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Special stability advantages of position-Verlet over velocity-Verlet
in multiple-time step integration

Paul F. Batchoa) and Tamar Schlickb)
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We present an analysis for a simple two-component harmonic oscillator that compares the use of
position-Verlet to velocity-Verlet for multiple-time step integration. The numerical stability analysis
based on the impulse-Verlet splitting shows that position-Verlet has enhanced stability, in terms of
the largest allowable time step, for cases where an ample separation of time scales exists. Numerical
investigations confirm the advantages of the position-Verlet scheme when used for the fastest time
scales of the system. Applications to a biomolecule, a solvated protein, for both Newtonian and
Langevin dynamics echo these trends over large outer time-step regimes. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1389855#
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I. INTRODUCTION

The simulation of physical systems with a wide range
temporal and spatial scales poses a considerable challen
the computational scientist. In the field of biomolecular d
namics, the bonded forces that maintain the molecular st
ture are vibrational in character, with associated motion ti
scales on the order of 10214 s ~10 fs!. However, the long-
range electrostatic components and large-scale biomolec
motions, such as protein folding, are characterized by t
scales of seconds, many times greater than those of the
bonded forces of the molecule. The first class of numer
algorithms designed to integrate Hamiltonian dynamics w
single-time-step~STS! explicit Verlet integrators; these enjo
excellent conservation properties from their symplec
character.1 Still, such STS schemes limit the time step to
fraction of the fast period of the system~e.g.,'1 fs!.

Recently, numerical algorithms designed to integr
larger biomolecular dynamic systems have been introdu
in the form of multiple-time-step~MTS! integrators.2–14

These offer a significant speedup15 but require care to avoid
numerical artifacts such as resonance.5,16 Work continues on
developing methods for longer-time and larger-scale sim
tions of biological systems.17–19

Here, we offer a theoretical analysis that compares
usage of the velocity-Verlet~VV ! versus the position-Verle
~PV! scheme for the fastest forces in impulse-Verlet M
integrators. In the context of MTS formulations based on
symmetric Trotter factorization,9,12–14the velocity-Verlet al-
gorithm has been generally used for the fastest~inner! cycle
of the MTS integrator. However, we have recently found t
PV works better in practice15 and sought an analytical expla
nation.

Already, PV for the inner cycle has been advocated
Schlick and co-workers in the context of nonsymplectic s

a!Electronic mail: paul@biomath.nyu.edu
b!Author to whom correspondence should be addressed. Fax: 212-995-

Electronic mail: schlick@nyu.edu
4010021-9606/2001/115(9)/4019/11/$18.00

Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
f
to

-
c-
e

lar
e
cal
al
e

c

e
d

-

e

e

t

y
-

chastic Langevin integrators within the LN-MTS protocol f
biomolecular simulations.4,6,16The use of extrapolation com
bined with Langevin dynamics succeeds in damping
resonant impulses inherent in the symplectic MTS integ
tions and allows enhanced outer time steps, with maintai
stability and conservation of energies.20 The LN approach
has demonstrated stable outer time steps up to 120 fs, ve
;4 fs for RESPA type methods; see the companion pap15

for more details on application of such methods.
Here we analyze PV and VV algorithms when used

the fastest time scale in the MTS integrators. We prese
theoretical analysis for a Newtonian–based impulse Ve
integrator of a simple linear system and verify the findin
through a nonlinear application to a solvated protein sys
modeled by theAMBER force field.15,21,22The results indicate
enhanced stability in the outer time step for the PV versi
Besides the LN applications, better conservation proper
for PV have been noted13 when MTS-PV and MTS-VV
schemes were applied at larger time steps. Here we delin
the advantages of the PV approach through a detailed t
retical analysis and a biomolecular application; see also
companion paper.15

In Sec. II we present the theoretical study of t
impulse-Verlet integrator and establish that PV offers e
hanced stability for multicomponent harmonic motions w
separated time scales. In Sec. III we present results of a M
integration for a solvated protein and present Newtonian
sults for large outer-time step integrations. We summarize
Sec. IV the results and discuss future directions of study

II. LINEAR MODEL FOR MTS ANALYSIS

The analysis of fully nonlinear systems5,23,24 often be-
gins with linear approximations. For biomolecular simul
tions, the fastest forces are modeled as harmonic oscillati
Here, we consider the one-dimensional~1D! linear harmonic
problem used by Barth and Schlick6,16

52.
9 © 2001 American Institute of Physics
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dX

dt
5V, ~1a!

dV

dt
52~l11l2!X, ~1b!

where the variablesX and V denote the scalar position an
velocity, respectively, for a particle of unit mass. The syst
can be considered a harmonic oscillator driven by a lin
force with constantL5l11l2 . Here we study cases wher
l1.l2 and study MTS protocols for the two harmonic com
ponents when differing in time scales.

The characteristic angular frequencies associated
the two components as well as the total motion are, resp
tively,

v15Al1, v25Al2, V5AL. ~2!

The associated characteristic periods are thus,

T15
2p

v1
, T25

2p

v2
, T5

2p

V
, ~3!

whereT1 represents the fast motion andT2 the slower.

A. Linear resonance for impulse-Verlet splitting

Several theoretical studies have been made for impu
Verlet ~IV ! algorithms, as well as their mollified versions,
order to gain insight into the large-time ste
problem.4,6,7,10,11,16 Barth and Schlick6,16 examined MTS
schemes based on the first-order symplectic Euler met
and Sandu and Schlick4 analyzed several different MTS
schemes based on the second-order Verlet scheme. Her
analyze the stability of the symplectic impulse-Verlet sp
ting for both VV and PV when used in the inner cycle of
symmetric factorization. The analysis follows that of Ref
for VV.

We start with a two-level splitting of harmonic oscilla
tors in an impulse-MTS scheme where the slow force co
ponent (2l1X) is evaluated at time stepsDt that arek times
larger than those (Dt) used for the fast componen
(2l2X), i.e., k5Dt/Dt. The impulse-MTS scheme with
PV inner cycle becomes

X[0]5Xn

V[0]5V[n]2
kDt

2
l2X[n] .

3
For i 50:k21

X[ i 11/2]5X[ i ]1
Dt

2
V[ i ]

V[ i 11]5V[ i ]2Dtl1X[ i 11/2]

X[ i 11]5X[ i 11/2]1
Dt

2
V[ i 11]

end

4
X[n11]5Xk,
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V[n11]5V[k]2
kDt

2
l2X[k] .

The VV formulation involves a modification to the inne
cycle, bracketed above, as follows:

For i 50:k21

V[ i 11/2]5V[ i ]2
Dt

2
l1X[ i ] ,

X[ i 11]5X[ i ]1DtV[ i 11/2],

V[ i 11]5V[ i 11/2]2
Dt

2
l1X[ i 11].

end

Here the superscripts in brackets denote the indices of
inner iterations. One step of this method advances the s
tion from n(kDt) to (n11)(kDt).

To express the associated propagation matrixAIV for
impulse-Verlet, we first introduce the ‘‘impulse’’ matrix

PIV~Dt,l2 ,k!5F 1 0

2
kDt

2
l2 1G .

The propagation matrix of the impulse-Verlet scheme for
can then be expressed as

AIV,PV~Dt,l1 ,l2 ,k!

5PIV~Dt,l2 ,k!APV~Dt,l1!kPIV~Dt,l2 ,k!, ~4!

where

FX[ i 11]

V[ i 11]G5AIV,PVFX[ i ]

V[ i ] G , ~5!

andAPV is the propagation matrix of the PV discretization

APV~Dt,l1!5F 1
Dt

2

0 1
G F 1 0

2Dtl1 1GF 1
Dt

2

0 1
G .

We now introduce the transformation,

cosu512
Dt2

2
l1 , ~6!

and examine the effective angular frequency in the sm
time step limit,4

u~Dt,l1!5Dtveff1O~Dt4!. ~7!

Likewise, consider the large inner-time step limit, that is,Dt
close to the single-time step Verlet stability condition,
Dt<Dts52/Al1,

Dt52~12e!/Al1, e.0, ~8!

wheree is a small positive number. In this limit ofDt, we
have

cos~u!512
Dt2

2
l1'2114e1O~e2!. ~9!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



tr

le
ly

ha
th

an

r
e

b

ite

of
en
then

ei-

oth
less

d
VV

it.
the

r of

ce

ely

of
the
w.
the
.

4021J. Chem. Phys., Vol. 115, No. 9, 1 September 2001 Stability of position-Verlet integration
For smalle this leads directly to

u'p~2n11!1A8e1/21O~e!, e!1, n50,1,2 . . . .
~10!

For convenience of analysis we also introduce the ma

GPV~Dt,l1!5F 1 0

0

Al1

A12
Dt2

4
l1

G ,

and recastAPV into

APV~Dt,l1!5GPV~Dt,l1!

3F cosu sin u

2sin u cosuGGPV~Dt,l1!21.

We now omit the arguments ofAPV andGPV for simplicity.
The above transformation clarifies the similarity ofAPV to a
rotation matrix.

It is also noteworthy to compare the VV inner cyc
results,AVV to APV under the same transformation, name

GPV5GVV
21F1 0

0 l1
G ,

where

GVV5F 1 0

0 Al1S 12
Dt2

4
l1D G .

Given that both VV and PV have propagation matrices t
are similar to the same rotation matrix, we expect that
linear stabilities will be closely related in the smallDt limit.
The limit considered in this paper, where PV appears adv
tageous, occurs instead for largeDt, near the stability limit.

B. MTS stability analysis

Thus far we have described propagation matrices fo
STS Verlet implementation. We proceed with the impuls
MTS analysis following Sandu and Schlick.4 We define

u5u~Dt,l1!5arccos~12Dt2l1/2!, ~11!

and temporarily drop the arguments ofPIV andGIV for sim-
plicity. The impulse-Verlet propagator can, therefore,
written as

AIV,PV~Dt,l1 ,l2 ,k!

5PIVS GPVF cos~u! sin~u!

2sin~u! cos~u!
GGPV

21D k

PIV

5PIVGPVF cos~ku! sin~ku!

2sin~ku! cos~ku!
GGPV

21PIV . ~12!

After some algebraic manipulation we have

det~AIV,PV!51, ~13!
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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trace~AIV,PV!52 cos~ku!

2
l2kDt

Al1

A12
Dt2

4
l1sin~ku!. ~14!

For the VV version we have

det~AIV,VV !51 ~15!

trace~AIV,VV !52 cos~ku!2
l2kDt

Al1S 12
Dt2

4
l1D

sin~ku!.

~16!

We now let * denote eitherV or P for the velocity- or
position-Verlet scheme, respectively. We rewr
trace(AIV,*V) as

trace~AIV,*V!52cos~ku!22ka sin~ku!,

wherea is method dependent. Namely for VV and PV,a
becomes

aVV5
Dtl2

2Al1S 12
Dt2

4
l1

, ~17a!

aPV5

Dtl2A12
Dt2

4
l1

2Al1

. ~17b!

From our definition of the propagation matrix, Eq.~5!, we
see that stability is defined by the complex eigenvalues
AIV,*V ; namely, if the eigenvalues are on the unit circle th
the scheme is stable and if their magnitude exceeds 1
the scheme is unstable. Since the determinant is 1, both
genvalues lie on the unit circle~complex conjugates!. Insta-
bility occurs when the imaginary part goes to zero and b
eigenvalues are real, one being either greater than 1 or
than 21; this instability condition results in trace(AIV,*V)
.2 and trace(AIV,*V),22, respectively. This is also define
as the condition for resonance to occur. For the STS-
scheme, stability is thus achieved for time step16

Dt<2/Al1. ~18!

STS-PV can be shown to have the same stability lim
Therefore, the conditions for resonance and stability are
same for the harmonic oscillator and occur when the pai
complex conjugate eigenvalues~lying on the unit circle! be-
comes a real pair, i.e.,

utrace~AIV,*V!u.2.

More generally, for definitions and examples of resonan
see Refs. 4, 6, 7, 25, and 26.

Two cases exist for resonance to occur, nam
trace(AIV,*V),22 and trace(AIV,*V).2; in the smallDt
limit, the former can be shown to occur near odd multiples
the fast half period and the latter near integer multiples of
effective fast period. We examine this in more detail belo

First we present the magnitude of the eigenvalues of
propagation matrixAIV for the PV and VV schemes. In Fig
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. The eigenvalues for the propagation matrix of a two-component harmonic oscillator are plotted in the complex plane for the position-Verlet~PV! and
velocity-Verlet ~VV ! impulse splitting. The two time periods areT152 andT2510 and the eigenvalues are computed around the half periods of the

component:bT120.3<Dt<bT110.3 whereb5
1
2,

5
2,

10
2 ; the inner time stepDt was evaluated in all cases in the rangeDt/200<Dt<Dt/2.
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1 we examine eigenvalues for the two-component harmo
oscillator in the complex plane for PV and VV impulse spl
ting. The two time periods areT152 andT2510, and the
eigenvalues are computed around three multiples of the
period of the fast component,bT120.3<Dt<bT110.3
whereb51/2,5/2,10/2; the inner time stepDt was evaluated
at all values in the rangeDt/200<Dt<Dt/2. The global
character of the magnitude of the eigenvalues, or more
portantly its deviation from the unit circle~resonant spikes!,
is substantially smaller for the PV scheme. For theDt
55T1510 resonance case, the VV resonant spikes are
proximately three times larger for the examined range ofDt.

Next we study in Fig. 2 the resonant spikes for a re
tively smallDt50.01 and a largeDt50.6, close to the Ver-
let stability limit of Dts52/Al150.6366. We see the reso
nance at multiples of the half period in the smallDt limit in
the top figure and the enhanced stability of PV in the la
Dt limit in the bottom figure. We present an asympto
analysis below which led us to investigate this largeDt
limit.

C. Asymptotic analysis

We now examine the two cases for instability to occ
namely trace(AIV,*V),22 and trace(AIV,*V).2. An
asymptotic analysis is provided for PV and VV in the sm
inner-time step limit that follows the work in Ref. 4. We the
examine the large inner-time step limit and offer calculatio
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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that demonstrate the advantages of PV over VV in the ne
borhood ofDt approaching its stability limit.

1. Case I: trace(A IV,* V)ËÀ2

The condition trace(AIV,*V),22 is equivalent to

11cos~ku!2ka sin~ku!

52cos2S ku

2 D22ka sinS ku

2 D cosS ku

2 D,0

and states that an instability occurs for

tanS ku

2 D.
1

ka

or

ka tanS ku

2 D.1. ~19!

Following the analysis in Ref. 4, we note th
tan(ku/2)→1` when

ku

2
'~2m112b!

p

2
, m50,1,2,. . . ,

~with b denoting a positive small number andm is an inte-
ger!. Substituting the relation for the effective angular fr
quency at small time step, Eq.~7!, into the above expressio
we have
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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kDt'
2m112b

2 S 2p

v1
effD 5~2m111b!

T1
eff

2
.

Thus, we see that instabilities appear for outer time st
near odd multiples of the fast~effective! half period in the
small-time step limit.This result is independent ofa and
holds for both PV and VV.

Next we investigate the amplitude of the spikes for Ca
I @ trace(AIV,*V),22#, noting again that a resonant tim
step is given by

ku'~2m111b!p⇒cos~mu!'21, sin~mu!'bp,

which implies

trace~AIV !52cos~ku!22ka sin~ku!'2222kabp.

The maximal eigenvalue is

FIG. 2. The magnitude of the eigenvalues for the propagation matrix
two component harmonic oscillator are plotted versus the outer time
Dt, where stability of the integrator is given byulu<1. The two time peri-
ods areT152 and T2510; the results are given for two inner time ste
values: SmallDt50.01 ~a!, and largeDt50.6 ~b!, close to the Verlet sta-
bility limit of Dts50.6366. Resonances at multiples of the half fast per
in the smallDt limit are evident in~a!, and the enhanced stability of PV i
the largeDt limit is indicated in~b!.
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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r 5
trace~AIV !2Atrace~AIV !224

2

'212kabp2A2kabp1~kabp!2

'2122kabp,

the last approximation is valid for largek. Since the nonreso
nant value ofr is 1, the amplitudes of the resonant spik
behave like

ur u21'2kabp.

Sincea is independent ofk, and b increases only slightly
with increasingk, the spike amplitudes increase almost li
early with k.

Next we examine the more interesting, large inner tim
step limit and takeDt close to the single time step Verle
stability condition. Substituting Eq.~8! into Eqs.~17a! and
~17b!, we have

aVV'
e21/2

A2
~12e!

l2

l1
, e!1 ~20!

aPV'A2e1/2~12e!
l2

l1
, e!1. ~21!

From Eqs. ~19! and ~10!, the stability condition for VV
scales as

kaVV tanS ku

2 D'ke21/2~12e!
l2

l1
tanS k

2
p~2n11!

2k
A8

2
e1/2D .1, n50,1,2,••• ~22!

and for PV as

kaPVtanS ku

2 D'ke1/2~12e!
l2

l1
tanS k

2
p~2n11!

2k
A8

2
e1/2D .1, n50,1,2,•••. ~23!

For even integersk, we have (k/2)p(2n111(A8/p)e1/2)
'mp1, m51,2,3, . . . , and

tanS k

2
pS 2n111

A8

p
e1/2D D;1e1/2. ~24!

For odd integersk, we have (k/2)p(2n111(A8/p)e1/2)
'(p/2)11mp, m50,1,2,..., and thescaling takes on the
asymptotic form of

tanS k

2
pS 2n111

A8

p
e1/2D D;2e21/21O~e1/2!,

for e1/2!1. ~25!

By substituting Eq.~24! into Eqs.~22! and~23!, we arrive at
the following asymptotic behavior for PV and VV for evenk:

lim
Dt→Dts

kaVV tanS ku

2 D;1k
l2

l1
e0,

a
ep
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lim
Dt→Dts

kaPV tanS ku

2 D;1k
l2

l1
e1.

Similarly, substituting Eq.~25! into Eqs.~22! and ~23!, we
find for oddk that

lim
Dt→Dts

kaVV tanS ku

2 D;2k
l2

l1
~e211O~e0!!,

lim
Dt→Dts

kaPV tanS ku

2 D;2k
l2

l1
~e01O~e1!!.

These limits imply a negative value in the largeDt limit and,
therefore, do not contribute to the instability.

Recall that the instability condition holds for values
ka tan(ku/2).1. In the largeDt limit, we have only evenk
values contributing to the instability;ka tan(ku/2) scales
;e0 for VV and decayslike e1 for PV. Therefore, we have
an interesting stabilizing effect for the PV scheme in t
largeDt limit: Stability may be maintained around the res
nant regions as well, i.e., if the value ofk(l2 /l1) or e is
small enough~noting thatl2 /l1,1). In the case of PV, we
have a boundary region~layer! where the stability of the
outer time step can increase as we approach the largeDt
limit, i.e., kunstable(PV);(l1 /l2)e21. This is in contrast to
VV where stability is solely a function ofl1 /l2 ,
kunstable(VV) Þk(e), i.e., kunstable(VV) ;l1 /l2 .

In Fig. 3 we present the functionka tan(ku/2) for the
PV and VV integrators where the two time periods areT1

52 and T2510. We use a modest inner time step ofDt
50.4 and an inner time stepDt50.6 close to the Verlet
stability limit of Dts50.6366. The approximately equivale
stability behavior for small to modestDt is contrasted to the
different results forDt approaching the Verlet stability limit

2. Case II: trace(A IV,* V)Ì2

The condition trace(AIV,*V).2 is equivalent to

211cos~ku!2kasin~ku!

522 sin2S ku

2 D22ka sinS ku

2 D cosS ku

2 D.0,

and states that an instability will occur for

2ka,tanS ku

2 D,0

or

21,
1

ka
tanS ku

2 D,0. ~26!

The second bound@ tan(ku/2),0# results from the fact tha
the inequality can only be achieved if sin(ku/2)cos(ku/2)
,0, i.e., tan(ku/2),0; this limit is a strong boundary in th
largeka limit.

To examine the stability condition of Case II in the lar
Dt limit, we apply the same asymptotic results found
Case I above. For VV we utilize Eqs.~20! and~10! to arrive
at
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
1

kaVV
tanS ku

2 D'
e1/2

k~12e!

l1

l2
tanS k

2
p~2n11!

1k
A8

2
e1/2D , n50,1,2,•••.

For PV, we use Eqs.~21! and ~10! to arrive at

1

kaPV
tanS ku

2 D'
e21/2

k~12e!

l1

l2
tanS k

2
p~2n11!

1k
A8

2
e1/2D , n50,1,2,•••. ~27!

Again, for even values ofk we have

tanS k

2
pS 2n111

A8

p
e1/2D D;1e1/2,

and for odd values ofk we have

FIG. 3. The stability condition ofka tan(ku/2)<1 for Case I is plotted for
the position-Verlet and velocity-Verlet integrators. The two time periods
T152 and T2510; the results are given for two inner time steps:Dt
50.4 and 0.6, the latter close to the Verlet stability limit ofDts50.6366.
The approximately equivalent stability conditions found for small to mo
erateDt are contrasted to an enhanced stability shown for PV in the limit
values of largeDt.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tanS k

2
pS 2n111

A8

p
e1/2D D;2e21/21O~e1/2!,

for e1/2!1. ~28!

These results lead to the asymptotic behavior for VV and
with evenk as

lim
Dt→Dts

1

kaVV
tanS ku

2 D;1k21
l1

l2
e1,

lim
Dt→Dts

1

kaPV
tanS ku

2 D;1k21
l1

l2
e0.

Around possible resonant cases of oddk51,3,5, . . . , we
have

lim
Dt→Dts

1

kaVV
tanS ku

2 D;2k21
l1

l2
~e01O~e1!!, ~29!

lim
Dt→Dts

1

kaPV
tanS ku

2 D;2k21
l1

l2
~e211O~e0!!. ~30!

For evenk, the positive asymptotic result does not contribu
to the instability. For oddk values, we again see a favorab
analysis for PV. Here instability occurs for small negati
values of (1/ka)tan(ku/2). The VV analysis has negativ
values of (1/ka)tan(ku/2) which are independent ofe to
first order, i.e., (1/ka)tan(ku/2) approaches a constant valu
in the large Dt limit. For PV, the negative values o
(1/ka)tan(ku/2) areincreasingase21. Therefore, we again
have an interesting stabilizing effect for the PV scheme
the largeDt limit: Stability may be maintained around th
resonant regions as long as the value of (k21)l1 /l2 is large
enough~noting thatl1 /l2.1) or e is small enough. We
subsequently arrive at the same results found in Cas
namely, for PV~here for oddk) the stability of the outer time
step can increase as we approach the largeDt limit, i.e.,
kunstable(PV);(l1 /l2)e21; kunstable(PV) will increase with
decreasinge. For VV, the maximal stability value is solely
function of l1 /l2 .

In Fig. 4, we present the function (1/ka) tan(ku/2) for
the PV and VV integrators where the two time periods
T152 andT2510. The results are given for a moderate
ner time step ofDt50.4 and a larger valueDt50.6 close to
the Verlet stability limit of Dts50.6366. Approximately
equivalent stability conditions are found for small to mod
ateDt; for Dt nearDts , an enhanced stability is found i
the outer time step for PV.

To examine the size of the resonant spikes, i.e., the
tance of the eigenvalues from the unit circle, we note that
~27! implies

ku

2
'~m2b!p, 0,b,

1

2
.

In the small inner-time step limit, we obtain

kDt'~m2b!T1
eff .

We find that the instability appears for outer time steps n
integer multiples of the effective fast period.
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To approximate the spike amplitudes for Case II, w
note that near the resonance

ku'~2m21!p⇒cos~ku!'1, sin~ku!'2bp.

With a similar analysis presented for Case I above, we fi
that the increasing spike height is linear withk, for largek

ur u21'kabp.

In both cases, the amplitude of the resonant spikes sc
to leading order, in the largek limit @or more formally
(kab)@1], as

ampl'kabp, ~31!

whereb is a small positive number, 0,b,1/2. By substi-
tuting Eqs.~17a! and~17b! into Eq.~31! and taking the ratio
of the two results, we find that the approximate amplitude
the ‘‘resonant spikes’’ is always smaller for the PV formul
tion. That is

amplPV

amplVV
'12

Dt2

4
l1 , ~32!

FIG. 4. The stability condition of tan(ku/2)/(ka)>1 for Case II is plotted
for the position-Verlet and velocity-Verlet integrators. The two time perio
are T152 andT2510; the results are given for two inner time steps:Dt
50.4 and 0.6, the latter close to the Verlet stability limit ofDts50.6366.
The Verlet integrator is shown to be unstable for all smallDt when Dt
approaches the inner time step stability condition.
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FIG. 5. The outer time step stability limit as calculated from the analysis of the propagation matrix for both the position-Verlet and velocity-Verlet integrators.
The results are presented for various inner time steps up to the Verlet stability limit ofDts5 0.6366. Various time scale separations are examined in~a!–~d!:
(T1 ,T2)5(2, 6!, ~2, 20!, ~2, 30!, and~2, 100!. PV allows larger outer time stepsDt than VV asDts is approached.
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this result holds for Case I as well. Furthermore, if we e
amine the large inner-time step limit and takeDt close to the
single-time step Verlet stability condition, Eq.~8!, we have

amplPV

amplVV
'2e,

for

Dt52~12e!/Al1, e!1.

This limiting behavior also holds for Case I. In the limit o
small inner time steps, the resonant effects are similar for
PV and VV formulations, as confirmed from Eq.~32! and
through stability calculations of the impulse-Verlet propag
tion matrix (AIV,*V) @Eq. ~12!#.

Lastly, we examine the stability boundary for two cas
where the slow and fast periods have relative ratios of 3,
15, and 50. The outer time step stability limit is calculat
from the analysis of the propagation matrix for both the P
and VV integrators. The results are presented for vari
inner time steps up to the Verlet stability limit. The mo
unstable outer time step is defined as the first value ofk that
meets the instability condition, trace(AIV,*V),22 or
trace(AIV,*V).2, for a givenDt. Figure 5 plots the mos
unstable outer time step, as a function ofDt. The four time
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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scale separations used are (T1 , T2)5(2, 6!, ~2, 10!, ~2, 20!,
and ~2,100!. For PV, the stability region that scales ask
;e21 at the largeDt limit ( Dts50.6366) is illustrated.

III. BIOMOLECULAR SIMULATION

The results above suggest that PV is preferable to VV
impulse splitting schemes, particularly at larger inner tim
steps. This conclusion supports observations made in
15, and noted in Ref. 13, that PV has better stability in ter
of amplitude of root-mean-square~rms! fluctuations in the
total energy for nonlinear biomolecular systems. Here
present an application of our algorithms in Ref. 15 for
solvated protein system with;14 000 atoms. The integratio
is based on a three-level splitting scheme and incorpor
the particle-mesh Ewald~PME! scheme for electrostatic
evaluations.27,28

Several different strategies can be used for implemen
the three-level force splitting as discussed above. We take
Ewald reciprocal force as the long-range ‘‘slow’’ force, th
bonded terms in the fast force class, and all other terms in
medium class force. This is a typical force splitting used
rigid-cutoff methods that use switching functions to defi
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



S-VV and

d
t

4027J. Chem. Phys., Vol. 115, No. 9, 1 September 2001 Stability of position-Verlet integration
FIG. 6. ~Color! The deviation in energy components relative to the baseline STS-PV integrator for the solvated protein system are compared for MT
MTS-PV at two time step combinations. Here the total energy~E! and its components, kinetic energy~Ek!, potential energy~Ep!, van der Waals energy~Ev!,
electrostatic energy~Ec!, bond energy~Eb!, bond angle energy~Ea!, and dihedral energy~Ed! are plotted along with the temperature~T! percent differences.
A cutoff of 6 Å and time steps of (Dt,Dtm ,Dt)5(1.5, 3.0, 6.0! fs and~1.0, 2.0, 6.0! fs are used in~a! and~b!, respectively. Larger relative errors are foun
for the velocity-Verlet formulation and these errors tend to increase with increasing medium time step; this contrast/behavior of position-Verle, which
maintains a comparatively constant error with an increased medium time step. Total integration lengths in all simulations were 300 ps.
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slow forces.6,16 The medium force evaluation includes 1–
interaction, van der Waals terms, and the real space sum
the PME method; the neighbor exclusion correction term
the real space sum was updated at each medium term e
ation. Nonbonded~NB! list-management routines were a
plied at each medium force call; theAMBER software in-
cludes tests to determine if the NB list utilities should
invoked.

An interesting aspect of the numerical integration,
discussed in Ref. 15, is that the Ewald sum does not c
pletely separate the time scales of the electrostatic te
Thus, fast force components exist within the slow force~re-
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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ciprocal term! component. In an effort to separate the tim
scales of the electrostatic force component, we sugges29 a
modified Ewald-type core function that effectively splits th
lattice sum and formulates the reciprocal space potential
real space sum into isolated far-field and near-field inter
tions, respectively.

In Fig. 6 we present the error in mean energy comp
nents for a Newtonian integration of the solvated prote
comparisons to an accurateDt50.5 fs single-time step inte
gration are made. The effective Ewald cutoff was 6 Å, a
time steps of (Dt,Dtm ,Dt)5(1.5, 3.0, 6.0! fs and~1.0, 2.0,
6.0! fs were used for both PV and VV; total integratio
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. The discrete Fourier trans
forms of the velocity autocorrelation
function of the solvated protein simu
lation for 300 ps MTS simulations are
compared to a 40 ps STS-PV simula
tions (Dt51 fs and cut-off values for
6 and 9 Å!. Three MTS protocols with
a cut-off value of 6 Å are used in~c!–
~e!: Time steps of (Dt,Dtm ,Dt)
5(1.5, 3.0, 6.0! fs for PV, time steps
of (Dt,Dtm ,Dt)5(1.5, 3.0, 6.0! fs for
VV, and time steps of~1.0, 2.0, 6.0! fs
for VV.
e
th

ing

of
lengths were 300 ps. Extensive numerical experiments~see
Ref. 15! indicate that an outer time step ofDt,6 fs is re-
quired to ensure stable long-time trajectories. For an acc
tance criteria, a threshold of less than 5% deviation from
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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baseline STS in the energy component is typical, indicat
that the (Dtm53 fs, Dt56 fs! MTS-PV result is allowable
but the MTS-VV is not. For the smaller medium time step
(Dtm52 fs, Dt56 fs!, both MTS-PV and MTS-VV have
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acceptable errors; however, the PV errors are lower b
factor of 2 or more.

In general, larger relative errors are found for the V
formulation and these errors tend to increase with increa
medium time step, as opposed to the PV formulation wh
maintains a comparatively constant error with an increa
medium time step. VV tends to introduce large error in t
bonded ‘‘fast’’ components and significantly influences t
kinetic-energy component as well. In Ref. 15, an additio
comparison was presented for the MTS integration wh
modest Langevin forces are used to stabilize the integra
up to Dt58.0 fs. The Langevin results were in gene
agreement with the Newtonian results, where the larges
rors are found in the bonded and kinetic-energy compone

Lastly, we analyze the spectrum of the discrete Fou
transform of the velocity autocorrelation of the solvated p
tein simulation for the Newtonian MTS (Dt56.0 fs! simula-
tions for both PV and VV. In Fig. 7~c!, we plot the spectra
for the MTS-PV simulation with a cut-off value of 6 Å and
time steps of (Dt,Dtm ,Dt)5(1.5, 3.0, 6.0! fs. The Newton-
ian MTS-VV simulation with a cut-off value of 6 Å and time
steps of (Dt,Dtm ,Dt)5(1.5, 3.0, 6.0! fs and~1.0, 2.0, 6.0!
fs are plotted in Figs. 7~d! and 7~e!. The Newtonian STS
results forDt51 fs and cut-off values of 6 and 9 Å are also
presented for comparison. The spectrum of the MTS-
simulation is in good agreement with the STS results, and
spectral peak appears at;1450 cm21. However, the
MTS-VV results do not accurately capture this spectral pe
The part of the spectrum below 2000 cm21 originates from
bond stretching of the heavier atoms~e.g., C–O!. The
MTS-VV results indicate an upward drift in the lower 200
cm21 components with respect to increasedDtm at this rela-
tively large Dt; Cheng and Merz30 found similar results in
the drift of the spectra for their MTS-VV RESPA integrato

IV. SUMMARY

Our numerical analysis confirms that the position-Ver
formulation for multiple-time-step integrations has an adv
tage over the velocity-Verlet formulation in the large tim
step limit. Namely, better numerical behavior for positio
Verlet results when the inner time step approaches its Ve
stability limit. Another observation is that the eigenvalues
propagation matrix for position-Verlet generally have a re
tively small deviation from the unit circle, even for larg
unstable time steps, for a simple model harmonic probl
This suggests a possible explanation for the large stable o
time steps associated with the MTS-LN protocol, which i
slight modification to the position-Verlet protocol. The L
protocol uses a midpoint extrapolation of the medium-cl
force, as well as modest Langevin damping to stabilize
ergy drifts and damps resonances.

Our theoretical analysis suggests that resonant-type
stabilities can be alleviated for the position-Verlet protoc
when the inner time step approaches its Verlet stability li
from below. Such enhanced stability near the large inn
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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time step limit, and the general result that the magnitude
the eigenvalues of position-Verlet’s propagation remain cl
to the unit circle, suggest that PV-based schemes are g
starting points for future algorithm development; the L
protocol6 is one such direction. For biomolecular-dynam
simulations, the long-time integrations necessary to sam
the wide range of possible conformations remain a form
dable challenge. The use of large inner time steps, tho
possibly associated with larger numerical errors, may be
acceptable compromise between accuracy and long-time
jectories.
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