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Special stability advantages of position-Verlet over velocity-Verlet
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We present an analysis for a simple two-component harmonic oscillator that compares the use of
position-Verlet to velocity-Verlet for multiple-time step integration. The numerical stability analysis
based on the impulse-Verlet splitting shows that position-Verlet has enhanced stability, in terms of
the largest allowable time step, for cases where an ample separation of time scales exists. Numerical
investigations confirm the advantages of the position-Verlet scheme when used for the fastest time
scales of the system. Applications to a biomolecule, a solvated protein, for both Newtonian and
Langevin dynamics echo these trends over large outer time-step regime200® American
Institute of Physics.[DOI: 10.1063/1.1389855

I. INTRODUCTION chastic Langevin integrators within the LN-MTS protocol for
biomolecular simulation$®6The use of extrapolation com-
The simulation of physical systems with a wide range ofpined with Langevin dynamics succeeds in damping the
temporal and spatial scales poses a considerable challengertsonant impulses inherent in the symplectic MTS integra-
the computational scientist. In the field of biomolecular dy-tions and allows enhanced outer time steps, with maintained
namics, the bonded forces that maintain the molecular strusstability and conservation of energi®sThe LN approach
ture are vibrational in character, with associated motion timéhnas demonstrated stable outer time steps up to 120 fs, versus
scales on the order of 1¢* s (10 f9. However, the long- ~4 fs for RESPA type methods; see the companion paper
range electrostatic components and large-scale biomoleculésr more details on application of such methods.
motions, such as protein folding, are characterized by time Here we analyze PV and VV algorithms when used for
scales of seconds, many times greater than those of the lochle fastest time scale in the MTS integrators. We present a
bonded forces of the molecule. The first class of numericatheoretical analysis for a Newtonian—based impulse Verlet
algorithms designed to integrate Hamiltonian dynamics weréntegrator of a simple linear system and verify the findings
single-time-ste@STS explicit Verlet integrators; these enjoy through a nonlinear application to a solvated protein system
excellent conservation properties from their symplecticmodeled by thewBseR force field!®>?1??The results indicate
charactet. Still, such STS schemes limit the time step to aenhanced stability in the outer time step for the PV version.
fraction of the fast period of the systefa.g.,~1 fs). Besides the LN applications, better conservation properties
Recently, numerical algorithms designed to integratefor PV have been notédl when MTS-PV and MTS-VV
larger biomolecular dynamic systems have been introduceschemes were applied at larger time steps. Here we delineate
in the form of multiple-time-step(MTS) integrators™**  the advantages of the PV approach through a detailed theo-
These offer a significant speeddbut require care to avoid retical analysis and a biomolecular application; see also our
numerical artifacts such as resonaf¢®Work continues on  companion paper
developing methods for longer-time and larger-scale simula- In Sec. Il we present the theoretical study of the
tions of biological system¥.° impulse-Verlet integrator and establish that PV offers en-
Here, we offer a theoretical analysis that compares théanced stability for multicomponent harmonic motions with
usage of the velocity-VerlgivVV) versus the position-Verlet separated time scales. In Sec. Il we present results of a MTS
(PV) scheme for the fastest forces in impulse-Verlet MTSintegration for a solvated protein and present Newtonian re-
integrators. In the context of MTS formulations based on thesults for large outer-time step integrations. We summarize in
symmetric Trotter factorization?~1*the velocity-Verlet al- ~ Sec. IV the results and discuss future directions of study.
gorithm has been generally used for the fastester cycle
of the MTS integrator. However, we have recently found that
PV works better in practicé and sought an analytical expla-
nation. II. LINEAR MODEL FOR MTS ANALYSIS
Already, PV for the inner cycle has been advocated by
Schlick and co-workers in the context of nonsymplectic sto-  The analysis of fully nonlinear systenfs?* often be-
gins with linear approximations. For biomolecular simula-
aE| S . tions, the fastest forces are modeled as harmonic oscillations.
ectronic mail: paul@biomath.nyu.edu
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dX kAT
= [n+1] Ikl - — [K]
T V, (13 V \% 5 Ao X,
The VV formulation involves a modification to the inner
i — (N + )X, (1b)  cycle, bracketed above, as follows:
For i=0:k—1

where the variableX andV denote the scalar position and
velocity, resp_ectively, for a par_ticle o_f unit mass. The system Vli+ U2yl — A_T)\ N0
can be considered a harmonic oscillator driven by a linear 2 "1
force with constant\ =\, +\,. Here we study cases where , 4 ‘
\1>\, and study MTS protocols for the two harmonic com- XU =X+ AV,
ponents when differing in time scales. Ar

The characteristic angular frequencies associated with VIt H=y[i+121 —— ) x[i+1]
the two components as well as the total motion are, respec- 2

tively, end
wi=V\1, w,=V\,, Q=1A. (2)  Here the superscripts in brackets denote the indices of the
_ o ) inner iterations. One step of this method advances the solu-
The associated characteristic periods are thus, tion from n(kA7) to (n+1)(KA 7).
To express the associated propagation makix for
2 2 2 . o A .
Ti=—, To=—), T=—, (3)  impulse-Verlet, we first introduce the “impulse” matrix
wq Wy Q
h he f he sl ! 0
whereT; represents the fast motion aiid the slower.
L rep ¢ Pu(Ar g k)=| KAz .
“p e

A. Linear resonance for impulse-Verlet splitting

. . ) The propagation matrix of the impulse-Verlet scheme for PV
Several theoretical studies have been made for |mpulsq:—an then be expressed as

Verlet (1V) algorithms, as well as their mollified versions, in
order Eoengrﬂqs insight into tgfs large-time  step Awpv(A7T,N1,N5,K)

problem?®> "> Barth and Schlic examined MTS _ K

schemes based on the first-order symplectic Euler method, =P (AT, K) Ap(AT A1) P (AT N 5,K), 4
and Sandu and Schlitkanalyzed several different MTS where
schemes based on the second-order Verlet scheme. Here we
analyze the stability of the symplectic impulse-Verlet split-
ting for both VV and PV when used in the inner cycle of a
symmetric factorization. The analysis follows that of Ref. 4

[i+1]

®

xlil
:AIV,PV }:

Vil

yli+1l

andApy is the propagation matrix of the PV discretization,

for VV.
We start with a two-level splitting of harmonic oscilla- At AT
! . 1 — 1 ol|1 —
tors in an impulse-MTS scheme where the slow force com- Ap(AT N = 2
ponent (—\,X) is evaluated at time steps that arek times 0o 1 —A7h; 1 0 1
larger than those X7) used for the fast component
(—A,X), i.e.,k=At/A7. The impulse-MTS scheme with a We now introduce the transformation,
PV inner cycle becomes A2
X101 — xn cosf=1— T)\l, (6)
KA 7 and examine the effective angular frequency in the small
VIOl =y/Inl — AoX time step limit?
i . O(ATN)=AT0®+O(ATY). @)
For i=0:k—1 ) ] ) ] ) o i
Likewise, consider the large inner-time step limit, thatAs;
wli+1/21 = x[il 4 A_Tv[i] close to the single-time step Verlet stability condition, or
2 Ar<A7g=2/\,
[i+1] _\/li] _ [i+1/2]
V=V ATAX Ar=2(1—e)l\h;, €>0, ®)
) : At
XL+l = xli+1721 4 TV[IH] wheree is a small positive number. In this limit af 7, we
have
end ’
- = T
[0+ 11 xk coge):1—7x1~—1+4e+0(62). 9
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For smalle this leads directly to tracé Ay py) =2 cogkd)
O~ m(2n+1)+ 82+ O(e), e<1, n=0,1,2.(.1.(.)) NokA 7 . Ar siko) »
———1\/1— ——\si .
. . . | N 4
For convenience of analysis we also introduce the matrix )
For the VV version we have
1 0
™ de(Ayw)=1 (19
1
GrlATN)=|  —F—=—|. AoKAT _
AT tracé Ay ) =2 cogko) — sin(k@).
1——N\; ’ A7
4 M| 1= =
and recasf\py into (16)
Apv(AT,N1)=Gpy(AT,\q) We now let* denote eitherV or P for the velocity- or
. position-Verlet  scheme, respectively. We  rewrite
cosf sinéd
% . Gp(A7\y) L. trace@ xv) as
—sin@ cosé

trace Ay, ,v) =2cogkd) — 2ka sin(ké),

We now omit the arguments &py, and Gp,, for simplicity. where a is method dependent. Namely for VW and Py

The above transformation clarifies the similarityA, to a

. . becomes
rotation matrix.
It is also noteworthy to compare the VV inner cycle ATN,
results,A, to Apy under the same transformation, namely ayy = IV (173
T
O 2 )\1( 1_ _)\1
Gpy=Gu , 4
PV vV 0 )\1
A7
where ATA, 1—T)\1
apy=— (17b)
! 0 24\
Gw= 0 Nyl 1— EM) ' From our definition of the propagation matrix, E@), we
4 see that stability is defined by the complex eigenvalues of

Given that both VV and PV have propagation matrices thaf\v+v: namely, if the eigenvalues are on the unit circle then
are similar to the same rotation matrix, we expect that thén€ scheme is stable and if their magnitude exceeds 1 then

linear stabilities will be closely related in the smalk limit. the scheme is unstable. Since the determinant is 1, both ei-

The limit considered in this paper, where PV appears advanJenvalues lie on the unit circlkeomplex conjugates Insta-
tageous, occurs instead for larger, near the stability limit ~ Pility occurs when the imaginary part goes to zero and both
eigenvalues are real, one being either greater than 1 or less

than —1; this instability condition results in trac&(,)
>2 and traced\, ) <—2, respectively. This is also defined

B. MTS stability analysis as the condition for resonance to occur. For the STS-VV
Thus far we have described propagation matrices for &cheme, stability is thus achieved for time step
STS Verlet implementation. We proceed with the impulse-  At<2/\/x;. (19)

MTS analysis following Sandu and SchlitkVe define o
STS-PV can be shown to have the same stability limit.

0= 6(A7,\1)=arcco$l—A7°\,/2), (11)  Therefore, the conditions for resonance and stability are the

and temporarily drop the argumentsR{, andG,, for sim- same for the harmonic oscillator and occur when the pair of
v complex conjugate eigenvaludging on the unit circle be-

licity. The impulse-Verlet propagator can, therefore, be e
picry P propag comes a real pair, i.e.,

written as
tracg A >2.
AIV,PV(ATa)\la)\Z-k) | Q I\/,*V)l
) K More generally, for definitions and examples of resonance
b (G cogd)  sin(o) G—l) 5 see Refs. 4, 6, 7, 25, and 26.
VTPV —sin(g) cog@)| V) N Two cases exist for resonance to occur, namely
. trace@ ) <—2 and tracef,v)>2; in the smallAr
=P Gpyl co.s(ke) sin(ko) G;\}PIV . (12) limit, the former can be shown to occur near odd multiples of
—sin(kf) cogkd) the fast half period and the latter near integer multiples of the

effective fast period. We examine this in more detail below.
First we present the magnitude of the eigenvalues of the
det{Aypy)=1, (13 propagation matrid,, for the PV and VV schemes. In Fig.

After some algebraic manipulation we have
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FIG. 1. The eigenvalues for the propagation matrix of a two-component harmonic oscillator are plotted in the complex plane for the positiBR)\ankbt

velocity-Verlet (VV) impulse splitting. The two time periods afg=2 andT,=10 and the eigenvalues are computed around the half periods of the fast
component;3T,;—0.3<At<3T,+0.3 whereg= % % %); the inner time step\  was evaluated in all cases in the rangg200<A r<At/2.

1 we examine eigenvalues for the two-component harmonithat demonstrate the advantages of PV over VV in the neigh-
oscillator in the complex plane for PV and VV impulse split- borhood ofA 7 approaching its stability limit.
ting. The two time periods aré;=2 andT,=10, and the
eigenvalues are computed around three multiples of the half
period of the fast componeni3T,;—0.3<At<pBT,+0.3 1. Case I: trace(A |y v)<—2
whereg= 1/2,5/2,10/2; the inner time stepr was evaluated The condition tracef,, )< —2 is equivalent to
at all values in the rangAt/200<A r<At/2. The global ’
character of the magnitude of the eigenvalues, or more iml+cogké)—ka sin(ke)
portantly its deviation from the unit circl@esonant spikes Ko Ko
is substantially smaller for the PV scheme. For thé :2C0§(—)—2ka sin(— cos(—)<0
=5T,=10 resonance case, the VV resonant spikes are ap- 2 2 2
proximately three times larger for the examined rangaof  and states that an instability occurs for

Next we study in Fig. 2 the resonant spikes for a rela- Ko\ 1
tively smallA7=0.01 and a larg& 7= 0.6, close to the Ver- tar( _) >
let stability limit of A r,=2/\\;=0.6366. We see the reso- 2
nance at multiples of the half period in the smal limit in or
the top figure and the enhanced stability of PV in the large
A7 limit in the bottom figure. We present an asymptotic Ka tar(ﬁ)>1.
analysis below which led us to investigate this lafye 2
limit.

ko

(19

Following the analysis in Ref. 4, we note that
tan(k6/2)— + when

C. Asymptotic analysis Q%(Zerl—,B)z, m=0.1.2. ...
We now examine the two cases for instability to occur, 2 2
namely tracef,v)<—2 and tracef,y)>2. An (with B denoting a positive small number antis an inte-
asymptotic analysis is provided for PV and VV in the small ger). Substituting the relation for the effective angular fre-
inner-time step limit that follows the work in Ref. 4. We then quency at small time step, E€}), into the above expression
examine the large inner-time step limit and offer calculationsve have
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1.5 ‘ : 2
tracé A, ) — Jtracg Ay )-—4
—  Position Verlet r= €Av) €Aw)
1.4r1--- Velocity Verlet ﬂ’ 2
w1'3_ (a) At= 0.01 ’\ ~—1—kapBm—2kapmr+ (kapBm)?
Szt
g ~—1-2kapB,
S1p o .
® | the last approximation is valid for larde Since the nonreso-
g 1 | U nant value ofr is 1, the amplitudes of the resonant spikes
S0.9 behave like
w
0.8} J U Ir|—1~2kapBm.
o071 1 Since « is independent ok, and 3 increases only slightly
0.6 " - . . . with increasingk, the spike amplitudes increase almost lin-
0 1 2 3 4 5 6 .
Outer timestep (k A 1) early with k.
Next we examine the more interesting, large inner time
7 b k't' Vorlot ' ' step limit and takeA 7 close to the single time step Verlet
—— Position Verle T P - ;
sl|---  Velocity Verlet - stability condition. Substituting Eq8) into Egs.(178 and
o (17b), we have
(b)At= 06 PR
E SRR ot eat (20)
= [ e P [64VViad —€)—, €
%4» l"l I' : v : l‘ - v \/E )\1
= SE R R
24l TR T 12 A2
E Ah ok ap=\26"(1-€) =, e<L. (21)
g Py v 1
0} shoSY i‘.:: l i it
[T { ok T From Egs.(19 and (10), the stability condition for VV
W SRR :': o .': TR '-:'0‘ scales as
e K ‘\: "l \\ :'u' M l' Vo l‘ '1l- \\l '
v (U s ‘\-' Yoo . " k6 K _1 )\2 k
% 5 ” = 20 ayy ta - | ~ke (1—6))\—1'[3 57T(2n+1)
Quter timestep (k A 1)
FIG. 2. The magnitude pf the_eigenvalues for the propagation ma_trix of a — k\/_§€1/2 >1, n=0,1,2;-- (22
two component harmonic oscillator are plotted versus the outer time step

At, where stability of the integrator is given By|<1. The two time peri-
ods areT,=2 andT,=10; the results are given for two inner time step and for PV as
values: SmallA 7=0.01(a), and largeA 7=0.6 (b), close to the Verlet sta-
bility limit of A74=0.6366. Resonances at multiples of the half fast period
in the smallA 7 limit are evident in(a), and the enhanced stability of PV in

ko y N, (K
kapytal > ~kel(1—¢) )\—ta §7T(2n+1)
the largeA  limit is indicated in(b). 1

8
—k%—51’2)>1, n=0,12;--. (23
2m+1-8( 27 T For even integerk, we have k/2)m(2n+ 1+ (\/8/7)€e?)
~ 2 = 2m+1+8)—. etaaiiv |
2 wiff 2 ~mz, m=123...,an

~+ €2, (24)

Thus, we see that instabilities appear for outer time steps
near odd multiples of the fageffective half period in the
small-time step limit.This result is independent af and  For odd integer, we have k/2)w(2n+1+ (\/8/7)€e?)
holds for both PV and VV. ~(m/2)*+mm, m=0,1,2,.., and thescaling takes on the

Next we investigate the amplitude of the spikes for Caseasymptotic form of
| [trace@xv)<—2], noting again that a resonant time K
taV'(EW

step is given by
By substituting Eq(24) into Egs.(22) and(23), we arrive at
the following asymptotic behavior for PV and VV for evikn

8
2n+1+ \/——61/2
T

k
tal 577

8
2n+1+ \/?—El/2> ) ~_671/2+ 0(61/2),

kf~(2m+1+ B)m=codmb)~—1, siNmo)~ B,

for e2<1. (25)

which implies

tracé A,y)=2cosk0) — 2ka sinkf)~ —2—2kaB . N
~+k2 €°,
A

] ko
lim ka\/v tan =
Ar—A7g 2

The maximal eigenvalue is
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_ ko N 4 — '
lim kapy tar(? ”+k)\—€1- -o-  Position Verlet H
Ar—Arg 1 al —— Velocity Verlet h
Similarly, substituting Eq(25) into Egs.(22) and (23), we (a) At=04 i
find for oddk that ol ; .
N i
lim kayy tar(ﬁ) ~—k2(6_1+ O(€%), E *Unstable h
Ar—ATg 2 )\1 E 1 A 3 i
=] ]
_ ko Ay x
lim kapvtar(?)~—k)\—(eo+(9(€1)). or 1
AT—ATg 1 °
These limits imply a negative value in the larye limit and, -1r ! ! 1 s
therefore, do not contribute to the instability.
Recall that the instability condition holds for values of 5 . - - 1
ka tan(ké/2)>1. In the largeA 7 limit, we have only everk 0 5 Outer ﬁn]gstep (a1 15 20
values contributing to the instabilittka tan(k6/2) scales
~ €Y for VV and decayslike €' for PV. Therefore, we have 4 = L
an interesting stabilizing effect for the PV scheme in the e Cgﬁ;tc'?t;‘ Q,’grrl'gtt
large A 7 limit: Stability may be maintained around the reso- %) AT o6 ¥
nant regions as well, i.e., if the value &fr,/\;) or € is ' 5
small enough(noting that\,/\1<1). In the case of PV, we ol ,".I _
have a boundary regioflayen where the stability of the & (A yistabie .'-l
outer time step can increase as we approach the large ; * § ﬂ : ' °
limit, i.e., Kunstanid PV)~(N1/N\p)e L. This is in contrast to & ° p " R °
VV where stability is solely a function of\;/\5, N 8’ !' KIS 5 J\
Kunstanié VV) #K(€), 1.e., KunstapidVV) ~N1/N;. or® g a > b f MR F S
In Fig. 3 we present the functioka tan(k6/2) for the | o VETE A
PV and VV integrators where the two time periods dke b vy ‘ ° ".-" f
=2 and T,=10. We use a modest inner time step Hof ‘6' y ' '
=0.4 and an inner time stepr=0.6 close to the Verlet 'y
stability limit of A 7= 0.6366. The approximately equivalent % 5 10 15 20

stability behavior for small to modegtr is contrasted to the Outer timestep (A f)

different results forA 7 approaching the Verlet stability limit. FIG. 3. The stability condition ok tan(k#/2)<1 for Case | is plotted for

the position-Verlet and velocity-Verlet integrators. The two time periods are
T,=2 and T,=10; the results are given for two inner time stepstr
=0.4 and 0.6, the latter close to the Verlet stability limit/o#,=0.6366.

2. Case II: trace(A v, v)>2 The approximately equivalent stability conditions found for small to mod-
" . . erateA 7 are contrasted to an enhanced stability shown for PV in the limiting
The condition trace,y,)>2 is equivalent to values of largeA 7.
—1+coqk6)—kasin(ka)
[ kO ke ko
= —2 sirf| = | — 2ke sinl = |cog = | >0, 1 Ko 2y K
2 2)\2 t ~ o1y 2n+1
. . . ka ?Nk(l—e)k_a EW( n+1)
and states that an instability will occur for W 2
ko V8 112 —
—ka<tar(?)<0 +k76 , n=01,2;--.

For PV, we use Eqg21) and(10) to arrive at
1 ko 1 k6 e Y2 N\ K S
—1<Gtar(7 <0. (26) @ta > 'Vm)\—zta > m(2n+1)

The second bounftan(k§/2)<0] results from the fact that
the inequality can only be achieved if ska2)coskd/2)

<0, i.e., tank#/2)<0; this limit is a strong boundary in the )
large ke limit. Again, for even values of we have

or

8
+k§61’2), n=0,1,2; --. (27

8
A7 limit, we apply the same asymptotic results found in 2n+1+ \/——61/2 ~+ €2
Case | above. For VV we utilize Eq&0) and(10) to arrive .

at and for odd values ok we have

To examine the stability condition of Case Il in the large K
taf(EW
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k
ta E”ﬂ

1L T
-o- Position Verlet|

8
2n+1+ \/—;61/2))~—6_1/2+(’)(61/2), 121

? —e—  Velocity Verlet
101 n 7
(a) At=04
for e1?<1. (29 n AT |
These results lead to the asymptotic behavior for VV and PV & ? 0 R
with evenk as el P ' 1
X 3y " "
ko A S 4 7! !
lim tar(—)~+k‘1—lel, £ i O ? o
AT—>AT5kaVV 2 )\2 < 2r i j ] ﬁ ? '* )
Unstable
e : LA A
lim tar(— ~+k 12 ' g1 \1(2
ATHATskaPV 2 )\2 -2r ! ; { 4 [ 3 ;ﬁ "
X &
Around possible resonant cases of okl 1,3,5..., we -45 Fa— 1'0" 5 0
have Outer timestep (k A )
. ko ,l)\l 0 1 20 i Iy [ L .
lim K ta > ~—k )\—(e +0(€%)), (29 ! i . -o-  Position Verlet
Ar—A7 RV 2 ' h P —— Velocity Verlet
I U Vo '
ka )\ : l: i : 1
lim ” tar(—)~—k_1—l(e_1+(9(e°)). (30 ' " o :
Ar—ArKAPY 2 Ao = ' i o i
<10- |! ) h !
For everk, the positive asymptotic result does not contribute = ' :l': e E e :
to the instability. For oddk values, we again see a favorable £ U el '
analysis for PV. Here instability occurs for small negative § st fi 1} o T BT O
values of (Ika)tan(k6/2). The VV analysis has negative hoolal v H I:". !
values of (lka)tan(k#/2) which are independent of to ﬂ AR :)‘E ,A i/\
first order, i.e., (Ma)tan(k6/2) approaches a constant value o1 V4 VA AV
in the large A7 limit. For PV, the negative values of [l I O S I
(1ka)tan(k6/2) areincreasingase *. Therefore, we again oL "'5 S 1'0'

have an interesting stabilizing effect for the PV scheme in Outer timestep (k A )

the largeA 7 limit: Stability may be maintained around the
; ; FIG. 4. The stability condition of tak@/2)/(ka)=1 for Case Il is plotted
resonant regions as long as the valueIoTIO)\l/)\z is large for the position-Verlet and velocity-Verlet integrators. The two time periods

enough(noting th.at)‘llx2>1) or e is small e”OUQh- We areT;=2 andT,=10; the results are given for two inner time steps:
subsequently arrive at the same results found in Case k0.4 and 0.6, the latter close to the Verlet stability limit &f,=0.6366.

namely, for PV(here for odck) the stability of the outer time  The Verlet integrator is shown to be unstable for all sl when A+

step can increase as we approach the laxgelimit, i.e., approaches the inner time step stability condition.

KunstabidPV)~ (A1 /N2) € L KunstaniéPV) Will increase with

decreasing:. For VV, the maximal stability value is solely a

function of A1 /\5. To approximate the spike amplitudes for Case Il, we
In Fig. 4, we present the function k&) tan(k6/2) for  note that near the resonance

the PV and VV integrators where the two time periods are _ _ _ : .

T,=2 andT,=10. The results are given for a moderate in- ko~(2m—1)m=cogkd)~1, sir(ks) pm.

ner time step oA 7=0.4 and a larger valud 7=0.6 close to  With a similar analysis presented for Case | above, we find

the Verlet stability limit of A7,=0.6366. Approximately that the increasing spike height is linear wikthfor largek

equivalent stability conditions are found for small to moder- It~ 1~kapm
ateAr; for A7 nearArg, an enhanced stability is found in '
the outer time step for PV. In both cases, the amplitude of the resonant spikes scales

To examine the size of the resonant spikes, i.e., the dig0 leading order, in the larg& limit [or more formally
tance of the eigenvalues from the unit circle, we note that Eq(kaB)>1], as

(27) implies ampl=kapg, (31

where 8 is a small positive number,<08<1/2. By substi-
tuting Eqs.(178 and(17b) into Eq.(31) and taking the ratio
of the two results, we find that the approximate amplitude of
the “resonant spikes” is always smaller for the PV formula-

ko 1
7~(m—,8)w, 0<,3<§.

In the small inner-time step limit, we obtain

kATQ(m_ﬂ)Tiﬁ_ tion. That is
We find that the instability appears for outer time steps near  @MPlky o A_Tz (32
integer multiples of the effective fast period. amphy, 4 b
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FIG. 5. The outer time step stability limit as calculated from the analysis of the propagation matrix for both the position-Verlet and velocitededeors.
The results are presented for various inner time steps up to the Verlet stability lithit,ef 0.6366. Various time scale separations are examinéa)d):
(T1,Ty)=(2, 6, (2, 20, (2, 30, and(2, 100. PV allows larger outer time stepst than VV asA 7, is approached.

this result holds for Case | as well. Furthermore, if we ex-scale separations used afe ( T,)=(2, 6), (2, 10, (2, 20,
amine the large inner-time step limit and take close to the and (2,100. For PV, the stability region that scales ks

single-time step Verlet stability condition, E(), we have  ~¢e ! at the largeA  limit (A 7,=0.6366) is illustrated.
amplpy
—— V2,
amphy
¢ I1l. BIOMOLECULAR SIMULATION
or
The resul hat PV is preferabl VVin
Ar=2(1—e)/he,  e<l. e results above suggest that is preferable to i

impulse splitting schemes, particularly at larger inner time
This limiting behavior also holds for Case I. In the limit of steps. This conclusion supports observations made in Ref.
small inner time steps, the resonant effects are similar for th&5, and noted in Ref. 13, that PV has better stability in terms
PV and VV formulations, as confirmed from E(2) and of amplitude of root-mean-squafems) fluctuations in the
through stability calculations of the impulse-Verlet propaga-total energy for nonlinear biomolecular systems. Here we
tion matrix (A ,v) [EQ. (12)]. present an application of our algorithms in Ref. 15 for a
Lastly, we examine the stability boundary for two casessolvated protein system witk14 000 atoms. The integration
where the slow and fast periods have relative ratios of 3, 10s based on a three-level splitting scheme and incorporates
15, and 50. The outer time step stability limit is calculatedthe particle-mesh EwaldPME) scheme for electrostatic
from the analysis of the propagation matrix for both the PVevaluationg. %
and VV integrators. The results are presented for various Several different strategies can be used for implementing
inner time steps up to the Verlet stability limit. The most the three-level force splitting as discussed above. We take the
unstable outer time step is defined as the first valuetbit  Ewald reciprocal force as the long-range “slow” force, the
meets the instability condition, tradk(,y)<—2 or bonded terms in the fast force class, and all other terms in the
trace@y«v)>2, for a givenAr. Figure 5 plots the most medium class force. This is a typical force splitting used in
unstable outer time step, as a functiondof. The four time  rigid-cutoff methods that use switching functions to define

Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 9, 1 September 2001 Stability of position-Verlet integration 4027

(a) Newtonian, Cutoff=6 : Solvated Protein

Eerror [%]
[—] Ln

MTS-VV

Energy (AT, A L. A t) = (1.5 3.0, 6.0) fs

{(B) Newtonian. Cutoff=6 : Solvated Protein

=

Eerror [%]
b

-

E Energy (AT A L s At) = (10, 2.4, 6.0) f5

FIG. 6. (Color) The deviation in energy components relative to the baseline STS-PV integrator for the solvated protein system are compared for MTS-VV and
MTS-PV at two time step combinations. Here the total enéEyand its components, kinetic energyk), potential energyEp), van der Waals energ§v),
electrostatic energfEc), bond energyEb), bond angle energfEa), and dihedral energfEd) are plotted along with the temperatui® percent differences.

A cutoff of 6 A and time steps of X7, At,,,At)=(1.5, 3.0, 6.0fs and(1.0, 2.0, 6.0fs are used irfa) and(b), respectively. Larger relative errors are found

for the velocity-Verlet formulation and these errors tend to increase with increasing medium time step; this contrast/behavior of positiarivdarlet
maintains a comparatively constant error with an increased medium time step. Total integration lengths in all simulations were 300 ps.

slow forces®® The medium force evaluation includes 1—4 ciprocal term component. In an effort to separate the time
interaction, van der Waals terms, and the real space sum facales of the electrostatic force component, we su§tast
the PME method; the neighbor exclusion correction term formodified Ewald-type core function that effectively splits the
the real space sum was updated at each medium term evallattice sum and formulates the reciprocal space potential and
ation. NonbondedNB) list-management routines were ap- real space sum into isolated far-field and near-field interac-
plied at each medium force call; thevBER software in-  tions, respectively.
cludes tests to determine if the NB list utilities should be In Fig. 6 we present the error in mean energy compo-
invoked. nents for a Newtonian integration of the solvated protein;
An interesting aspect of the numerical integration, ascomparisons to an accuradé¢=0.5 fs single-time step inte-
discussed in Ref. 15, is that the Ewald sum does not comgration are made. The effective Ewald cutoff was 6 A, and
pletely separate the time scales of the electrostatic terntime steps of A 7,At,,,At)=(1.5, 3.0, 6.0 fs and(1.0, 2.0,
Thus, fast force components exist within the slow fofjee  6.0) fs were used for both PV and VV; total integration
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s ] compared to a 40 ps STS-PV simula-
J. AT = 1.5 f£s, Atm = 3.0 £s i tions (At=1 fs and cut-off values for
6 and 9 A. Three MTS protocols with
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lengths were 300 ps. Extensive numerical experimésege  baseline STS in the energy component is typical, indicating
Ref. 15 indicate that an outer time step Aft<6 fs is re- that the At,,=3 fs, At=6 fs) MTS-PV result is allowable
quired to ensure stable long-time trajectories. For an accepput the MTS-VV is not. For the smaller medium time step of
tance criteria, a threshold of less than 5% deviation from th¢At,,=2 fs, At=6 fs), both MTS-PV and MTS-VV have
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acceptable errors; however, the PV errors are lower by &ime step limit, and the general result that the magnitude of
factor of 2 or more. the eigenvalues of position-Verlet's propagation remain close
In general, larger relative errors are found for the VVto the unit circle, suggest that PV-based schemes are good
formulation and these errors tend to increase with increasingtarting points for future algorithm development; the LN
medium time step, as opposed to the PV formulation whichprotocof is one such direction. For biomolecular-dynamic
maintains a comparatively constant error with an increasedimulations, the long-time integrations necessary to sample
medium time step. VV tends to introduce large error in thethe wide range of possible conformations remain a formi-
bonded “fast” components and significantly influences thedable challenge. The use of large inner time steps, though
kinetic-energy component as well. In Ref. 15, an additionapossibly associated with larger numerical errors, may be an
comparison was presented for the MTS integration wherecceptable compromise between accuracy and long-time tra-
modest Langevin forces are used to stabilize the integratiojectories.
up to At=8.0 fs. The Langevin results were in general
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