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Optimized particle-mesh Ewald Õmultiple-time step integration for molecular
dynamics simulations

Paul F. Batcho,a) David A. Case,b) and Tamar Schlicka,c)

Department of Chemistry and Courant Institute of Mathematical Sciences, New York University and the
Howard Hughes Medical Institute, 251 Mercer Street, New York, New York 10012

~Received 13 February 2001; accepted 13 June 2001!

We develop an efficient multiple time step~MTS! force splitting scheme for biological applications
in the AMBER program in the context of the particle-mesh Ewald~PME! algorithm. Our method
applies a symmetric Trotter factorization of the Liouville operator based on the position-Verlet
scheme to Newtonian and Langevin dynamics. Following a brief review of the MTS and PME
algorithms, we discuss performance speedup and the force balancing involved to maximize
accuracy, maintain long-time stability, and accelerate computational times. Compared to prior MTS
efforts in the context of theAMBER program, advances are possible by optimizing PME parameters
for MTS applications and by using the position-Verlet, rather than velocity-Verlet, scheme for the
inner loop. Moreover, ideas from the Langevin/MTS algorithm LN are applied to Newtonian
formulations here. The algorithm’s performance is optimized and tested on water, solvated DNA,
and solvated protein systems. We find CPU speedup ratios of over 3 for Newtonian formulations
when compared to a 1 fssingle-step Verlet algorithm using outer time steps of 6 fs in a three-class
splitting scheme; accurate conservation of energies is demonstrated over simulations of length
several hundred ps. With modest Langevin forces, we obtain stable trajectories for outer time steps
up to 12 fs and corresponding speedup ratios approaching 5. We end by suggesting that modified
Ewald formulations, using tailored alternatives to the Gaussian screening functions for the
Coulombic terms, may allow larger time steps and thus further speedups for both Newtonian and
Langevin protocols; such developments are reported separately. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1389854#
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I. INTRODUCTION

The art of numerical simulation of biomolecular dynam
ics has made significant progress over the past decad1–4

Recent advances in time integration algorithms that uti
force splitting and multiple time step~MTS! methods enjoy
decreased overall computational cost, and efficient eva
tions of long-range electrostatic potentials have made p
sible more accurate biomolecular modeling.5,6 Still, MTS
methods are not uniformly used since single-time step~STS!
explicit Verlet integrators are easy to program a
implement;2 the Verlet family has been the method of choi
because of its simplicity combined with excellent conser
tion properties, the latter resulting from the symplec
character.7 For explicit STS approaches, a time step of 0.5
fs is typically used to satisfy both accuracy and stability
quirements. Still, Verlet applications on even modest biom
lecular systems~around 20 000 atoms! require several week
of computing time on state-of-the-art workstations to sim
late 1 ns; important biomolecular processes occur on m
longer time scales. Studies have shown that MTS integra
can be effective at larger time steps for the slower dynam
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components while maintaining both accuracy and stabi
with respect to the fastest time scales.1,2,8–17

Efforts at decreasing the cost of potential energy a
force evaluations per time step have focused on the t
consuming~slower! long-range electrostatic component
the force field. Implementation of fast-multipole metho
~FMM!,18,19 Ewald summations,20 and the particle-mesh
Ewald ~PME!5,21–25method have been applied to biomolec
lar systems. Recent evidence26,27 indicates that PME has a
advantage in computational cost over FMM for simulatio
over 20 000 atoms, especially on loosely coupled proces
architectures. Recent reviews4,6 discuss the evaluation o
electrostatic interactions by abrupt truncation and Ew
summation based methods. The PME or force-shift meth
are recommended for long-range electrostatic evaluation;
PME method with a real space cutoff of less than 12 Å
generally considered to be optimal in overall computatio
time.

Here we present recent results on combining the P
method with force splitting MTS algorithms in the widel
used AMBER molecular mechanics and dynamic
package.28,29 We examine several force splitting strategi
for the PME formulation and show that a factor of two
computational speedup can be achieved~relative to the non-
optimized PME/MTS combination! merely by adjusting the
Ewald screening parameter. We also show that mod
Langevin forces can enhance numerical stability while ma
taining good conservation properties.

s,

52.
3 © 2001 American Institute of Physics
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Our MTS implementation inAMBER is based on the
symmetric Trotter factorization developed extensively in
reference system propagator algorithm, RESPA.15–17 This
symmetric framework maintains good conservation prop
ties at larger time steps and can be formulated as a symp
tic integrator. Nonsymplectic stochastic Langevin integrat
have recently been studied within the context of LN-MT
protocol for biomolecular simulations.8,10,30 The use of ex-
trapolation combined with Langevin dynamics succeeds
damping the resonant impulses inherent in the symple
MTS integrations and allows larger outer time steps, wh
maintaining stability and conserving energy.31 The imple-
mentation of LN in theCHARMM program has thus far bee
limited to periodic boundary models with long-range cu
offs. Our optimized MTS/PMEAMBER Newtonian protocol
offers speedup factors over 3, as compared to a 1 fstime step
STS Verlet integration~speedup factors double compared
0.5 fs STS simulations!; accurate conservation of energies
demonstrated for outer time step less than 6 fs.~Long simu-
lations are required to establish stability, since slow hea
can take hundreds of picoseconds to become evident!. With
modest Langevin forces, we report stable outer time step
to 12 fs and associated speedup ratios approaching 5.

We remark that the first application of MTS-RESPA wi
Ewald was presented in Procacciet al.32 and the first MTS-
PME work was presented in Ref. 33. Recent studies34,35have
incorporated the PME method for electrostatic evaluati
into a MTS-RESPA integrator with the Nose´–Hoover chain
extended system method for temperature and pressure
trol. The various MTS force splitting strategies examined
Ref. 34 include the use of switch functions to split the re
space sum~also studied in Ref. 36!. These results based o
20 ps simulation lengths indicate an 8 fs outer time s
barrier; however, the Ewald cut-off values for the dire
space summation of 10–12 Å are larger than those we
optimal for MTS protocols~less than 7 Å!. The study of Ref.
35 indicated that a 4 fsouter time step was most practical fo
the RESPA integrator with direct-space cut-off values of
Å. Our work differs in its examination of more optima
Ewald force partitioning schemes tailored to MTS. In ad
tion, we apply MTS/PME to a purely Newtonian formulatio
~i.e., no artificial temperature coupling!, as well as to a
Langevin model. Significantly, our position–Verlet bas
MTS scheme, rather than the velocity-Verlet version used
Refs. 34 and 35, is modeled after the LN algorithm9,10 and is
found to be advantageous with respect to enhanced en
conservation as well as numerical stability~see companion
paper37 for theoretical analysis!.

In Sec. II, we begin~Sec. II A! by reviewing the MTS
protocol, Ewald summation, and PME algorithms. Alg
rithms are presented for the position-Verlet and veloc
Verlet versions of the Langevin MTS-PME protocols studi
here. Our companion paper37 provides a theoretical ground
ing for our empirical observations, illustrating the advanta
of position-Verlet over velocity-Verlet for moderate tim
steps used to resolve the fastest MTS forces; in the la
inner-time step limit~i.e., not the more usual limit of the fas
time step approaching zero!, position-Verlet displays less
violent resonant artifacts, which are inherent in impuls
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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MTS splitting.30 We then discuss in Sec. II B the force field
used in theAMBER software and, in Sec. II C, we elabora
on the PME method and its use in our protocol.

In Sec. III, we present computational results for seve
systems and discuss optimal force balancing strategies.
three test cases are a system of 4096 water molec
~12 288 atoms!, a solvated DNA system~9898 atoms!, and a
solvated protein system~13 705 atoms!. Section IV A offers
a qualitative assessment of the various PME force partiti
studied here, and Sec. IV B discusses the simulation res
Section V describes the use of modest Langevin forces,
Section VI concludes with a brief summary and suggesti
for future algorithm enhancements.

II. MULTIPLE TIME STEP FORCE SPLITTING METHOD

A. Trotter factorization for multiple time step
integration

Our MTS algorithm is based on the symmetric and tim
reversible Trotter factorization of the Liouville operator15,16

used to derive consistent MTS integrators for solving Ne
ton’s classical equations of motion:

dP

dt
52¹E~X!, ~1!

dX

dt
5V. ~2!

Here P5MV is the collective momentum vector,V is the
collective velocity vector,M is the mass matrix, andE is the
potential energy function of the macromolecular syste
These new integrators were shown to have attractive en
conservation properties at large time steps relative to th
used in STS-Verlet schemes. The formulation of the al
rithm starts with a given phase-space vector,G(X,P), and
the Liouville operator,L. This operator is defined as the inn
product of the time derivative ofG with the differential op-
erator, as

iL 5Ġ•¹G5(
i 51

d F Ẋi

]

]Xi
1Fi

]

]Pi
G . ~3!

HereXi andPi are the position and conjugate momenta co
ponents for coordinatei, Xi̇ is the time derivative ofXi , and
Fi52¹Ei is the force acting on thei th independent vari-
able. The state of the system at timeDt is given by applying
the propagator to the phase space vector att50, e.g.,

G~Dt !5exp~ iLDt !G~0!. ~4!

Here we split the momentum part of the Liouville operat
into three separate force components~slow, medium, fast!,
i.e., Fs, Fm, F f , respectively, as well as an external forceFe

~used for the Langevin component!. The operatoriL is then
decomposed as

iL 5 iL 11 iL 21 iL 3 , ~5a!

iL 15Ẋi

]

]Xi
, ~5b!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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iL 25~Fi
e1Fi

f !
]

]Pi
, ~5c!

iL 35~Fi
s1Fi

m!
]

]Pi
. ~5d!

A symmetric factorization of this propagator gives

exp~ iLDt !PV5exp~ iL 3Dt/2!@exp~ iL 1Dt/2!exp~ iL 2Dt !

3exp~ iL 1Dt/2!#exp~ i L̂ 3Dt/2!, ~6!

where we commuteiL 3 and define the operatori L̂ 35
(Fi

m1Fi
s)]/]Pi .

The factorization of the operators for the symmet
time-reversible propagator above yields discretization er
of O(Dt3).38 As written above, the factorization uses po
tion Verlet ~PV! as the inner propagator, as in the L
algorithm.8,10,30 In contrast, RESPA protocols15,34 have been
formulated to use a velocity Verlet~VV ! formulation,
given as

exp~ iLDt !VV5exp~ iL 3Dt/2!

3@exp~ i L̃ 2Dt/2!exp~ i L̃ 1Dt !exp~ i L̃ 2Dt/2!#

3exp~ i L̂ 3Dt/2!, ~7a!

i L̃ 15Fi
e ]

]Pi
1Ẋi

]

]Xi
, ~7b!

i L̃ 25Fi
f ]

]Pi
. ~7c!

Our investigations indicate that the PV version has
hanced stability over the VV algorithm when moderate tim
step values are used for the fast and medium forces and
values are used for the slow forces; advantages of PV o
VV were suggested in Ref. 16. Our companion paper le
theoretical support to these practical observations.37

To introduce our MTS protocol within the symmetr
factorization, we define three time steps, associated with
evolution of the slow, medium, and fast force componen
Dt, Dtm5Dt/k2 , andDt5Dt/(k1k2), wherek1 andk2 are
integers. Within this construction, Eq.~6! can be rewritten as
~we neglect particle index subscriptsi for simplicity!

expS Dt

2
M 21Fs

]

]PD @Pm#k2expS Dt

2
M 21Fs

]

]PD , ~8a!

where

Pm5expS Dtm

2
M 21Fm

]

]PD @Pf #
k1expS Dtm

2
M 21Fm

]

]PD
~8b!

and

Pf5expS Dt

2
Ẋ

]

]XDexpS Dt~M 21Fe1M 21F f !
]

]PD
3expS Dt

2
Ẋ

]

]XD . ~8c!

The external Langevin force is given by
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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Fe52gMV1Rn~Dt,g!, ~9!

whereRn(Dt,g) is the stochastic white noise with propertie
given by

^R~ t !&50, ^R~ t !R~ t8!&52gkBTMd~ t2t8!, ~10!

or in discrete form

Rn~Dt,g!5enA2gkBTM/ADt. ~11!

Here, g is the friction constant,kB is the Boltzmann con-
stant,T is the temperature~300 K used throughout!, anden is
the random deviate of a normal distribution with a mean o
and a standard deviation 1; forg50, the protocol is charac
terized by a Newtonian microcanonical~MTS-NVE!
algorithm.39 In treating the Langevin forces within the fac
torization above, we note that exponential propagator has
properties ecp(]/]p)f(p)5f(ecp) and ec(]/]p)f(p)5
f(p1c) for cÞc(p). Using these results, we can evalua
the inner term of Eq.~8c! to arrive at the velocity update fo
the fastest forces of

V←e2gDt@V1M 21Dt~F f1Rn~Dt,g!!#. ~12!

Note that for gDt!1 we have e2gDt51/(11gDt)
1O((gDt)2). After substituting this into Eq.~12! and ne-
glecting higher order terms, we arrive at the Langevin fo
used in Sandu and Schlick,8

V←@V1M 21Dt~F f1Rn~Dt,g!!#/~11gDt!. ~13!

This leads to our symmetric MTS protocol based on posit
Verlet, valid in the STS limit of (k1 ,k2)5(1,1):

Algorithm I : position-Verlet based MTS

For ISTEP5 1 to NSTEP
EvaluateFs(X)
V←V1DtM 21Fs

For j 51 to k211
EvaluateFm(X)

V←V1b
Dtm

2
M 21Fm, b5H 1 if j 51 or j 5k211

2 1, j ,k211

if ( j 5k211) endfor
†For i 51 to k111

X←X1c
Dt

2
V, c5H 1 if i 51 or i 5k111

2 1, i ,k111

EvaluateF f(X)
V←@V1DtM 21(F f1Rn(Dt,g))#/(11gDt)
endfor‡
endfor

The velocity-Verlet formulation involves the following
modification of the inner most cycle~bracketed above!:

†For i 51 to k111
EvaluateF f(X)
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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V←FV1c
Dt

2
M 21S F f1RnS c

Dt

2
,g D D G YS 11gc

Dt

2 D
c5H 1 if i 51 or i 5k111

2 1, i ,k111

X←X1DtV

endfor‡.

We have formulated the above position-Verlet algorith
so as to minimize computational work involved with co
strained dynamics variations; such iterations are applied a
each position update of Algorithm I above. All our traject
ries reflect, constrained dynamics formulations on all bo
involving hydrogen in the microcanonical ensemble. Fut
studies will incorporate constant temperature and pres
ensembles as well. Our Langevin dynamics formulat
helps stabilize trajectories at larger time steps; often, RES
integrators use Nose´ thermostats as an external force a
incorporate them into the outer~slow! force component.

B. AMBER force field potentials

The AMBER force field28,29 represents the potential en
ergy of the system as the sum of bond length, bond an
dihedral angle, Coulomb, and hydrogen bond terms as

EPE5Er1Eu1Et1ELJ1EC1EHb , ~14!

where

Er5 (
i , j PSB

Si j ~r i j 2 r̄ i j !
2, ~15!

Eu5 (
i , j ,kPSBA

Ki jk~u i jk2 ū i jk !2, ~16!

Et5 (
i , j ,k,l PSDA

(
n

Vni jkl

2
~11cos~nt i jkl !!, ~17!

ELJ5(
i , j

4e i j S s i j
12

r i j
12

2
s i j

6

r i j
6 D 1

1

Escale
1,4

3(
i , j

4e i j S s i j
12

r i j
12

2
s i j

6

r i j
6 D , ~18!

EC5(
i , j

qiqj

r i j
1

1

Escale
1,4 (

i , j

qiqj

r i j
, ~19!

EHb5(
i , j

S Ci j

r i j
12

2
Di j

r i j
10D . ~20!

The first two terms,Er and Eu , represent harmonic typ
oscillations of bonded atoms and the third term,Et , is the
torsional potential for the dihedral angle,t, expressed by a
truncated Fourier series. In these general expressions
symbolsSB , SBA , andSDA denote the sets of all bonds, bon
angles, and dihedral angles. Bond and angle variables ca
by bar symbols denote equilibrium~i.e., reference! values
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
er

s
e
re
n
A

e,

the

ed

associated with these quantities. The nonbonded interact
between two atoms are characterized by a van der W
~vDW! potential,ELJ , an electrostatic potential,EC , which
includes the 1–4 interaction pairs of atoms on the same m
ecule, andEHb , the 10–12 hydrogen bond potential.

C. PME formulation in AMBER

The solvated biomolecular system is considered one
cell of an infinite periodic lattice, and its electrostatic inte
actions can be expressed by Ewald summations.20 The split-
ting of the electrostatic term via the Ewald summation resu
in a reciprocal space and direct~real! space term for the
Coulomb pair potential,Ec5( i , j (qiqj /r i j ), as well as the
correction terms,

Ec5Erecip.1Ereal1Ecor. self1Ecor. ex1Ecor.e , ~21!

as described below. With the PME method, the electrost
energy is efficiently evaluated on a computational me
which requires interpolation of the charged particles a
their forces. Briefly, the formulation of the sum on an infini
lattice with periodicity is greatly simplified by noting that th
Coulomb potential in three dimensions can be split into t
terms,

1

r
5

S~r !

r
1

12S~r !

r
, ~22!

whereS(r ) can be defined to be a rapidly decreasing fun
tion. This implies that the first term of Eq.~22! includes only
near-field contributions, while the second is long-range
smooth. The second term of Eq.~22! and the switch function
S(r ) are defined by the solution of Poisson equation sub
to a spherically symmetric particle core function,s(r ),
which is normalized to have a net unit charge,

2¹2f~r !54ps~r !, ~23!

12S~r !

r
5f~r !. ~24!

For a periodic lattice, the reciprocal potentialErecip(r ) can be
found from an efficient solution of Poisson’s equation v
Fourier expansions, where a charge distribution is defined
the sum of the smoothed point charges. Likewise, the
space summation is defined over screened charges subje
the rapidly decaying switch function,

Ereal5
1

2 (
i , j 51

N

qi qj(
unu

8 S~ ur i j 1nu!
ur i j 1nu

. ~25!

In this expression, the lattice index vector isn
5(nxL,nyL,nzL), wherenx ,ny ,andnz are integers,L is the
box size, andr i j is the radial separation between two pa
ticles. The prime symbol in the summation (( unu8 ) indicates
that for unu50 we omit thei 5 j interaction and excluded
pairs. See also Refs. 40 and 26 for more details on the m
ematical construction for general core functions. The origi
Ewald summation uses a Gaussian function as the par
core function,s(r ,b)5(b3/p3/2)exp(2r 2b2), and results
in the following potentials:41
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Ereal5
1

2 (
i , j 51

N

qi qj(
unu

8 erfc~b ur i j 1nu!
ur i j 1nu

, ~26a!

Erecip.5
1

2pL3 (
umuÞ0

exp~2p2umu2/b2!

umu2
G~m!G~2m!,

G~m!5(
j 51

N

qj exp@2p im•xj #, ~26b!

Ecor. self5
2b

Ap
(
j 51

N

qj
2, ~26c!

Ecor. ex52
1

2 (
i , j PEx.

N

qi qj

erf ~b ur i j u!
ur i j u

, ~26d!

Ecor.e5
2p

3L3U(j 51

N

qj xjU2

. ~26e!

Hereb is the Ewald constant,qi is the partial charge on atom
i, erfc~x! is the complementary error function [erfc(x)
5 (2/Ap) *x

`exp(2u2)du]. For the reciprocal term we sum
over Fourier modes wherem52pk/L, V5L3, m5umu
52puku/L, and k5(kx ,ky ,kz), kx ,ky ,kz are integers, and
L3 is the volume of the cubic domain.

Several different strategies can be used for implemen
the three-level force splitting as discussed above. We take
Ewald reciprocal force as the long-range ‘‘slow’’ force,Fs

5F recip; the bonded terms in the fast class,F f5Fr1Fu

1Ft ; and all other terms in the medium class force. This
typical for rigid cut-off methods with switching
functions.10,30The medium force evaluation includes 1–4 i
teractions, vDW terms, and the real space sum for the P
method; the neighbor exclusion masking for the real sp
sum of Eq.~26d! was performed at each medium term eva
ation. The list management utilities for the nonbonded~NB!
terms were invoked at each medium force call; theAMBER

software includes acceptance tests to determine if the NB
requires regeneration or updating.

Though it is possible to split the direct term itself by
radial switch function, with an additional pairlist mainte
nance, as done in Refs. 32, 34, and 36, we do not cons
this here. Three different force splitting strategies were
amined in Ref. 34 for MTS-RESPA integrators, including
algebraic switch function splitting of the real space sum a
Å. The results suggest a limited enhancement in C
speedup associated with splitting the real space sum;
approach optimizes the CPU speedup relative to an unm
fied Ewald splitting.

Inherent in the splitting construction is the underlyin
assumption that the reciprocal term represents, or more
portantly isolates, the long-range slow forces. This is not t
in the Ewald formulation. Studies in Ref. 40, and more
cently Procacciet al.,42 indicate that the Ewald reciproca
term has significant force contributions from near-field p
ticle separations and that these forces lead to fast-time s
instabilities in MTS protocols. For this reason, we are co
sidering alternative core functions such ass(r )
5( i 50

n air
2iexp(2r 2b2), where the coefficients$ai% are
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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predetermined optimized coefficients, which can be desig
to meet the desired far-field to near-field pairwise interact
splitting philosophy. See Ref. 40 for a study of several no
Gaussian core functions for efficient lattice summations.
ternatively, we are using more elaborate splitting terms t
may help eliminate fast terms in the reciprocal compon
using switch functions and different treatments for Coulom
and van der Waals forces.43 Here we use the Ewald Gaussia
formulation for convenience in implementing the MTS pr
tocol within theAMBER software package; we will report o
the optimized core functions in future publications.44

III. OPTIMIZED PARTICLE-MESH EWALD METHOD

The accuracy of the PME method is related to the d
sity of the charge grid (Ngrid), the spline interpolation orde
~here taken as theAMBER default of four!, and the direct sum
error tolerance, erfc(br )/r ~here taken to be 1026). As dis-
cussed in Ref. 22, a PME estimated rms~root-mean-square!
force error can be established from the above variables a
ciated with the direct sum cut-off value, as well as the nu
ber of Fourier vectors associated withNgrid . Here we study a
parameter set that maintains a maximum estimated rms f
error of 1024 and establish an optimal range of applicati
within a given MTS protocol.

We first review the optimized force partitioning strateg
used here. The two parameters we optimize for an MT
PME protocol are the Ewald coefficientb and the density of
the charge gridNgrid . The parameterb influences the range
of the Gaussian shielding and hence the effective real sp
cutoff used for the nonbonded list maintained throughout
simulation.7 The optimal Ewald method typically selectsb
to distribute the work evenly between the reciprocal and
rect terms. Asb increases, the coefficients in the Fouri
series approximation decay at a slower rate, and theref
larger expansions and greater computational work are
quired. At the same time, a largeb leads to a direct term with
a smaller region of influence, and therefore, theO(Ndir

2 )
work is reduced due to a smaller effective sphere of infl
ence; hereNdir is the number of degrees of freedom retain
in the screened direct sum. The value ofNdir remains con-
stant for increasing system sizes, and thus an overallO(N)
algorithm is obtained. The slow and medium relative CP
times can be adjusted by changingb for a desired rms force
error. We thus express the total work for a STS-PME sche
as the following sum of CPU fractions for the slow (Ws),
medium (Wm), and fast (Wf) terms:

WorkSTS5Ws1Wm1Wf , ~27!

where WorkSTS51. For an MTS-PME scheme with give
Dt5k2Dtm5k1k2Dt, we arrive at the corresponding wor
statement of

WorkMTS5
Ws

k1k2
1

Wm

k1
1Wf . ~28!

Note that WorkSTS5WorkMTS(k251,k151,Ws ,Wm ,Dt)
and the speedup ratio can be given byWorkSTS/WorkMTS.
Thus we see that an optimal STS scheme, which maxim
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Various parameters associated with the PME-STS calculations for differentb choices for the water,
solvated DNA, and solvated protein systems. The parameters in columns 2–7 are the Ewaldb parameter, the
PME charge grid density (Ngridx

,Ngridy
,Ngridz

) ~given a maximum error tolerance of 1.031024), the Ewald
cut-off distance~Å!, the array size of the nonbonded pairlist, the STS fraction of reciprocal force CPU wo
the direct force’s CPU work, and the CPU time ratio relative to the fastest protocol~e.g., III for the water and
I for the solvated biomolecular systems!, respectively.

Partition b Ngrid CUT NB lists Wrecip/Wdir

CPU

CPUmin

Water
I 0.646 ~90,90,90! 5.0 541 000 83/12 1.6
II 0.533 ~80,80,80! 6.0 871 000 70/25 1.3
III 0.491 ~64,64,64! 6.5 1 077 000 51/41 1.0
IV 0.395 ~50,50,50! 8.0 1 871 000 27/65 1.2
V 0.312 ~40,40,40! 10.0 3 433 000 13/79 1.8

Solvated DNA
I 0.533 ~80,80,80! 6.0 684 307 73/21 1.1
II 0.349 ~45,45,50! 9.0 2 026 000 22/71 1.0

Solvated Protein
I 0.533 ~80,80,80! 6.0 970 200 68/22 1.0
II 0.349 ~50,50,50! 9.0 2 882 000 19/68 1.1
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speedup, should have a larger fraction of work in its sl
component; for our protocol, the component updated le
often is the PME reciprocal term.

For example, consider the work perDt cycle for an MTS
scheme with parametersk157 andk253. If the fraction of
work for a given system isWs50.2 and Wm50.75, the
speedup ratio of the MTS scheme with respect to the S
scheme is 3.2. If insteadWs50.75 and Wm50.2, the
speedup ratio would be 6.6, more than double the prev
value. Here we assume that the STS work is insensitive
changes inb and that secondary effects, such as sma
spatial cutoffs, do not introduce artifacts. As will be shown
the next section, this is a reasonable assumption. The sim
analysis above indicates the merit of designing, where p
sible, general MTS protocols that have significantly mo
costly reciprocal terms with respect to the medium term
the STS limit.

For a givenDt, we express a heuristic guide for an o
timal MTS partition as

Ws

k1k2
'

Wm

k1
. ~29!

This leads directly to a splitting scheme with

Ws'k2Wm . ~30!

Taking typical conditions found here, we estimateDt;10 fs
andk2;2 to 3; in other words, the ratioWs /Wm should be
about 2 to 3 for an optimal MTS force partition. Note th
p 2001 to 128.122.250.106. Redistribution subject to 
st
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taking the largest inner time step (Dt) for a given outer time
stepDt as the most optimal scheme would be an incorr
conclusion. A more practical optimization strategy is
maximizeDt while minimizingk2 ~i.e., using as large aDtm

as possible!. As we illustrate below, enhanced speedups c
be found by loweringk2 ; however, the speedup improve
ment is modest when raisingDt from 0.5 fs to 1.0 fs.

Finally, we note that optimized choices ofb for STS and
traditional Ewald protocols have been examined in Ref.
The MTS-PME application Essmannet al.22 includes a para-
metric study for various values ofb and mesh resolutions
our optimal parameters for the MTS implementation diff
from those used for STS integrators and somewhat nar
the parameter range of interest for MTS applications. Ot
optimization strategies include an ‘‘optimal influence fun
tion’’ derived in Hockney and Eastwood21 for the reciprocal
term ~see also Ref. 26!, and a procedure for Ewald sums.46

IV. RESULTS

A. Assessment of the PME force partition

Before discussing results of the PME-MTS optimizatio
we illustrate here performance of different PME-STS pro
cols ~differing by b), since results affect the optimal PME
MTS design. With our implementation inAMBER, b is the
only independent parameter since a prescribed rms e
threshold, less than 1024, together withb determines the
grid density.
are

TABLE II. The calculated percent deviation of the various PME protocols differing byb ~or associated cut-off
value! relative to partitionV of Table I ~cutoff of 10 Å! for the water system. The mean energy components
calculated by a PV-STS integrator withDt 5 0.5 fs over a 10.0 ps simulation.

PME protocol Etot Epot EK EvDW Eel

I ~5 Å! 0.1 0.08 0.04 0.8 0.03
II ~6 Å! 0.008 0.14 0.3 0.07 0.07
III ~6.5 Å! 0.001 0.007 0.06 0.01 0.06
IV ~8 Å! 0.001 0.008 0.08 0.5 0.08
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Recall that all our simulations used, constrained dyna
ics on bonds involving hydrogens. Simulations at room te
perature were started on pre-equilibrated systems. The w
system contained 4096 water molecules. The solvated D
duplex consisted of a 9 base pair DNA duplex damaged by
metabolically activated form of the environmental carcin
gen benzo@a#pyrene; the system has 621 solute atoms,
neutralizing Na1 counterions, and 3087 water molecules,
a total of 9898 atoms.47 The solvated protein system consis
of the catalytic domain~residues 260–519! of the Src family

FIG. 1. The radial distribution function for the water oxygen atoms of
solvated protein simulation. The top right shows an enlargement for smr.
The results were averaged over a 300 ps MTS simulation using cu
values of 6 and 9 Å.
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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tyrosine kinase Hck;48,49 it has of 2214 protein atoms, 4 Na1

ions, and 3829 water molecules~13 705 total atoms!.
In Table I, we show results for five partitions characte

ized by theb parameter for our water, solvated DNA, an
solvated protein systems~total system sizes range from abo
10 000 to 14 000 atoms!. For eachb protocol, we show the
charge density, cut-off value~in Å! for the direct sum, the
size of the nonbonded pairlist array, CPU work fractions
the reciprocalWrecip and directWdirect terms, and the CPU
ratio between each protocol relative to the optimal proto
for that system.

We see that the direct-term work is larger than t
reciprocal-term work forb values smaller than;0.5 Å 22,
i.e., cut-off values greater than;6.5 Å. Thus, we expect tha
cut-off values of 6 Å or lower would be preferred for MTS
applications; this is indeed observed. We also conclude
the overall STS CPU time, within theb ranges examined
here, is not sensitive to varying the direct to reciprocal wo
ratios for the solvated biomolecules.

As the MTS protocols become increasingly stable a
larger outer time steps are possible, our analysis indic
that shifting the CPU work into the reciprocal force evalu
tions, in the STS limit, will become increasingly importa
for optimizing the total CPU time. In principle, there are n
obstacles to the use of lower cut-off values~which can shift
the work load from medium to slow terms! given that a fixed
error is maintained by increasing the charge grid dens
However, inAMBER, the effective Ewald direct term cutoff is

ff
FIG. 2. The discrete Fourier transform of the velocity autocorrelation function of the solvated protein simulation for a STS–PV simulation with cut-off values
of 9 and 6 Å (Dt51.0 fs and the simulation length was 40 ps!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Performance for symmetric Newtonian MTS schemes for the water system for various
partitions at a fixed outer time step (Dt57 fs!. For each MTS scheme, we present the %Recip,%Direct val
the ratio of CPU relative to a STS scheme (Dt50.5 fs,Ngrid580, cut-off5 6 Å!, with the value in parenthese
indicating the CPU ratio divided by 2.0 for comparison to an STS scheme with a 1.0 fs time step
extrapolated clock time in days for a 1 ns simulation on a single MIPS R12000 processor~300 MHZ!.

k2 , k1 Dtm Dt %Recip, %Direct Speedup CPU for 1 ns

I ~CUT55, Ngrid590)
7,2 1.0 fs 0.5 fs 38,39 4.9~2.45! 7.4 days
4,2 1.75 0.875 48,30 5.9~2.95! 6.1
2,4 3.5 0.875 55,22 7.2~3.60! 5.0
II ~CUT56, Ngrid580)
7,2 1.0 fs 0.5 fs 21,58 4.3~2.15! 8.4 days
4,2 1.75 0.875 28,50 5.8~2.90! 6.2
2,4 3.5 0.875 36,38 7.5~3.75! 4.8
IV ~CUT58, Ngrid 5 50)
7,2 1.0 fs 0.5 fs 5,78 2.4~1.20! 14.9 days
4,2 1.75 0.875 7,72 3.7~1.85! 9.9
2,4 3.5 0.875 10,63 5.2~2.60! 6.9
V ~CUT510, Ngrid 5 40)
7,2 1.0 fs 0.5 fs 2,85 1.4~0.70! 26.6 days
4,2 1.75 0.875 3,81 2.0~2.00! 17.8
2,4 3.5 0.875 4,72 3.0~1.50! 11.9
hi
en
c
ed
w
in
to

s

on
at

n
o

ge
r

ila

en
n
in
s
te
e

n–

h

f
-o
if

ity

Å

c-

gi-

ter
low

ur
rs of
cri-
m

of
to

the
he

of

ion

ity
the
w-

of
also used to evaluate the vDW terms via rigid cutoffs. T
imposes a practical constraint on the MTS-PME implem
tation, since vDW interactions beyond that medium for
cutoff are ignored. In theory, this limitation can be resolv
by adding a portion of the vDW interaction in the slo
forces, but two nonbonded pairlists will have to be ma
tained. Alternatively, the PME method could be applied
the vDW term;22,50 the Ewald-type splitting of the vDW in-
teraction would again provide a slower force component a
does for the electrostatic term.

For now, we assess the sensitivity of the vDW cutoff
the simulation by first comparing mean energies associ
with variations in the cut-off value for the water system
Taking protocolV of Table I ~cutoff of 10 Å! as the refer-
ence, we show in Table II the relative deviations for all e
ergy components associated with a PV-STS simulation
length 10.0 ps for the water system. We note that the lar
difference is found in the vDW energy, but even that diffe
ence is less than 1% for all force partitions studied; sim
results are obtained for the solvated systems.

A second measure of the vDW cut-off value is giv
through the calculation of the radial distribution functio7

~rdf! for the solvated protein simulation. The system conta
13 705 atoms with 3829 water molecules, and several
dium ions. Of the systems studied here, the solvated pro
is expected to be the most sensitive to truncated vDW
fects. The rdf presented in Fig. 1 is for water oxyge
oxygen interactions for cut-off values of 6 and 9 Å and av-
eraged over a 300 ps simulation; the MTS protocol used
Dt56 fs, (k1 ,k2)5(3,2), (Dt,Dtm)5(1.0 fs, 2.0 fs!, and
the rdf is sampled every 10 inner time steps. The results
our solvated protein study do not reveal any spurious cut
effects for the lower value; however, a slight downward sh
of the rdf is found for the lower vDW cut-off value.

We also compare the Fourier transform of the veloc
autocorrelation signal,Cv(t), for all nonwater atoms for the
solvated protein system for the cut-off values of 6 and 9
p 2001 to 128.122.250.106. Redistribution subject to 
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The spectra are analyzed for a PV-STS simulation withDt
51.0 fs, as calculated by the velocity autocorrelation fun
tion

Cv~ t !5

K (
i 51

N atoms

Vi~ t !•Vi~0!L
K (

i 51

N atoms

Vi
2~0!L . ~31!

Figure 2 shows the resulting signals below 2000 cm21 for
the 9 and 6 Å cut-off values. This part of the spectrum ori
nates from bond stretching of the heavier atoms~e.g., C–O!
and reveals a distinct peak at;1450 cm21; this generally
agrees with results of Ref. 34. The inclusion of the wa
molecules adds considerable signal to the spectrum be
1450 cm21 for both cut-off values.

B. Simulation details and discussion

We now analyze the results of MTS integrations for o
three systems. The lengths of outer time step and numbe
inner and medium cycles are varied to establish stability
teria for the Newtonian and Langevin versions of Algorith
I. The mean energy components and the Fourier transform
the velocity autocorrelation are examined and compared
STS results. We also examine two criteria for measuring
quality of the integration scheme, namely the ratio of t
total energy rms values to their mean value, and the ratio
total energy rms to kinetic-energy rms values.

In general, speedup ratios relative to the STS simulat
with Dt50.5 fs are;7 to 8 at a 6 fs MTSouter time step;
with the addition of modest Langevin forces, this stabil
limit extends to 12 fs and the speedup factor to 10. For
solvated systems, a significant energy drift is found for Ne
tonian integrations withDt.8 fs; for 6 fs ,Dt,8 fs an
energy drift is apparent only after several hundred ps
simulation~e.g., heating by;10° per ns!; for Dt<6 fs, the
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. ~Color! The deviation in energy components relative to the baseline STS-PV integrator for the water and solvated biomolecule systems.
energy~E! and its components, kinetic energy~Ek!, potential energy~Ep!, van der Waals energy~Ev!, electrostatic energy~Ec!, bond energy~Eb!, bond angle
energy~Ea!, and dihedral energy~Ed! are plotted along with the temperature~T! percent differences. Newtonian MTS integrations with cutoffs56 Å ~a!, and
10 Å ~b!, for Dt57 fs are analyzed for the water system, and cutoffs56 Å ~c!, and 9 Å ~d!, for Dt56 fs for the solvated DNA system. At bottom,
comparison is made between the Newtonian MTS-PV and MTS-VV integrations for the solvated protein system~e!; a cutoff56 Å and time steps ofDt
56 fs, Dtm53 fs, andDt51.5 fs are used in both cases, with integration lengths were 500 ps.
st
to
vin

of
i-

ore,
integration exhibited no evidence of instability~heating! over
several ns of simulation lengths. For the water system,
bility of the Newtonian MTS protocol was retained up
Dt57 fs, for a long-term simulation, and moderate Lange
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
a-
damping (g55.0 ps21) extended this stability barrier toDt
512 fs. The water system is special since the application
constrained dynamics on bonds involving hydrogen elim
nates all bonded forces for the water molecules. Theref
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE IV. Performance for symmetric Newtonian MTS schemes for the solvated DNA system for va
PME partitions at a fixed outer time step (Dt56 fs!. For each MTS scheme, we present the %Recip,%Dir
values; the ratio of CPU relative to a STS scheme (Dt50.5 fs, Ngrid580, cut-off 5 6 Å!, with the value in
parentheses indicating the CPU ratio divided by 2.0 for comparison to an STS scheme with a 1.0 fs tim
and extrapolated clock time in days for a 1 ns simulation on a single MIPS R12000 processor~300 MHZ!.

k2 ,k1 Dtm Dt %Recip, %Direct Speedup CPU for 1 ns

~CUT56, Ngrid580)
6,2 1.0 fs 0.5 fs 28,50 4.6~2.30! 7.6 days
3,4 2.0 0.5 35,40 6.4~3.20! 5.4
3,2 2.0 1.0 37,43 6.8~3.40! 5.1
2,3 3.0 1.0 44,35 7.3~3.65! 4.8
2,6 3.0 0.5 41,33 6.8~3.40! 5.1

~CUT59, Ngrid550)
6,2 1.0 fs 0.5 fs 4,82 2.2~1.10! 16.0 days
3,4 2.0 0.5 7,73 3.4~1.70! 10.2
3,2 2.0 1.0 7,75 3.5~1.75! 9.9
2,3 3.0 1.0 8,70 4.4~2.20! 7.9
2,6 3.0 0.5 8,67 4.1~2.05! 8.6
o
th
ke
o

for
h-

TS
PU
the inner force partition within the MTS splitting gives n
contribution, as well as no secondary coupling effects, to
medium and slow terms. This lack of bonded forces ma
the water calculation more stable than the solvated biom
ecule systems.
p 2001 to 128.122.250.106. Redistribution subject to 
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Table III presents the MTS performance measures
variousb protocols for the water system. The results hig
light the importance of adjusting the PME coefficientb to
optimize the speedup ratio of the MTS relative to the S
scheme. Table III indicates that a factor of 3 decrease in C
ith
FIG. 4. Newtonian CPU speedups relative to STS-PV~cutoff56 Å, Dt50.5 fs! for the water and solvated DNA systems. Newtonian MTS integrations w
cutoffs56 and 10 Å for aDt57 fs are analyzed for the water system~a!; cutoffs56 and 9 Å for aDt56 fs are analyzed for the solvated DNA system~b!;
and cutoffs56 and 9 Å for the DNA are studied as a function ofDt by maximizing the medium time step.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. The discrete Fourier transform
of the velocity autocorrelation for the
solvated protein simulation as com
puted by STS simulations at two cut
offs ~a! and ~b! and 3 MTS protocols
~c!–~e!. The 500 ps Newtonian
MTS-PV simulations used a cut-of
value of 6 Å, an inner time step o
Dt50.5 fs, and outer and medium
time step values of (Dtm ,Dt)5(1.0,
3.0! fs, ~1.0, 6.0! fs, and~3.0, 6.0! fs.
The 40 ps STS-PV simulation use
Dt51 fs and cut-off values of 6 and
9 Å.
uc
u
-
m
o

0
m

e

ic

d

ff
-
f.
time can be obtained in the MTS implementation by red
ing the cut-off value from 10.0 to 6.0 Å. The largest speed
ratio corresponds to the largestDtm and is reached at ap
proximately an equal work partition between the mediu
and slow terms. The deviation of the MTS energy comp
nents relative to the STS (Dt50.5 fs! PV algorithm is shown
in Figs. 3~a! and 3~b! for the cut-off values of 6.0 and 10.
Å. In general, all energy components for the MTS sche
with Dt< 7 fs are stable for long simulations~several nano-
seconds! and exhibit deviations of a few percent from th
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
-
p

-

e

STS results in the individual energy components.
Next, we study the solvated DNA duplex in a period

box with side dimensions of~45,45,50! Å. Two PME force
partitions were studied in Table IV: A cutoff of 9.0 Å an
Ngrid5(45,45,50) Å, and a cutoff of 6.0 Å withNgrid

5(80,80,80). We see that forDt56 fs the lower cut-off
value of 6 Å is optimal when compared to the larger cut-o
value. The MTS2 partition of Ref. 34 is similar to our Algo
rithm I, but had cut-off values of 10–12 Å; the study in Re
35 had cut-off values of 13 Å.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE V. Performance for symmetric Newtonian MTS schemes for the water system for various PME
tions at a fixed outer time step (Dt57 fs!; here partition II is analyzed in detail. For each MTS scheme,
present the % Recip, % Direct values; the ratio of CPU relative to a STS scheme (Dt50.5 fs,Ngrid580, cutoff
56 Å!, with the value in parentheses indicating the CPU ratio divided by 2.0 for comparison to an STS s
with a 1.0 fs time step; and extrapolated clock time in days for a 1 ns simulation on a single MIPS R
processor~300 MHZ!.

k2 , k1 Dtm Dt %Recip,%Direct Speedup t51 ns

7,2 1.0 fs 0.5 fs 21,58 4.3~2.15! 8.4 days
4,2 1.75 0.875 28,50 5.8~2.90! 6.2
3,4 2.33 0.583 33,41 6.0~3.00! 6.0
3,2 2.33 1.167 34,43 6.2~3.10! 5.8
2,7 3.5 0.5 40,32 6.7~3.35! 5.4
2,4 3.5 0.875 36,38 6.6~3.45! 5.2
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The errors in the MTS energy components for the s
vated DNA system relative to the STS (Dt50.5 fs! PV al-
gorithm in Figs. 3~c! and 3~d! show deviations of only a few
percent in the individual energy components. For the com
nationDt58 fs, Dt52 fs, andDtm54 fs, the simulation is
stable for up to 100 ps of integration, with only a 3% dev
tion from the STS reference temperature of 300 K. Howev
trajectories longer than 500 ps indicate heating. Analysis
vealed that the heating did not result from the relatively l
6 Å cutoff, but from the 8 fs outer time step, too large for t
Newtonian integrator. An outer time step stability limit of
fs was also noted with the MTS-VV-RESPA integrator34 for
simulation lengths of 20 ps.

Stable Newtonian trajectories requireDt<6 fs in our
applications. A 4 fs outer time step was found optimal for t
RESPA integrator with direct space cut-off values of 13 Å
Ref. 35 based on 100 ps simulations; however, that st
also reported substantial energy drifts for aDt54 fs RESPA
simulation.

Our Newtonian MTS–VV and MTS–PV integrator
were compared at the combinationDt56 fs, Dtm53 fs, and
Dt51.5 fs; the results indicate that both integrators
stable over several nanoseconds. However, the average
netic energy and bonded terms for the MTS-VV version
dicate significantly greater errors when compared to
baseline STS results. Figure 3~e! plots the distribution of
error for the two integrators for the various components
the total energy; given a threshold of less then 5%, we c
sider the Dt56 fs MTS-PV acceptable whereas th
MTS-VV is not.

For the water system, the use of constrained dynam
on all bonds involving hydrogen pushes the stability limit
Dt57 fs ~compared to 6 fs for the solvated biomolecule!.
Figure 4~a! plots speedup for various combinations ofDt
andDtm for the water system with a fixedDt57 fs for the
two cut-off values of 6 and 10.0 Å. For both cut-off value
the speedup ratio calculations are based on the cutoff of
The speedup has an asymptotic limit dictated by the stab
constraints on bothDt and Dtm . Results for the solvated
DNA in Fig. 4~b! with Dt56 fs indicate similar limits. An-
other view in Fig. 4~c! shows the speedup of the MTS int
grator as a function of the outer time step; here the med
time step is maximized for each calculation.

In general, Algorithm I with a 6.0 Å cut-off value offer
approximately a factor of 2 to 3 enhanced speedup over
p 2001 to 128.122.250.106. Redistribution subject to 
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Å cut-off value; similar results were found for the solvate
protein system. For cut-off values greater than 12 Å,
though nonoptimal in an MTS protocol, we have found th
the outer time step stability improved to above 20 fs; h
simulation lengths up to 100 ps were examined. These la
cutoffs imply considerably smaller reciprocal force contrib
tions to the total energy and force work, as well as cons
erably larger nonbonded pairlists. We are currently inve
gating designing optimal core functions to apply to t
Coulomb terms so as to enhance the outer time step stab
at lower cut-off values.44

To measure performance for a given MTS-PME for
partition, we next survey various combinations ofk1 andk2

for a cut-off value of 6.0 Å and a mesh densityNgrid of 80
points in each spatial direction~Partition II of Table I! for the
water system. All simulations employDt57 fs and a simu-
lation length of 20 ps. The qualitative results presented h
are expected to be independent of the actual system stu
and are dependent only on the number of atoms, onDt, and
on the force partition. The stability boundary forDt was
found to be insensitive to the choices ofk1 andk2 . Table V
shows that varying the inner time step (Dt), for a givenDt,
has little effect on the optimal MTS scheme, and that low
ing k2 is the most sensitive factor.

To measure the influence of the MTS protocol and low
cut-off values on the dynamics, we present the discrete F
rier transform of the autocorrelation signal in Fig. 5 for th
solvated protein for MTS and STS simulations. Here MT
protocols with time steps of (Dt,Dtm ,Dt)5(0.5, 1.0, 3.0!
fs, ~0.5, 1.0, 6.0! fs, and~0.5, 3.0, 6.0! fs are compared to
STS schemes~PV! with Dt51.0 fs. The MTS spectra show
good agreement with the STS results, and the data for
cut-off values of 9 and 6 Å are similar. Unlike the spectra in
Ref. 34 for the MTS-VV RESPA integrator, which indica
an upward drift in the lower 2000 cm21 components at large
Dt, we see no evidence of an upward drift in the frequen
components for the Newtonian MTS-PV integrator stud
here.

The ratio DE of the total energy rms deviation to th
mean total energy as a function ofDt is shown in Fig. 6~a!
for the solvated DNA system. For all our MTS protocols, w
find the DE values to be 1023 and lower; for reference
Cheng and Merz34 suggested 1022 ~1.0 %! as the threshold
ratio. Our Algorithm I based on PV appears to have low
relative fluctuations in total energy versus the MTS-V
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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RESPA formulation of Ref. 34; this agrees with pri
observations16 regarding MTS-PV versus MTS-VV scheme
at larger time steps. Our Newtonian studies indicate a 3
lower rms in the total energy for the PV-MTS integratio
versus the VV-MTS result.

Finally, the ratio of the rms of the total energy fluctu
tion relative to the rms of the kinetic energy fluctuatio
DErms5DEtotal/DEkin is studied for the solvated DNA sys
tem. Figure 6~b! shows values less than 0.5 for most pro
cols used with the solvated DNA system; these protoc
agree to within a 3% deviation of their mean energy com
nents relative to the STS results. Watanabe and Karplu17

suggested that the magnitude of this ratio should beO(1022)
for a stable integrator~neat liquids ofn-alkanes were stud
ied!. Humphreyset al.13 reported this ratio for biomolecula
simulations, where values less than 0.1 were typical. Ho
ever, Procacciet al.32,33 suggested that the largerDErms val-
ues for solvated biomolecular systems modeled by PME,
integrated with MTS, do not reflect integrator quality we
They showed the ratio to be sensitive to the Ewaldb coef-
ficient; namely, a largerb leads to a largerDErms value. A
formal measure of MTS integrator quality remains an op

FIG. 6. rms fluctuation ratios for a Newtonian integration of the solva
DNA system with a cutoff56 Å as a function ofDt: ~a! total energy rms
relative to mean total energy, and~b! total energy rms to kinetic-energy rms
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
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n

problem; we therefore, choose to examine various detail
the simulation, including mean energies, spectral cont
and pdf distributions. Our 500 ps simulation of solvated b
molecules withDErms;0.4 indicates no energy drifts with
the Newtonian MTS-PV protocol, and the rdf and spect
comparisons are in good agreement with STS results.

V. LANGEVIN DYNAMICS

Barth and Schlick10,30and Sandu and Schlick8 have sug-
gested the use of Langevin coupling as a device to da
numerical resonances associated with symplectic MTS p
tocols. Izaguirreet al.51 followed by using mild Langevin
damping to stabilize the integration at larger time steps.
assess the effects of the Langevin components of Algori
I, we studied the variation of outer and medium time ste
with a Langevin damping parameter ofg50.25– 5.0 ps21,
typical or smaller than values used in LN protocols.31 As
expected, Langevin coupling enhances stability as well
speedup relative to the Newtonian schemes; in gene
speedup ratios can be increased from 8.5 to 10.0, when c
pared to STS (Dt50.5 fs! simulations since the outer tim
step increases to about 12 fs. Typically, the STS results w
reproduced to within a 5% difference in all energy comp
nents for@Figs. 7~a! and 7~b!#.

To contrast the MTS-VV and MTS-PV protocols, wit
Langevin forces, we present a comparison of the total ene
components to the STS-PV mean energies in Fig. 7~c!. The
results in Fig. 7~c! are in basic agreement with the Newto
ian results forDt56 fs, indicating that MTS-PV yields a
smaller error relative to the STS results. For both scheme
Langevin damping withg50.25 ps21 is sufficient to stabi-
lize the long-term heating of the solvated protein system,
the Dt58 fs MTS simulation is stable.

For the PME protocols, speedup ratios beyond 10
possible by either raising the outer time step, with respec
a constant medium term work, or raising the stability limit o
the medium time step~Fig. 8!. We also found that the CPU
time is relatively insensitive to inner time steps ranging fro
0.5 to 1.0 fs, in agreement with the Newtonian results.

VI. SUMMARY

We have implemented an efficient multiple time st
force splitting scheme for biological applications that co
bines a symmetric Trotter factorization of the Liouville o
erator with the particle-mesh Ewald method in the wide
usedAMBER program. Our algorithm, implemented for bo
Newtonian and Langevin dynamics and tested on a la
water system and two solvated biomolecules, offers two n
numerical ingredients: the position-Verlet scheme rather t
velocity Verlet, and optimized Ewald parameters for t
MTS protocol. The PV scheme offers stability advantages
large medium time steps, as found empirically for nonline
functions and theoretically for a one-dimensional harmo
oscillator.37 The Ewald optimization of the screening param
eters b affects resulting speedups substantially. Result
MTS/PME speedups relative to a 1 fs single-step Verlet
gorithm are over 3 for Newtonian dynamics and 5 w
Langevin coupling withg55.0 ps21. These speedup factor
double relative to 0.5 fs STS simulations and thus refl

d
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FIG. 7. ~Color! Langevin MTS studies relative to STS-position-Verlet atDt51 fs. The deviation in energy components relative to the baseline STS
~cutoff56 Å! scheme for the water~a! and solvated DNA~b! system are shown (g55.0 ps21), as well as the deviations for the solvated protein~c! for
MTS-position-Verlet and MTS velocity-Verlet (g50.25 ps21, cutoff56 Å, Dt58.0 fs, andDtm54.0 fs!. All integration lengths were 500 ps. See Fig.
caption for abbreviation of energy terms.
nt

of
ion
lso
10
substantial improvement overAMBER implementations to
date. The stability limits areDt56 fs for Newtonian dynam-
ics andDt512 fs with Langevin coupling under the curre
splitting protocol.
Downloaded 07 Sep 2001 to 128.122.250.106. Redistribution subject to 
Overall, we have found that a position-Verlet version
the symmetric Trotter factorization has favorable integrat
properties, particularly at larger time steps. We have a
demonstrated that lowering the Ewald cut-off value from
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to 6 Å results in enhanced MTS speedup ratios by near
factor of 3. The most surprising but interesting finding in th
work is the relatively small outer time step limits in bo
Newtonian and Langevin MTS/PME protocols. This is u
like the MTS-Langevin LN scheme which allows outer tim
steps of order 100 fs in the absence of PME summati
~Barth and Schlick found stable time steps up to 120 fs
more10,30!.

As a remedy, we are investigating modified Ewa
core functions which alleviate the fast, near-field particle
teractions, in the reciprocal term,44 and other splitting
approaches.43 Such new Ewald-type splittings are expect
to offer advantages for MTS splitting strategies. In additio
we also suggest increasing the van der Waal cut-off value
using a switch function for the van der Waals interactio
and maintaining a second pairlist; applying the PME meth
to the van der Waals terms is an alternative.43

FIG. 8. Langevin CPU speedups relative to the baseline STS-PV~cutoff5 6
Å! scheme for the water~a! and solvated DNA~b! systems for cutoff56 Å
and (g55.0 ps21).
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