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ABSTRACT: Simulations of solvated macromolecules often use periodic lattices
to account for long-range electrostatics and to approximate the surface effects of
bulk solvent. The large percentage of solvent molecules in such models
(compared to macromolecular atoms) makes these procedures computationally
expensive. The cost can be reduced by using periodic cells containing an
optimized number of solvent molecules (subject to a minimal distance between
the solute and the periodic images). We introduce an easy-to-use program
“PBCAID” to initialize and optimize a periodic lattice specified as one of several
known space-filling polyhedra. PBCAID reduces the volume of the periodic cell
by finding the solute rotation that yields the smallest periodic cell dimensions.
The algorithm examines rotations by using only a subset of surface atoms to
measure solute/image distances, and by optimizing the distance between the
solute and the periodic cell surface. Once the cell dimension is optimized,
PBCAID incorporates a procedure for solvating the domain with water by filling
the cell with a water lattice derived from an ice structure scaled to the bulk
density of water. Results show that PBCAID can optimize system volumes by 20
to 70% and lead to computational savings in the nonbonded computations from
reduced solvent sizes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22:
1843–1850, 2001
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Introduction

S tate-of-the-art molecular dynamics (MD) and
Monte Carlo simulations for biomolecules rep-

resent solvent molecules explicitly for accurate
modeling of equilibrium properties and sampling
of conformations. Solute macromolecules, although
principally affected by nearby solvent molecules, re-
quire a sufficiently large solvent layer to eliminate
artifacts associated with the absence of bulk solvent.
In periodic boundary conditions (PBC) and particle-
mesh Ewald (PME) methods for long-range interac-
tions, in particular,1, 2 additional solvent molecules
are required to fill the volume of the periodic cell;
the periodic cell is then translated and/or rotated
symmetrically along the defining lattice vectors to
fill one (PBC) or more (PME) layers of space-filling
polyhedra. Both PBC and PME methods can suf-
fer from the artificial periodicity when small peri-
odic domains are used.3 For example, an alanine
polypeptide (18 Å size) simulated with PME was
recently reported to be superficially stabilized in an
α-helical geometry by a regular periodic cube with
a 30 Å edge.3 Solvated cells with solute-image dis-
tances larger than those discussed above can also
suffer from artifacts if the solute rotates to align one
of its longer axes along a shorter periodic cell axis.

The computational cost of simulating such large
periodic cells is considerable because a large per-
centage of the system size reflects solvent atoms;
thus, it is important to reduce the cell size as much
as possible while maintaining a reliable model.
Mezei has shown that optimal solute rotations can
increase the minimal distance between periodic im-
ages, thus permitting the periodic cell size to be
reduced.4 The associated decrease in the cell vol-
ume and solvent number has been estimated to be
≈10–30%, leading to even greater overall compu-
tational savings (because cost scales approximately
as n1.5, where n is the number of atoms). The pro-
cedures described by Mezei (as well as protocols to
optimize solute placement in a spherical droplet5)
are included in the molecular simulation support
package SIMULAID (available from http://fulcrum.
physbio.mssm.edu/~mezei/).

Here we introduce new variations to increase the
efficiency of the periodic cell optimization methods
pioneered by Mezei and introduce new capabilities
to biomolecular simulation. In contrast to SIMU-
LAID, which explicitly calculates all solute/image
distances, our program PBCAID adopts the efficient
procedure of limiting the calculations to the solute’s
surface atoms and computing distances between

these surface atoms and the faces of the periodic
cell. We also limit rotations to the periodic cell ver-
tices (i.e., not atoms), and can model seven known
space-filling periodic cells, as shown in Figure 1.
In addition to optimizing the periodic cell dimen-
sion, PBCAID includes a protocol for solvating the
cell with water using an ice lattice scaled to repro-
duce the bulk density of liquid water. PBCAID’s
optimization algorithm is simpler and, hence, more
efficient for a given periodic shape, and allows users
to choose the most optimial or suitable domain for
the application at hand. Future versions of PBCAID
might expand the target optimization function and
address the issue of reducing simulation artifacts
due to the use of periodic cells.

Method

PROGRAM OVERVIEW

The choice of periodic domain shape depends on
two factors. The domain must suit the long-range
energy approximation used (e.g., PME methods
prefer simple integer lattices, such as rectangular
prisms and rhombic dodecahedron). At the same
time, the domain and embedded model should lead
to an overall efficient protocol (i.e., the smallest
system size) and not introduce artifacts (i.e., align-
ment of dipolar moments). As previously shown,4

the solute orientation inside a periodic cell can be
optimized to minimize the periodic cell volume
while simultaneously maximizing the minimum
solute/image distance. The minimum solute/image
distance Dij′ for a given orientation is defined as
the minimum of all atom pair distances between the
solute and all images generated by rotating and/or
translating the primary cell through its periodic
transformations (see Fig. 2, top). During the course
of SIMULAID’s optimization of the solute rotation,
the user has an option to discard internal atoms (de-
fined as three- and four-bonded atoms). The option
to discard internal atoms results in a 2D-limiting
surface to the 3D-macromolecule; it can be empiri-
cally shown that n2/3 atoms are retained where n is
the number of atoms. The distance calculations of
SIMULAID are thus of order O(n4/3).

In practice, the minimum solute/image distance
is obtained for atom pairs at or near the surface
of the solute. PBCAID thus enhances efficiency by
defining the surface atoms of the solute using a
spherical grid. The spherical grid is generated with
latitude/longitude lines spaced at regular intervals,
such as m = 5◦. Within each solid angle formed
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FIGURE 1. Space-filling polyhedra included in PBCAID. The number of vertices for each domain is indicated.

by this grid, only one atom with the largest radial
distance from the origin is identified as a surface
atom for our calculations. The total number of sur-
face atoms is equal to (360/m) · (180/m). Thus, for
a 5◦ grid interval, no more than 2592 atoms are used
to define the surface. This discretization of the solute
surface reduces the computational size significantly
without sacrificing accuracy.

The efficiency of the optimization procedure can
be further improved by computing only the mini-
mal distance to the face of the periodic cell, rather
than the distance to the image atoms. The dis-
tances Dij′ between any solute atom i and any image
atom j′ are of the form: �Dij′ = �Dij + �T, where �Dij is
the vector from atom i to j in the solute, and �T is
a transform vector defining the image cell (Fig. 2,
top). The distance �Dij′ satisfies the triangle inequal-
ity: �Dij′ ≥ �DAi + �DBj′ ≥ 2 �Dmin, where �DAi is the
minimum distance from atom i to the face of the
cell closest to atom j′, and �DBj′ is the correspond-
ing distance for the face closest to atom j′ within

the transformed image. We define �Dmin as the mini-
mum distance from any surface atom of the solute
to any face of the periodic cell; thus, �Dmin ≤ �DAi

for any distance measured between an atom i and
any face of the periodic cell. Computing Dmin is an
O(αn) procedure, where α is the number of faces
of the periodic cell. Because α is a constant typi-
cally 100 times smaller than the number of atoms,
this procedure is more efficient than the O(n4/3)
procedure used by SIMULAID. In sum, our calcula-
tion optimizing the solute/image distances involves
computing distances using only surface atoms and
computing the minimal distance to the face of the
periodic cell, rather than the image atoms.

A user-specified distance Dtarget ≤ Dmin defines
the minimal distance between the solute and the
faces of the periodic cell that we tolerate (e.g., 10 Å
water layer); the initial cell size is also determined
by the sum of Dtarget and the solute projection along
the three orthogonal axes. PBCAID rotates only the
periodic cell vertices, indicating that no more than
24 coordinates need to be rotated, further reducing
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FIGURE 2. Illustration of the vectors and distances used in developing the PBCAID algorithm. Top: An irregularly
shaped solute (shaded area) is indicated in an octagonal cell, approximating a 2D projection of the truncated
octahedron. Atoms i and j, and the corresponding image atom j′ (at upper right) are shown, with vectors indicating
the transformations and distances between selected points. Bottom: Vertices (vk, vl, and vm) and vectors (�a, �b, and
(�ri − �vl)) as defined in the text are used to calculate the distance D(i, f) form atom i to a face f of the periodic cell.
The relationship between these vectors and vertices for a hexagonal face (resembling the hexagonal prism or
elongated dodecahedron) is shown.

the computational cost. After the optimal cell ro-
tation is obtained by minimizing Dij′ , the inverse
of the optimal rotation matrix specifies the optimal
rotation to apply to the solute, with respect to the
original cell orientation.

OPTIMIZATION DETAILS

Let vk be the coordinates of a vertex of the
cell; for a given periodic domain, there are K ver-

tices. K ranges between 6 (for the triangular prism)
to a maximum of 24 (truncated octahedron); see
Figure 1. The orientation of the periodic cell is de-
fined by the quaternion rotation matrix R(e0, e1,
e2, e3):

R(e0, e1, e2, e3)

=

 e2

0 + e2
1 − e2

2 − e2
3 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)
2(e1e3 + e0e2) 2(e2e3 − e0e1) e2

0 − e2
1 − e2

2 + e2
3



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where e0, e1, e2, and e3 satisfy the relation that∑
i e2

1 = 1 and are known as Euler (or Cayley–
Klein) rotation parameters.6 The set of rotated cell
vertices �V is related to the initial set �V0 by:

�V = R(e0, e1, e2, e3) �V0. (1)

The distance between any solute surface atom i
(i ∈ S), and a face f of the periodic cell ( f ⊂ F), can
be defined by three vertices of the face: vf . We define
vectors �a and �b as: �a = �vk − �vl, �b = �vm − �vl, where �vk,
�vl, and �vm are vectors from the origin to the three
vertices of {vf }. The cross product between �a/|�a| and
�b/|�b| thus defines the unit normal to the face (Fig. 2,
bottom). The distance D(i, f ) between atom i and the
cell face f is the projection of the unit normal vector
against the vector from any vertex of the face f to
atom i:

D(i, f ) =
( �a

|�a| ×
�b
|�b|
)

· (�ri − �vl), (2)

where �ri defines the coordinates of solute atom i.
The minimal distance Dmin is the minimum distance
between all atoms i and all faces f for a given ori-
entation R(e0, e1, e2, e3): Dmin = mini∈S, f⊂F D(i, f ). For
any particular rotation R(e0, e1, e2, e3), though there
is only one value of Dmin, more than one surface
atom may have values of D(i, f ) = Dmin.

We optimize the scoring function F(e0, e1, e2, e3,
a, b, c):

F = σ1

(
Dmin − Dtarget

Dtarget
− δ

)2

+ σ2

(
3∑

i = 0

e2
i − 1

)2

+ σ3
(
V(a, b, c)

)
(3)

where δ is a tolerance (≈0.01); {ei} for i = 0, 1, 2, 3 are
the quaternion rotation parameters; V(a, b, c) is the
volume of the periodic cell for the dimensions a, b,
and c; and σ1, σ2, and σ3 are adjustable parameters
(we use 108, 108, and 1, respectively). Note that Dmin,
a function of all the distances D(i, f ), is also implic-
itly a function of R(e0, e1, e2, e3); thus, the distances
D(i, f ) are implicitly considered in the scoring func-
tion. The three terms of the objective function F are
designed to successively reduce the cell dimensions
towards target distance Dtarget, restrain the quater-
nion parameters to represent a rotation matrix, and
minimize the overall volume of the periodic cell.

Other formulations of the objective scoring func-
tion can be used; for example, the position of the
cell center might be optimized or the adjustable pa-
rameter σ3 might be scaled to reflect an intrinsic
dependence on the system size (M. Mezei, personal
communication). The quaternion rotation parame-
ters can also be constrained through a separate

Lagrange multiplier method (M. Mezei, personal
communication), suggesting that random seeds can
be used to initialize different optimization cycles
and efficiently search the periodic cell rotations.

We use the simplex method for this discrete opti-
mization problem.7 For an n dimensional optimiza-
tion problem, the simplex method requires n + 1
initial conditions. These initial conditions include
the initial orientation and dimensions of the cell,
which are defined by the four quaternion rotation
parameters ei and the three lengths a, b, and c. The
rotations specifying the initial quaternion parame-
ters are defined randomly.

After the optimization is complete, we apply R−1,
the inverse of the current rotation matrix R, to the
vertices �V and the solute atoms �X to define the opti-
mal solute orientation: (R−1 �V, R−1 �X) = ( �V0, R−1 �X),
which follows from eq. (1).

Initially, we place the solute in the center of the
cell. Although the solute orientation is not varied
during the optimization procedures, the program
has the option to initialize the solute orientation
using either the original solute orientation or an
orientation defined such that the largest gyration di-
rection (or the principal axis) is oriented along the
x-axis. The initial cell dimensions are set to be the
minimal and maximal dimensions of the molecule
along each coordinate axis plus Dtarget, the requested
minimal distance to the cell boundary. The cell faces
are defined by the chosen periodic domain, from
among the seven illustrated in Figure 1.

SOLVATING PERIODIC CELLS

The solvation procedure uses the Ih phase hexag-
onal ice structure.8 An ice lattice is generated by
symmetry operations applied to a four-oxygen sub-
unit of the hexagonal ice cell; both translations and
rotations are applied to this four-oxygen subunit to
regenerate the hexagonal ice lattice. Because water
(1 g/cm3) is denser than ice (0.93 g/cm3), the oxy-
gen/oxygen atomic distance of the hexagonal ice
structure (2.75 Å) is scaled to be 2.6881 Å, to repro-
duce the bulk density of water. Hydrogen atoms are
added along the vectors connecting adjacent oxygen
atoms in the hexagonal ice cell. Additional proce-
dures are required to reproduce the bulk density
of water: small random rotations and translations
(not exceeding 12◦ and 2 Å, respectively) are applied
to each lattice cell, perturbing the lattice periodic-
ity. Because the rotations and translations can place
oxygen molecules outside the cell, an additional
layer of ice cells is generated outside the periodic
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TABLE I.
Optimization of Three Different Macromolecular Systems for: 14-bp DNA, TATA Element DNA Bound to the
TATA-Box Binding Protein (TBP), and a DNA Primer/Template Segment Bound to Polymerase β (pol β).

Periodic Initial Volume/ Final Volume/ Percent Min.
Solute Cell Water Number Water Number Decrease Distance

[14 bp DNA] sqdod (F) 388763 / 13007 110992 / 3731 71 20.6
hex (B) 172784 / 5775 112892 / 3778 35 22.3
cube (A) 156505 / 5226 129727 / 4299 17 21.8
troct (G) 306559 / 10245 177628 / 5970 42 22.4
rhomb(D) 281593 / 9406 204592 / 6847 27 25.3

[DNA/TBP] elongd (E) 579458 / 19371 315428 / 10528 46 21.1
rhomb (D) 434830 / 14517 326268 / 10908 25 20.9
troct (G) 473383 / 15869 338716 / 11348 28 22.1
sqdod (F) 1077302 / 36102 339624 / 11357 68 21.0
hex (B) 478801 / 16001 386555 / 12836 19 25.4
cube (A) 507102 / 16965 406410 / 13626 20 21.9

[DNA/pol β] elongd (E) 880248 / 29413 403459 / 13490 54 20.3
rhomb (D) 684528 / 22874 403855 / 13495 41 20.4
cube (A) 683476 / 22868 412971 / 13805 40 21.4
troct (E) 745220 / 24900 434132 / 14507 42 22.2
sqdod (F) 1434416 / 47935 447299 / 14979 69 19.7

For each system, the periodic cells are ordered by increasing final volume (given in Å3). The minimum solute/image distance (min Dij′ )
indicated in the last column is given in Å for the optimized system. The space-filling polyhedra are labeled as in Figure 1.

box to permit the random rotations and translations
to return oxygen atoms to the periodic box.

After the full lattice is generated, oxygen atoms
are tested to exclude those placed outside the pri-
mary periodic cell. The program incorporates a
procedure to exclude waters that violate a user-
specified distance from the solute atoms; however,
packages like CHARMM9 or AMBER10 possess so-
phisticated exclusion algorithms, and users may
choose to resort to those routines instead.

Results and Discussion

The algorithms described are collected in
our software package, PBCAID (http://monod.
biomath.nyu.edu/index/software/PBCAID/index.
html). Table I details results for three systems:
a 14-bp DNA containing an A-tract variant of
the adenovirus major late promoter TATA-box
(888 solute atoms),11 human TATA-box binding
protein (TBP) complexed with the AdMLP TATA
element (3952 solute atoms),12 and human DNA
polymerase β (pol β) complexed with primer and
template (6418 solute atoms).13 For each system,
we describe the results of optimizing several
space-filling shapes. Examples of the initial and

final states of the two most efficient periodic shapes
are shown in Figure 3 for each system, indicating
the solute orientation and the water molecules
placed by our solvation procedure.

In each case, the solvent layer distance Dtarget

is set to 10 Å. The solutes are initially oriented
by aligning the principal geometric axis along the
x-axis and the next-largest axis along the y-axis. We
see that the percent decrease in the number of wa-
ter molecules is greater than 10%, indicating savings
on the order of more than 1000 water molecules. If
we assume that the computational cost scales as n1.5,
where n is the number of atoms, the optimized cells
can lead to an increase of efficiency of 40% or more
relative to the inital solute orientation (assuming a
final volume decrease of 30%).

Traditional periodic cell shapes, such as the
hexagonal prism for DNA, have often been used
in simulations; such shapes yield smaller final vol-
umes, and may be preferred if artifacts (such as
alignment of dipolar moments) are not significant.
Interestingly, the cube (rectangular prism) often
used in simulations of DNA with PME can be opti-
mized to be only slightly worse than the hexagonal
prism, yielding a final volume 16% larger.

The final choice of a candidate periodic domain
relies on several factors, such as the method used
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FIGURE 3. Examples of optimized polyhedra of three systems: 14-bp DNA, DNA/protein complex of the TATA element
bound to the TATA-box binding protein (TBP), and DNA/protein complex of a primer/template DNA bound to
polymerase β (pol β). For each system, examples are shown for the initial and final size of the two most efficient
polyhedra. In each case, we show the solute molecule in the initial and optimized orientation, and the water molecules
placed within the cell by our solvation procedure. See Table I for cell and percent decrease following optimization.

for calculating the long-range nonbonded interac-
tions, the desired thermodynamic ensemble, and
whether or not center-of-mass rotations are sup-
pressed. Still, the computational costs associated
with choosing nonoptimal cells for particular meth-
ods may be mitigated by our optimization meth-
ods. For example, the squashed dodecahedron, like
the rhombic dodecahedron, is derived from close-
packing of spheres,14 suggesting that this domain
has a comparable best volume/inscribed sphere ra-
tio like a rhombic dodecahedron, and should be
very suitable to globular proteins. Although most
globular proteins are clearly not ideally spherical,
quasi-spherical periodic cells are still preferred if
all possible orientations of the solute macromole-

cule are sampled. Practical considerations of non-
idealties and the limited sampling available from
most simulation techniques suggests that the use of
quasi-spherical periodic cells must be balanced with
other periodic cell shapes.

Alternatively, the use of some of the periodic cells
we describe here may have special benefits, because
some of the periodic systems require translational
and rotational transforms (such as the squashed
dodecahedron). Interestingly, the two ends of the
squashed dodecahedron composed of parallelo-
grams are identical; this identity indicates that the
images bounding these two ends have the same
slip plane translations and rotations, and thus do
not have inverse images. Inverse images indicate

JOURNAL OF COMPUTATIONAL CHEMISTRY 1849



QIAN, STRAHS, AND SCHLICK

that for each image, there is another image whose
location is described by the opposite translation/
rotation. Because the positions of the inverse image
atoms are identical to the first image, several mod-
eling programs (such as CHARMM9) use only one
of a pair of inverse-related images to calculate the
periodic domain, resulting in a computational sav-
ing. While the lack of these inverse images leads
to increases in computational time, the periodic-
ities associated with the squashed dodecahedron
are quite different from the artificial periodicities of
standard domains, and may have interesting prop-
erties.

Finally, we note that Bekker has described an in-
teresting alternative to optimizing solute orientation
within periodic polyhedra.15 In Bekker’s approach,
all space-filling polyhedra are equivalent, because
they fill three-dimensional (3D) space. Solute orien-
tation can be optimized to determine the most effi-
cient packing by placing four copies of the solute’s
center of mass at the vertices of a tetrahedron,
and then optimizing the volume of the tetrahedron.
Bekker suggests using this optimized tetrahedra to
tessellate 3D space with cubes; we note that other
space-filling polyhedra work equally well and can
be used.

PBCAID, written in the C++ programming lan-
guage, uses the OpenGL graphics library to allow
interactive control of the periodic cell optimization
process. Future versions of PBCAID may include
routines for different alignments of periodic cells,
and alternative functions to treat optimally molec-
ular systems with macroscopic dipoles.
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