of the cases for= 1 and 2 lead us directly to the

result of Eq.(56) in Sec. IVA2.

f §(r(§—rc)d§=j (v+r1o)v2" exp — B%v?)dv.
r r—re
To this aim the following integrals are readily established:
f vZn+1 exq_BZUZ)dU
r—rc

:P2n+l(l’—I’C)eXF(—BZ(r—rC)Z), (B15)

Next, we evaluate the solution to Poisson’s equation, o _ .
&(r), where the core function is our piecewise smooth func-and by applying integration by parts and settingr —r. we

tion Eq.(B1). An integral expression for the potentialr),

for a spherically symmetric core function, was presented i
Sec. Il and is given here for the piecewise smooth case,

4a (r °°
o= ["ae@ote-ro+ran | ae@otero.
: (B10

ne, u2n—1
J v2"exp(— BZv?)dv = exp( — B2u?) +
u

have
2n—1
232

232

X f v?" 2 exp(— B%v?)dv

w

For the first term in Eq(B10) we make the change of vari- Which leads directly to

ables v=¢—r, and u=r—r., and note that {+r.)?

=u2+2ur.+r.. From the results of Appendix B we have,

u
j v2”+2exp(—,82v2)dv
0

A—l
= —erf(Bu) — Py o(U)exp — B2U?);

= n=123,..,
(B11)
jouvzn exp(— B2v?)dv
—1
= ""Lerf(Bu) — Py (u)exp — B2u?), (B12)

4

and with the application of integration by parts we have
u

f vZn+1 eXF(_BZUZ)dU
0

u2 2,2 2n . 2n—-1 2.2
Z—WGXK_BU)‘FWJOU expl—Bv)dv,

which leads directly to

fouvsexq—ﬂzvz)dv
—(— o2 ) P+ —y, (813
“| T 2pr T | R B gz

fouvs exp(— B2v?)dv

ut 4u2
= — _ _ _ n2,,2
( 28 (287 <2B7>3)9X“ AU )

(B14)

fwvz exp(— B%v?)dv= 2—uzexq — B?u?)

u B
a
+ Werfc(ﬂu), (B16)
o u3
4 _n2,2 — _n2,,2
juv eX[i Bv)dv ﬁz‘f‘mexq ,BU)
3\
+ mEff(}(ﬂU). (B17)

With the above results we arrive at the complete expression
for the Poisson’s solution given in Sec. IVA 2, E¢49) and
(50).

APPENDIX C: POTENTIALS, TRANSFORMS, AND
INTEGRAL COEFFICIENTS FOR A PAIRWISE
INTERACTION CORE FUNCTION

Here we present the potentials and integral coefficients
for a core function that results in a minimal departure from
the tradition Ewald formulation, E458),

0 rs=rg
(@A) (r—ro) +aAx(ro)(r—re)?)
Xexp(—B2(r—ry)?) r>rg.

An important check of the potential functions and resulting
switch functions are that they satisfy the following continuity
conditions:

{o(r),S(r),¢(r)}eCO, (C1a
{S(r),¢(r)}eCt, at (C1b

The detailed integral evaluations are easily derived from the
results in Appendices A and B, and with integration by parts.
The optimization coefficienta; anda, are given by Eq.

o(r)=

atr=r,

r=re.

With these results we are able to evaluate analytical expres45a and Eq.(45b), and for the coefficient€,; andC,, see
sions for the first term in EB10) with n=1 and 2. Lastly Eq. (44), we have
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Vr 1
Ci=g55+ 252 (C2a
2 re
CZZ(ZB—Z)Z‘FF;. (CZb)

For normalization coefficientd,(r.) andA,(r;) we have

2
L c>—T°f+%, (c3a
3\ o
Az_l(rc):4_\/;(rg_2_ﬁ2>+%‘ (C3b

The potential functions associated with the-r. and (

—r.)2 moments, after some algebraic manipulation, are, re-

spectively, given asg(r;B,r¢,1)=¢(r;B,r.,2)=0 for r
<r., and forr>r_ we have

2
o(r;B,re,1)=— [ 2’\‘!3—erf(,8u)ﬂL Tc'lﬂ
exp(—B2ud) [(u+ry? 1
o 288 TR
u re -
+ ﬁz+ﬁ2 expl—B°u9)
+ %erfdﬂux (C4a
1= 3 le
¢(r ﬁ r012) |:433( (2; Z_ﬂz)erf(ﬂu)‘f‘y
exp(—B2u?) [3u—4r,  u(u+ry)?
- r 4t 2p?
uZ+urg+2
+—2B2—9Xp( B?u?)
rovm (Cab)

+ 4—B§erfo(ﬂu),

whereu=r —r. and the switch function is given by E(4)
in Sec. IVA2.

Lastly, the Fourier transform of the core function is
given by the sum of the transforms for the-r. and
(r—r¢)? moments,

(ki B.ro)=a1Aq(re) a(k; B.re, 1) +aAx(re) (ki B.rc,2),
(CH

which are, respectively, given as

New splitting formulations for lattice summations 8325

-4

&(k;ﬂ,rc,1)=Tex

k
cotsd 350 35

c k .
+(r2,\6/3)—2H1(_B +sin(kr¢)
25l 23]~ el 23
ag™\28) " 2pr 28] ) |
(C6a
ko g coshea g5 3
a(k,,B,rC,Z)—Tex 4B)cos(krc) ,3 (ﬁ
k
—%m(ﬁ +sin(kr;)
1 K\ ro/m k
X(WBZHQ'(ﬁ)_(zW“Z(EM’

(C6b
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