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ABSTRACT The cooperative folding of pro-
teins implies a description by multibody potentials.
Such multibody potentials can be generalized from
common two-body statistical potentials through a
relation to probability distributions of residue clus-
ters via the Boltzmann condition. In this explor-
atory study, we compare a four-body statistical
potential, defined by the Delaunay tessellation of
protein structures, to the Miyazawa–Jernigan (MJ)
potential for protein structure prediction, using a
lattice chain growth algorithm. We use the four-
body potential as a discriminatory function for
conformational ensembles generated with the MJ
potential and examine performance on a set of 22
proteins of 30–76 residues in length. We find that the
four-body potential yields comparable results to the
two-body MJ potential, namely, an average coordi-
nate root-mean-square deviation (cRMSD) value of 8
Å for the lowest energy configurations of all-a pro-
teins, and somewhat poorer cRMSD values for other
protein classes. For both two and four-body poten-
tials, superpositions of some predicted and native
structures show a rough overall agreement. Formu-
lating the four-body potential using larger data sets
and direct, but costly, generation of conformational
ensembles with multibody potentials may offer fur-
ther improvements. Proteins 2001;43:161–174.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

Statistical potentials derived from simplified representa-
tions of protein residues are widely used in protein struc-
ture prediction. Because of rapid growth of protein struc-
tural databases, many of the current residue potentials
are either derived directly from the protein database1–3 or
indirectly by having the parameters of the chosen func-
tional forms determined by the crystal structures.4 These
statistical potentials have found wide-ranging applica-
tions in the evaluation of structure/sequence compatibility
of proteins,5,6 homology modeling,7 and protein folding
simulations.8–10 Currently, most statistical potentials are
two-body, such as the Miyazawa–Jernigan1,2 (MJ) and
Sippl3 potentials. As a larger structural database emerges,
the development of multibody potentials—to model the

cooperative interactions in native proteins—becomes fea-
sible.

While two-body potentials are adequate for most con-
densed systems, the importance of multibody potentials
increases for dense molecular systems such as compact
native protein structures. Multibody potentials may help
improve our understanding of the cooperativity of protein
folding process and the regularity of protein structures.
Recent protein folding studies with multibody potential
terms show that they play a role in stabilizing protein folds
and in enhancing cooperativity of the folding/unfolding
process. For example, Liwo et al.4,11 have introduced three
and four-body correlation terms in their united-residue
potentials, which arise from the expansion of mean poten-
tials. Four-body hydrogen bonding correlation terms have
also been introduced phenomenologically by Kolinski and
Skolnick8 in their lattice Monte Carlo protein structure
prediction algorithm.

To gain a better understanding of multibody potentials,
we formulate multibody mean potentials in terms of the
potentials of mean force in statistical mechanics.12 This
formulation implies that the multibody contact energy and
probability of observing clusters of residues are generally
related by the Boltzmann condition. Furthermore, lower-
order mean potentials can be derived from the higher-
order expressions. Following the methodology of statistical
functions,3,13 such mean potentials can be approximately
derived from the protein structural database. Since they
yield a greater amount of information about many-body
correlations in compact molecular systems, multibody
potentials may better characterize native proteins. How-
ever, deriving these potentials requires large protein struc-
tural databases for accurate formulations.

In this work, we examine a four-body potential devel-
oped by Tropsha and Vaisman and coworkers.14 By using a
threading technique, these researchers showed that their
statistical potential can discern correct sequence/structure
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matches better than two-body statistical potentials.15,16 In
the present investigation, we discuss the evaluation of this
potential and its implementation for lattice protein folding
using a chain growth algorithm. The evaluation is per-
formed by means of a statistical geometrical method in
which the four-body residue neighbors are systematically
enumerated using the Delaunay tessellation technique.
Four-body energies are then related to the frequencies of
observed four-residue clusters in protein structures via the
Boltzmann relation. Our evaluation shows that while most
terms have attained their saturation values, some have
not converged, indicating that a larger structural database
is needed to determine this potential more accurately.

We compare the performance of the four-body potential
in protein structure prediction to the two-body MJ poten-
tial using a lattice Ca protein model. On the (311) cubic
lattice, we generate configurational ensembles for proteins
with our recently implemented chain growth algorithm.17

We have shown that this variant is effective for calculating
conformational and thermodynamic properties of several
test proteins.17 In this article, we examine the quality of
the two and four-body potentials using coordinate root-
mean-square deviation (cRMSD) between native and pre-
dicted structures and energy/cRMSD scatter plots. As the
computational cost in generating ensembles using the
four-body potential is currently prohibitive, we can only
apply it to the conformational ensembles generated with
the two-body potential. We find that the shapes of the
energy/cRMSD plots for the two and four-body potentials
are correlated for low-energy and low cRMSD configura-
tions. The two and four-body energies are generally weakly
correlated.

For a set of 22 proteins, the predicted cRMSD values by
the MJ potential are about 8 Å for a proteins and some-
what poorer, around 9 Å, for b and a/b protein classes.
Superpositions of predicted and native structures show
rough overall agreements for some proteins. Our four-body
potential yields comparable results. Improving the four-
body potential requires larger protein data sets than used
in the present study. Furthermore, a more sophisticated
protein model that uses finer representation for each
residue may be required. Thus, although the present
four-body potential may be adequate for protein fold
recognition, further improvements are necessary for more
accurate ab initio structure prediction.

STATISTICAL POTENTIALS

We begin by presenting the modified MJ potential, the
methodology of the four-body statistical potential, and a
theoretical formulation of multibody potentials in general.
The derivation shows that multibody energies are gener-
ally related to the probability distributions of observing
proximity of residues via the Boltzmann relation. It also
shows how different levels of multibody potentials are
related.

Multibody Potentials of Mean Force

Statistical potentials are derived based on the assump-
tion that “contact” energies between amino acid residues

in native proteins are related to their observed frequency
in a representative structural database. Since energies are
computed from a set of folded structures, they are more
appropriately interpreted as a mean, rather than as bare
interaction energies. These mean energies are related to
potentials of mean force in statistical mechanics, obtained
by ensemble averaging over equilibrium states.13,18 In
structure-derived potentials, ensemble averaging is effec-
tively replaced by averaging over a set of representative
protein structures. Critical assessment of this interpreta-
tion using a simple two-residue hydrophobic–hydrophilic
(HP) protein model shows that it yields a correct ranking of
contact energies, but their absolute values are imprecise.18

The following discussion presents two-body and multibody
potentials as potentials of mean force.

For a protein chain with N residue interaction centers,
we define the n-body potential of mean force w(n) for the
residue-cluster (i1i2. . .in) as

wi1i2 . . . in
~n! 5 2kBT ln@Fi1i2 . . . in

~n! /Ri1i2 . . . in# (1)

where Ri1i2. . .in
is the reference state (defined below) and

F(n) is the probability density of finding the residues in a
cluster:

Fi1i2 . . . in
~n! 5E dV~N 2 n! exp~2bEN!/E dV~N 2 1! exp~2bEN! (2)

where the temperature parameter b 5 1/(kBT), the vol-
ume element dV(N 2 n) 5 (dV1dV2. . .dVN)/
(dVi1

dVi2
. . .dVin

), and EN is the total energy of the protein.
The n-body potential is defined with respect to a “reference
state” Ri1i2. . .in

determined by the specific problem of inter-
est. Moreover,

Fi1i2 . . . in
~n! 5 Ri1i2 . . . in (3)

when the mean potential wi1i2. . .in

(n) 5 0.
It is useful to separate correlated from uncorrelated as-

pects of many-body interactions. The reference state is often
chosen to be the uncorrelated state where there are no
interactions between residues. If the interaction energy EN

vanishes, Fi1i2. . .in

(n) in eq. 2 becomes a product of the uncorre-
lated, single residue properties. Mathematically, we write
Ri1i2. . .in

, )a
n Ria

, where Ria
is the frequency of occurrence of

individual residues. Consequently, the mean potential wi1i2. . .in

(n)

is interpreted as a measure of the nonrandom nature of
residue distributions, or contacts, in protein structures. The
correlations among the residues in the cluster (i1i2. . .in) are
determined by the temperature and energy function EN

through the canonical average. A major simplifying assump-
tion of statistical potentials is that the probability density
Fi1i2. . .in

(n) is determined by the observed frequencies of the
residue cluster (i1i2. . .in) for n 5 2, 3, 4, . . . , instead of
evaluating the expression in eq. 2.

Multibody mean potentials contain information about
correlations between residue pairs, triplets and quadru-
plets, and so on, in the system. In general, mean potentials
wi1i2. . .in

(n) for different n are related through probability
densities:
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Fi1i2 . . . in
~n! 5E dVn 1 1Fi1i2 . . . in 1 1

~n 1 1! (4)

By using the definition for the distribution functions, we
can relate the different levels of multibody mean poten-
tials, wi1i2. . .in

(n) for n 5 2, 3, . . . , as follows:

wi1i2 . . . in
~n! 5 2kBT lnFE dVn 1 1

Ri1i2 . . . in 1 1

Ri1i2 . . . in

exp~2bwi1i2 . . . in 1 1
~n 1 1! !G

(5)

This formula provides the recipe for determining lower-
order potentials in terms of higher-order potentials; e.g.,
wi1i2i3

(3) is derived from wi1. . .i4

(4) and wi1i2

(2) from wi1i2i3

(3) . Because
of molecular packing, two and three-body correlations are
significant even for disordered monatomic liquids. Higher-
order (correlated) potentials are expected to be important
for folded protein structures whose packing density re-
sembles that of crystals. Still, they are more difficult to
evaluate than two-body potentials. From a practical view-
point, estimating lower-order potentials directly from struc-
ture database may lead to more accurate results than
using eq. 5, especially when the higher-order potentials
cannot be accurately determined from databases.

Scheraga and coworkers recently considered multibody
terms in their interaction potentials for residues derived
as a mean potential (cumulant) expansion.11 These investi-
gators argued that, in the leading approximation, the
four-body contributions are similar to the four-body cooper-
ative hydrogen bonding interactions introduced by Kolin-
ski and Skolnick.8 Multibody terms derived in this way are
related to, but different than, the mean potentials wi1i2. . .in

(n)

derived here. In the following discussion, we consider the
use of two- and four-body potentials of mean force esti-
mated from protein structural databases.

Two-Body Potential

From eq. 1, the two-body contact energies {eij} are
related to the frequency of residue pairs i, j in the protein
structural database via the Boltzmann’s condition:

eij 5 2kBT ln@Fij/Rij# (6)

where Fij is now the observed contact frequency for the
pair i, j in protein database and Rij is its corresponding
reference state.1,3,19 Contact energies {eij} calculated with
the random reference state reflect the residual nonrandom
preferences for residue/residue contacts in proteins; ener-
gies calculated with respect to a solvent-mediated refer-
ence state are related to the preferences for residue/
residue over residue/solvent contacts. The MJ energies are
derived using a solvent-mediated reference state and are
correlated with experimental hydrophobicities of resi-
dues.1

For this work, we use a slightly modified version17 of the
MJ potential in which the interaction matrix is modified by
a simple shift: eij 4 Mij 1 2, where Mij is the MJ
interaction matrix2 as reevaluated in 1996; the energies
are expressed in kBT0 units, where T0 is the room tempera-
ture. Our simple shift weakens the attractive energies

between the residues, and they are effectively similar to
the interaction energies derived by Skolnick and cowork-
ers.20,21

We choose a simple square-well function to parameter-
ize the residue/residue potential. The attractive interac-
tions are represented by the shifted MJ energies {eij}. For
each i and j pair representing two residues, with distance
separation Rij, our potential has the form

uij~Rij! 5 H er if Rij , 4Å
eij if 4Å # Rij # 6.5Å
0 if Rij . 6.5Å

(7)

where er is a residue-independent finite repulsive energy,
and eij is modified MJ energy. The short-range repulsive
energy ensures minimal overlap between protein cores.
The value of er is set simply as: er 5 5 max{ij}ueiju; we found
results to be insensitive to the precise value of er within a
wide range.

Four-Body Potential

As introduced earlier, multibody statistical potentials
are conceptually similar to two-body analogues, although
the methodology used to evaluate them can vary. For
two-body potentials, residues that are within a prescribed
radius Rcut (e.g., ;7 Å) from the reference residue are
typically considered neighbors. This procedure is inad-
equate for multibody contacts because it leads to over
counting of multibody contributions, since within a given
cutoff radius the number of possible multibody (interac-
tion) terms is larger than allowed geometric nearest
neighbors. Thus, a rigorous definition of contact neighbors
is required to relate contact energies to residue neighbors.
Tropsha and Vaisman and coworkers14 have introduced a
novel multibody potential derived from computational
geometry analysis of protein structures. In their scheme,
the united residues (typically represented by Ca atoms or
side chain centroids) are used to tessellate protein struc-
tures using the Delaunay triangulation technique22 (Fig.
1). The shape and volume of a tessellated protein structure
are defined by the aggregate of tetrahedrons whose verti-
ces are Ca centers. The vertices of the tetrahedrons define
unique four-residue clusters, which are the basis for the
computation of the four-body statistical potential.

The following discussion presents the four-body poten-
tial and the methodology for its determination. We reevalu-
ate the potential with a larger protein data set and show
the effects of data set size on the results.

Tessellating protein structures

The closest neighbors for each point in a set of arbitrary
points in space can be identified with the aid of Voronoi or
Delaunay tessellation technique.22 A Voronoi tessellation
of a set of points or sites in three dimensions defines an
aggregate of polyhedra or convex polytopes enclosing the
points. The faces of a polyhedron are boundaries defined by
planes perpendicular to the lines joining a point and its
nearest neighbors; in 2D, the boundaries are lines (Fig. 1).
Thus, a region in a Voronoi polyhedron is closest to the
point inducing the tessellation than to the points in other
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polyhedra. The Delaunay triangulation is defined by a set
of triangles formed by lines joining the points that share a
boundary. Thus, Delaunay tessellation is mathematically
the dual of Voronoi tessellation. Figure 1a illustrates the
Voronoi and Delaunay tessellations for a set of points in
two dimensions.

In 2D, the Delaunay triangles partition the area occu-
pied by the points, which may be viewed as an aggregate of
three-point nearest-neighbor clusters. Similarly, in 3D the
Delaunay tessellation produces an aggregate of four-body
clusters or tetrahedrons. Information about the distribu-
tion of these clusters helps characterize the geometric
properties of any system. Thus, tessellation techniques are
useful for analyzing irregular structures, such as disor-
dered crystals23 and proteins.24 Delaunay tessellation of
protein 2mhu using only the Ca is shown in Figure 1b. We
only use a simplified Ca representation of protein chains.

The statistical geometrical characterization of protein
structures can acquire physical meaning when the frequen-
cies of the residue compositions of the tetrahedrons are
related to residue contact energies through the Boltzmann
relation (see eq. 1). Our analysis ignores the presence of
solvent molecules, metal ions, heme groups, and other
molecules complexed with proteins. We use the program
developed by Barber et al.25 to tessellate native proteins,
which gives all possible four-body Ca neighbors in protein
structures. The upper bound for the algorithmic complex-
ity of generating Voronoi or Delaunay tessellations is
estimated to be N(D 1 3)/2, where N is the number of points
and D is spatial dimension.26

More generally, the tessellation technique as described
above can be used to define two-, three-, and four-body
statistical potentials. However, the discriminatory power
of the two and three-body potentials derived in this
manner will have to be tested, for example, using thread-
ing or decoys before implementing them in folding simula-
tions. As discussed earlier, we expect the four-body poten-
tial to discern native structures better than the two- and
three-body potentials. A combination of multibody poten-
tials may work even better.

Evaluating the four-body potential from
representative protein structures

Following Tropsha and Vaisman and colleagues,14 the
four-residue contact energies Qijkl

a are computed using the
formula

Qijkl
a 5 2kBT ln@fijkl

a /pijkl# (8)

where fijkl
a is the frequency of residue composition (ijkl ) in

a set of protein structures, pijkl is the expected random
frequency for each combination (ijkl ), and superscript a
denotes the type of four-body contact used (defined below).
This expression corresponds to n 5 4 in eq. 1. (Tropsha
and Vaisman and colleagues define a four-body score using
base 10 logarithm instead of the natural logarithm used
here; they also ignore the 2 kBT factor.) In addition,
four-body contacts of adjacent residues along the chain
backbone (e.g., consecutive residues i, i 1 1, i 1 2, i 1 3)
are distinguished from those contacts with nonsequential
vertices. We label the different quadruplet types by the
superscript a 5 0, 1, 2, 3, 4, denoting how many residues
are consecutive along the chain. Thus, for example, a 5 4
corresponds to all four residues adjacent along the chain (i
through i 1 3), and a 5 0 represents four indices, none of
which are nearest neighbors along the chain. Given a set of

Fig. 1. a: Voronoi (blue) and Delaunay (red) tessellations of N points
(black dots) in two dimensions where the triangles (ijk) form clusters of
near neighbors. b: Delaunay tessellation of the protein 2mhu, where the
vertices are Ca positions and four-residue (tetrahedral) clusters (ijkl) form
near neighbors.
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representative protein structures, the observed frequen-
cies fijkl

a and pijkl in eq. 8 are defined as follows:

fijkl
a 5

observed occurrences of type a ~ijkl! neighbors
total number for a type (9)

and

pijkl 5
4!

P
i 5 1

Naa

ti!

aiajakal (10)

where

ai 5
observed occurrences of amino acid type i

total number of residues in data set (11)

Here, Naa is the number of amino acid groups (20 if each
amino acid is a group, but less if subgroups are formulated;
see below) and ti is the number in each type. The observed
occurrences of (ijkl ) in fijkl

a are derived from Delaunay
tessellations of protein structures.

The frequencies fijkl
a are derived from a representative

protein data set of structures that spans various different
protein families or folds. This ensures that the computed
four-body energies are unbiased by over representation of
certain protein families. We use the nonredundant protein
database designed by Hobohm and Sander,27 which in-
cludes proteins with resolution of #2.5 Å, where no two
proteins have more than 25% sequence identity. This list,
released on January 8, 1999, includes 840 proteins (http://
www.sander.embl-heidelberg.de/pdbsel/). We further
screened these proteins to exclude chains with unusually
large gaps between adjacent Ca (more precisely, with gaps
of .4.12 Å); this can occur by limited X-ray resolution for
certain residues. The final set of 666 proteins was used to
calculate the four-body potential according to eq. 8.

To compute fijkl
a , we include only those tetrahedrons

whose edge lengths are less than a specified cutoff value
Rcut (we use 8 Å here); Rcut is dictated by the range of
physicochemical interactions (the typical range for two-
body potentials is 6–7 Å). We found that smaller cutoffs
lead to several quadruplet residue combinations (ijkl ) with
no representations. As larger protein data sets become
available in the near future, lower cutoff values might be
implemented. Detailed analysis of the distribution of
tetrahedron sizes shows that the percent of tetrahedrons
excluded by the distance filter could be substantial16

(.60% for Rcut 5 8 Å). Most relatively small tetrahedrons
are formed by hydrophobic residues in protein interiors,
and they contribute more to the four-body potential than
the large tetrahedrons found on the protein surface (Fig.
1b).

Since the available representative protein dataset is not
large, we group similar residues to reduce the number of
terms in the four-body potential. For two-body potentials,
this is not an issue since there are only 210 distinct residue
pairs (20 3 19/2 1 20). The four-body potential has 204 5
160,000 parameters in comparison. However, if we assume
that all four-residue clusters (ijkl ) that are related by

permutations are equivalent, the number of required
parameters is reduced to 8,855. Since this number is still
large,16 Tropsha and Vaisman and colleagues,15 after
Goldstein et al.,28 have considered reduced residue poten-
tials based on the following six residue types (letters) as
defined by George et al.29 from correlations between
residue mutation rates and Dayhoff matrices:

c 5 $cysteine%

f 5 $phenylalanine, tyrosine, tryptophan%

h 5 $histidine, arginine, lysine%

n 5 $asparagine, aspartic acid, glutamine, glutamic acid%

s 5 $serine, threonine, proline, alanine, glycine%

v 5 $methionine, isoleucine, leucine, valine%

The above residue categories have the following charac-
teristics: cysteine residues (type c) can form disulfide
bonds; f residues are aromatic; h residues are basic except
histidine; n residues are glutamic and aspartic acids and
their amide forms; s residues consist of hydroxyl (serine
and threonine) and other residues; and v residues are
mostly aliphatic. This reduction implies only 126 distinct
quadruplet residue compositions for each of the five a
types, or 630 parameters instead of 204. We adopt this
residue classification; other classifications have been
used.14

The four-body contact energies defined in eq. 8 are
presented in Figure 2, where Qijkl

a is plotted versus quadru-
plet residue composition (ijkl ) for quadruplet types a 5 0,
1, 2. Only these a types have Qijkl

a values that differ
significantly from zero or the random reference state. The
value of the potential for these types (which reflects that

Fig. 2. Four-body potentials of types a 5 0, 1, 2 are plotted as a
function of residue quadruplets in the order: cccc (1), cccf (2), ccch
(3), . . . , vvvv (126). Letters c, f, h, n, s, and v refer to six distinct residue
classes, as described in the text. The full list of 126 quadruplets
is available on our web site http://monod.biomath.nyu.edu/;hgan/
delaunay.html. For a 5 3, 4, the potentials are smaller in magnitude.
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nonrandomness of residue contacts) decreases as a in-
creases. Thus, nonbonded quadruplet configurations (a 5
0) contribute more significantly to the potential than those
types that have some bonded neighbors. This means that
nonlocal four-body contacts in protein structures are largely
nonrandom, unlike the contact terms with bonded neigh-
bors. The nonrandom terms of the four-body potential
should better discriminate protein-like from non-protein
like conformations. The near-zero likelihoods of connected
residue quadruplets is in agreement with analysis of
protein sequences which suggests that native sequences
are apparently random.30 For the a 5 0, 1, 2 types, the
quadruplets with two or more cysteine residues (residue
type c, the first 20 quadruplets in Fig. 2) have the largest
magnitudes compared with other residue combinations
(ijkl ). This result is consistent with two-body statistical
potentials where the cysteine–cysteine attractive energy
is large as well.2,31

We also test the convergence of the four-body potential
with respect to the size of the representative protein set.
The Qijkl

a function is evaluated using two data sets: 309
proteins based on Hobohm and Sander’s 1994 list versus
the 666 proteins from their 1999 list; we denote the
potentials generated thereby as Qijkl

a (309) and Qijkl
a (666),

respectively. For this comparison, we used a cutoff Rcut 5
11 Å, since the smaller data set requires a larger cutoff
value to ensure nonzero counts for all quadruplets. Figure
3 shows the ratio of their difference:

Rijkl
a 5 udQijkl

a /Qijkl
a ~666!u (13)

where dQijkl
a 5 Qijkl

a (666) 2 Qijkl
a (309). As shown in

Figure 3, most quadruplets (ijkl ) have small Rijkl
a values

(i.e., #0.05), but some values vary between 0.1 to 0.2.
Clearly, larger data sets are needed to produce better
convergence for the four-body potential. Unlike the four-

body potential, the two-body statistical potentials are not
sensitive to the size of available representative proteins.2

RESULTS AND DISCUSSION

The (311) cubic lattice and chain growth method for
generating protein conformations are briefly outlined un-
der Materials and Methods; detailed formulations are
given elsewhere.17 Since the use of the four-body potential
for ensemble generation is prohibitively costly due to
repeated tessellation of chain configurations at each step
of the chain growth process, we assess it on the fully grown
configurations generated by the two-body MJ potential.
We typically generate a million configurations for each
protein in the set of 22 small proteins examined in this
discussion. Simulations are performed on a 300-MHz
R12000 SGI Origin2000 computer at New York Univer-
sity. Sampling of a million configurations for a 30-residue
protein requires about 2 CPU h.

Criteria for Selecting Nativelike Conformations

Our objective is to predict the single configuration from
the ensemble that resembles the native structure as much
as possible. A lowest-energy criterion assumes that the
conformational entropy of native structures is small or
negligible. Alternatively, since the thermodynamics hy-
pothesis of protein folding implies that the free energy of
the native state is the lowest, we can choose the states that
contribute the most to the free energy expression. In the
chain growth algorithm,17 the free energy F , 2 kBT ln
¥LW(L, T), where W (L, T) is the statistical weight for
configuration L at temperature T. The state with the
highest weight W (L, T) corresponds to the lowest free
energy. We thus compare results of selecting native configu-
rations based on both lowest energies and highest statisti-
cal weights.

Energy/cRMSD Correlation Plots

The energy/cRMSD scatter plots for the proteins 2mhu
(30 residues), 8rxna (52 residues), and 1r69 (63 residues)
are shown in Figure 4. The native structure of the small
protein 2mhu is disordered with no secondary structures,
whereas 8rxna is a b protein and 1r69 an a protein. In the
plots, only a representative 50,000 out of a million configu-
rations from the ensembles are shown (we selected the
first 50,000 (uncorrelated) configurations for plotting). The
shapes of energy/cRMSD scatter plots for two-body (MJ)
potential show that low-energy states are much more
narrowly distributed than are the high-energy states.
More important, the low-energy states tend to have lower
cRMSD than do the high-energy states. This correlation is,
however, not very strong, since many high-energy states
have comparable low cRMSD values. Ideally, the shape of
the energy/cRMSD plot should have the low-energy states
shifted strongly toward low cRMSD. The four-body energy/
cRMSD scatter plots for proteins 2mhu and 8rxna are
similar to those for the MJ potential, but the plot for
protein 1r69 shows a very different distribution: low-
energy states are also broadly distributed. Thus, the

Fig. 3. Effect of protein dataset size on the four-body potential. The
difference Rijkl

a (see eq. 13) between four-body potentials evaluated with
309 and 666 representative proteins is shown as a function of the residue
composition (ijkl) for three (a 5 0, 1, 2) types. For a 5 3, 4, the Rijkl

a are
considerably larger due to statistical fluctuations.
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four-body energies of the configurational ensemble are
sensitive to the protein structure.

Levitt’s group32,33 has examined factors affecting the
quality of energy functions through the energy/cRMSD
plots. They found poor energy/cRMSD correlations for
Hinds-Levitt31 and MJ statistical potentials. Heuristic
statistical potentials retain much fewer details of interac-
tion between residues, and they are expected to show
weaker energy/cRMSD correlations. This has led to the
development of energy discriminatory functions with a
detailed representation of atomic sites.34 Moreover, recent
folding simulation studies with all-atom potentials plus
solvation demonstrate that these potentials can discrimi-
nate native states quite successfully.35,36 Although de-
tailed atomic potentials offer good discriminatory func-
tions, they are much more costly to use in this context. A
procedure that combines the strengths of different energy
functionals could be a fruitful strategy for sampling and
evaluating configurations.

For the three proteins 2mhu, 8rxna, and 1r69 shown in
Figure 4, the cRMSD values based on the lowest two-body
MJ energy are 5.10, 7.77, and 7.53 Å, respectively. The
corresponding cRMSD values based on the lowest four-
body energies are 4.37, 8.61, and 8.88 Å. Thus, in these

cases, the four-body potential does not always yield cRMSD
values lower than those predicted by the two-body MJ
potential. Although the cRMSD values obtained in this
case are similar to others reported in the literature, the
predicted accuracy of the structures is quite low.

Correlation and Comparison Between Two- and
Four-Body Energies

The above differences and similarities between the
energy/cRMSD plots of two- and four-body statistical
potentials can be quantified by plotting the correlations
between the two- and four-body energies of configurational
ensembles for proteins 2mhu, 8rxna, and 1r69, as shown in
Figure 5. For proteins 2mhu and 8rxna, an overall correla-
tion exists: configurations with low two-body energies also
have low four-body energies, although there is a consider-

Fig. 4. Scatter plots of energy per residue versus coordinate root-mean-
square deviation (cRMSD) for proteins 2mhu, 8rxna, and 1r69. The
energies are expressed in units of kBT0, where T0 is the room temperature
(298 K). Configurations were generated with the MJ interaction matrix, but
both two-body MJ and four-body energies were calculated. Left: MJ
energy versus cRMSD. Right: four-body versus cRMSD. Each plot
displays 50,000 uncorrelated configurations. The energy/cRMSD position
of the native configuration is marked using the symbol V.

Fig. 5. Scatter plots of correlations between MJ (2-body) and four-
body energies (per residue) for configurations of proteins 2mhu (top),
8rxna (middle), and 1r69 (bottom); the energies are in units of kBT0. Each
plot displays 50,000 uncorrelated configurations.
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able spread in the low-energy end of the plot. By contrast,
the 1r69 example shows almost no correlation, as evident
from the energy/cRMSD plots in Figure 4. Thus, the
correlation between two- and four-body potentials is pro-
tein dependent. Furthermore, the magnitude of the four-
body energy, unlike its two-body counterpart, varies greatly
from protein to protein. The origin of these observed
differences is discussed below.

For this assessment, Table I summarizes the two and
four-body energies per residue (in kBT units at room T0)
associated with the native (middle two columns) and
lowest-energy structures in corresponding ensembles for
all 22 proteins tested here. Noting that the reference state
for the two potentials differs, the four-body energies of
native proteins are higher than their two-body energies.
Table I shows that the four-body energies of a proteins are
significantly higher than those for b and mixed a/b pro-
teins. This may reflect larger contributions from nonlocal
contacts (i.e., type 0 potential) for b and mixed a/b proteins
over the local contacts (i.e., type 4) for a proteins. Native
four-body energies (column 4) of b and mixed a/b proteins
are comparable in magnitude, although there are consider-
able fluctuations within the protein sets, and we find no
notable dependence on protein size. In marked contrast,
the native two-body energies (per residue) (MJ column 3 in

Table I) for the proteins are fairly uniform except for the
smallest proteins. Similar behavior is seen in the lowest
ensemble energies (columns 5 and 6, respectively, in Table
I) for both potentials.

Table I indicates that the two-body potential is the
dominant term and that the four-body potential is sensi-
tive to specific proteins types; this is expected, given that
multibody interactions depend more strongly on protein
conformations. Traditionally, the energy function of a
system is written as a sum of the two, three, four-body, and
so on, energy contributions. Thus an additive combination
of two and four-body energies appears reasonable. How-
ever, we found that the energy/cRMSD plots do not im-
prove significantly with such a combined energy function.
Perhaps the quality of the configurational ensembles
generated with the MJ energy needs to be improved to
make the new energy discriminating functions fruitful.

Protein Classes and Predicted Structures

As in Table I, results are organized in Table II according
to protein classes (all-a, all-b, and mixed a/b classes, and a
disordered protein) to assess predictions based on lowest
MJ and four-body energies, highest statistical weight
(SW), and the lowest RMSD values in the conformational
ensembles. The average cRMSD values of the proteins

TABLE I. Modified Miyazawa-Jernigan (MJ) and Four-Body Energies (Per Residue) of
Native and Lowest-Energy Structures Compared for a Set of 22 Proteins†

Proteins Size Native MJ Native four-body Lowest MJ Lowest four-body

Disordered peptide
2mhu 30 0.01 21.07 22.93 25.29

a-class proteins
sini 31 21.59 20.11 25.05 20.55
1ppt 36 21.85 20.14 23.67 20.45
1r69 63 21.92 0.06 23.85 20.41
2cro 65 22.11 0.01 24.71 20.48
4icb 76 21.53 0.00 24.08 20.33
1bg8 76 21.41 20.06 23.56 20.46

b-class proteins
1apo 42 20.96 20.99 22.84 22.28
2bds 43 21.51 20.91 24.39 22.38
1atx 46 21.95 21.75 23.88 21.91
2ech 49 21.12 21.87 22.61 22.69
1tpm 50 21.81 20.35 24.09 21.17
8rxna 52 21.17 20.14 23.19 21.27
1hcc 59 21.31 20.59 23.57 20.89

Mixed a and b
5znf 30 20.64 0.07 21.95 20.73
1pnh 31 20.87 21.71 25.38 23.25
1sis 35 22.27 22.66 24.19 23.81
1shp 55 22.07 20.53 24.02 21.42
7pti 58 21.99 20.28 23.93 21.04
2sn3 65 21.70 21.09 23.44 21.67
1ctf 68 22.00 20.14 23.69 20.58
1ubq 76 21.73 20.14 24.16 20.38

†Native MJ and four-body energies are in columns 3 and 4, respectively, and their lowest energies in
generated ensembles of one million configurations are in the last two columns. Energies are in units of
kBT0, where T0 is room temperature.
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vary significantly, depending on the protein size and the
class to which they belong, and are more meaningful
measures of the overall performance of different poten-
tials. For the MJ potential, the a class is predicted to have
an average cRMSD of ;8 Å compared with about 9 Å for
the four-body potential. The all-b class proteins yield an
average cRMSD of about 9 Å for both potentials. The
average number of residues in this set is only 49 compared
with 58 for the all a protein set. Thus, there is some
deterioration in the MJ and four-body results for all b
proteins. The predicted cRMSD values for the mixed a/b
class are also poorer than those for the all-a class. Here,
the results of the four-body potential show marked deterio-
ration with average cRMSD value of more than 10 Å for an
average of 52 residues. On the whole, a proteins are
predicted with much lower cRMSD values than the b and
mixed classes, which agrees with other studies. For com-
parison, random conformations for the protein sizes com-
puted have expected cRMSD of about 11 to 12 Å.37

Therefore, the predicted cRMSD values for all a and b
proteins are only about 3 Å better than random, which still

is poor, although some predicted proteins have better
cRMSD values.

Figures 6 and 7 show eight examples of predicted
structures in comparison with their native folds. Figure 6
compares predicted structures for proteins 2mhu and
8rxna with lowest MJ and four-body energies; they are
superimposed with their native structures. The four-body
potential’s prediction for 2mhu compares more favorably
with the native structure than the MJ potential, but the
reverse is true for protein 8rxna. Predicted structures from
both MJ and four-body show rough agreement with the
native folds, but significant distortions from the native
structures are evident. Figure 7 shows four additional
predicted structures (superimposed with native struc-
tures) with two each from MJ and four-body potentials.
The MJ structures for 1r69 and 4icb have cRMSD values of
about 8 Å; the folds show rough overall agreement with the
native proteins. However, the helical elements of these a
protein are not evident. Structure-derived potentials are
not capable of reproducing the secondary structural ele-
ments without additional secondary energy biases.8 The

TABLE II. cRMSD of Predicted Structures and Ensemble-Averaged dRMSD (=^Ddrms
2 &) for 22

Proteins†

Proteins Size MJ Four-body SW Lowest cRMSD =^Ddrms
2 &

Disordered peptide
2mhu 30 5.10 4.37 5.10 3.27 3.71

a-class proteins
sini 31 7.62 6.71 7.32 4.18 6.58
1ppt 36 6.31 7.66 8.73 4.93 7.31
1r69 63 7.53 8.88 7.53 5.96 4.81
2cro 65 8.68 9.14 8.68 6.25 5.61
4icb 76 8.08 11.98 10.75 5.92 6.02
1bg8 76 10.91 10.93 11.79 6.36 7.64

Average: 57.8 8.19 9.21 9.13 5.60 6.32

b-class proteins
1apo 42 10.03 8.99 10.03 5.49 6.56
2bds 43 8.98 8.14 8.98 5.34 5.40
1atx 46 8.14 8.89 8.14 5.79 5.29
2ech 49 8.68 8.27 10.58 5.90 6.77
1ptm 50 8.46 12.00 10.38 7.70 7.56
8rxna 52 7.77 8.61 8.39 5.11 5.09
1hcc 59 10.81 10.31 11.60 6.47 8.03

Average: 48.7 8.97 9.36 9.73 5.97 6.39

Mixed a and b
5znf 30 5.67 6.03 7.20 4.83 4.78
1pnh 31 7.36 7.71 7.36 4.21 5.46
1sis 35 8.37 7.58 7.59 4.17 4.55
1shp 55 10.39 11.20 10.04 5.17 6.30
7pti 58 9.72 10.44 10.23 5.90 6.84
2sn3 65 12.22 11.25 12.22 7.68 6.96
1ctf 68 9.76 12.41 9.36 6.46 6.05
1ubq 76 11.81 14.64 8.97 6.61 6.05

Average: 52.3 9.41 10.16 9.12 5.63 5.87

cRMSD, coordinate root-mean-square deviation; dRMSD, distance root-mean-square deviation; MJ, Miyazawa–Jernigan.
†The cRMSD values for structures with lowest MJ (column 3) and four-body (column 4) energies and highest statistical
weight (SW, column 5) are compared; statistical weight is defined in eq. 19. Also shown are the lowest cRMSD values
(column 6) and ensemble-averaged dRMSD (column 7) over ensembles of one million configurations. All RMSD values
are reported in Å.
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four-body structures in Figure 7 show a similar degree of
resemblance to their native folds as the MJ structures,
although the sequence lengths for the proteins are smaller.

Selection of nativelike structures based on highest statis-
tical weights (SW) in the ensembles yields cRMSD values
of just over 9 Å for all three protein classes. In the case of
mixed a/b class, the average cRMSD for SW is 9.12 Å,
compared with 9.41 Å and 10.16 Å for the structures with
lowest MJ and four-body potentials, respectively. In a few
cases, the cRMSD values of SW are identical to the MJ
results. This means that for certain proteins the states
with the lowest MJ energies also contribute the most to the
thermodynamic free energy. Inspection of the distribution
of statistical weights shows that, for some protein cases,
the free energy is dominated by a few low-energy configu-
rations. This is especially true when the temperature is
lowered below T0. The fact that some, or most, configura-
tions may be redundant from the viewpoint of thermody-

namics can be a basis for designing more efficient chain
growth algorithms.38

Since many early as well as current protein structure
prediction studies have presented only a few test proteins,
it is interesting to determine by how much our results
might improve if we select only the five most favorable
predictions from the set of 22 proteins for each method. For
the MJ results, we could select the protein set {2mhu, 1r69,
4icb, 8rxna, 5znf} (see structures of 1r69 and 4icb in Fig. 7)
to yield an average cRMSD of only 6.83 Å (for 50 residues/
protein). This result is better by 2 Å than the average
cRMSD values for MJ potential in Table II. From the
four-body results in Table II, if we choose the set {2mhu,
2cro, 2ech, 8rxna, 5znf} (45 residues on average) we obtain
an average cRMSD of 7.28 Å. Again an overall improve-
ment of about 2 Å (see structures of 2ech and 5znf in Fig.
7). Finally, the favorable protein set for the SW results is
{2mhu, 1r69, 8rxna, 1ubq, 1sis}, with an average cRMSD of
7.52 Å for 51 residues. Thus, employing a small protein set

Fig. 6. Three-dimensional structures of proteins 2mhu and 8rxna with
the lowest MJ and four-body energies in generated ensembles (green)
are superimposed with their native structures (magenta); superimposi-
tions were done with InsightII molecular graphics program. Ensembles of
one million configurations were generated to obtain these results.

Fig. 7. Three-dimensional structures (in green) of proteins 1r69 and
4icb with the lowest MJ energies and of proteins 2ech and 5znf with the
lowest four-body energies; they are superimposed with their native
structures (magenta). Ensembles of one million configurations were
generated to obtain these results.
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can bias the reported cRMSD values, making it difficult to
compare the performance of different models and algo-
rithms.

Proteins in solution exhibit some flexibility as revealed
by nuclear magnetic resonance (NMR)-determined struc-
tures. The accessible conformations have different thermo-
dynamic weights, but the thermodynamic average defines
the equilibrium state of a native protein in solution. A
measure of the ensemble deviation of the predicted struc-
tures from the native state is the thermal-averaged dis-
tance RMSD (dRMSD)17

^Ddrms
2 &b 5 O

L

Ddrms
2 ~L!WL~b!/O

L

WL~b! (14)

where the distance RMSD, Ddrms, is defined as follows:

Ddrms 5 Î 1
N2 O

i 5 1

N O
j 5 1

N

~Dij 2 Dij
nat!2 (15)

Here, Dij and Dij
nat are distances between residues i, j of a

generated configuration and the native protein, respec-
tively. All allowed configurations contribute to the average
dRMSD, but some configurations contribute more than the
others, and this is determined by the statistical weight
WL(b) of the configuration. Unlike the cRMSD values in
Table II for specific configurations, this average dRMSD
reflects the property of the configurational ensemble or
equilibrium configurations. An advantage of the thermal-
averaged dRMSD value is that it is not sensitive to
statistical fluctuations from one run to another. In other
words, the dRMSD values reported in this way are repro-
ducible. A folding algorithm that rarely folds a protein to a
low RMSD value does not imply a significant thermody-
namic result. The average dRMSD from the MJ potential
shown in Table II for the protein classes vary between
5.9–6.4 Å. The cRMSD values (in Table II) are about 30%
to 60% larger than the average dRMSD values. Covell9,10

found smaller dRMSD values in his simulation studies on
a simple cubic lattice with an MJ-type potential, but the
average cRMSD for a set of eight proteins is about 8.4 Å,
which is rather similar to our results.

A Conformational Ensemble from Four-Body
Potential

The four-body potential has been used solely as a
discriminating function for configurations generated with
the two-body potential. As a test case, we generated a
configurational ensemble with the four-body potential for
the small protein/peptide 1fct (32 residues). For this
protein, the CPU time to produce 105 configurations is
about 2 weeks compared with about 2 h for a million
configurations with the MJ potential. The best configura-
tion has a dRMSD of 2.8 Å and the lowest MJ and
four-body energy configurations yield comparable dRMSD
values of 4.7 Å and 4.5 Å, respectively. Although these
predicted configurations have dRMSD values similar to
the average dRMSD of the small proteins (30–35 residues)
in Table II, the results here are probably not yet con-

verged, since we have only generated 105 configurations.
Our previous study using the chain growth algorithm
showed that protein properties such as thermodynamic
functions require millions of configurations to obtain accu-
rate results.17 Significant computational improvements
are needed to produce convergent results with the four-
body potential.

SUMMARY AND CONCLUSIONS

Multibody potentials are natural extensions of the com-
monly used two-body interactions. Our theoretical formu-
lation of multibody (mean) potentials shows that two,
three, four-body potentials are related. Since multibody
mean potentials are interpreted as the probability of
observing clusters of residues in proximity, they yield
more information than do two-body potentials regarding
correlations in folded protein structures. We showed how a
four-body statistical potential is evaluated using the meth-
odology of statistical geometry and its incorporation in a
chain growth sampling algorithm for protein structure
prediction.

The four-body potential is similar to the two-body coun-
terpart in that cysteine-rich quadruplets are the dominant
term in the potential, although the MJ versus four-body
energy plots show that they are not necessarily correlated.
Our analysis indicates that some terms of the four-body
potential may not be sufficiently convergent, given the size
of current representative protein structures. We examined
the quality of the four-body potential for structure predic-
tion, in comparison with MJ potential, through energy/
cRMSD plots and calculated cRMSD values. Our results
show that the four-body potential as implemented (to
assess the MJ ensemble, rather than to generate one de
novo) yields cRMSD values that are about the same as, or
slightly poorer than, those from the two-body MJ matrix
on a representative set of 22 proteins. Finally, both the
two- and four-body statistical potentials employed are not
sufficiently discriminating since the native structures
have less favorable energies than the non-native states
(Fig. 4). Thus, not only must the quality of the four-body
potential be improved, statistical potentials beyond the Ca

interaction site models are likely required to successfully
discriminate native from nonnative structures generated
on a lattice.

This failure of the four-body potential can be attributed
to several factors. First, its construction requires a much
larger set of representative native proteins than two-body
potentials. Our use of only six residue types makes imple-
mentation tractable but not necessarily accurate. As the
number of solved protein structures increases, this deriva-
tion difficulty may be alleviated. Second, the generation of
configurational ensembles with the four-body potential is
prohibitively costly due to the necessity to perform Delau-
nay tessellation at each step of the chain growth algo-
rithm. Our use of the four-body potential as a postprocess-
ing tool—to screen the configurations generated using the
two-body MJ potential—may therefore not judge the four-
body potential most favorably. With the MJ potential, the
lowest cRMSD value attained in the generated ensembles
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is still not accurate, about 5–6 Å (Table II). More algorith-
mic work is needed to make direct ensemble generation via
the four-body potential feasible. For example, by allowing
local tessellation as the chain grows, we should reduce the
computational time substantially.

The four-body potential can also be improved by using
smaller (closer to physical range for) cutoff length Rcut,
relaxing the assumption about the equivalence of four-
body terms Qijkl

a 5 . . . 5 Qikji
a , and incorporating geomet-

ric features of four-body clusters in native proteins. In
addition, the role of potentials with longer-range than our
contact potentials should be examined. These improve-
ments, however, rely on availability of a larger representa-
tive protein database. Our approximate implementation of
the four-body potential, as discussed here and in the
preceding paragraph, biased our conclusions to some ex-
tent about the relative performance of the two- and
four-body potentials. By lifting some of the approximations
in future studies, we will be able to make a sharper
distinction between them.

Our simplified Ca model of proteins ignores vital struc-
tural details of proteins. Certainly, explicit modeling of
side chains is required to describe the regularity in residue–
residue packing configurations of helices and b-sheets.
Such a refinement can be implemented with lattice protein
models.8 Thus, our current Ca model is inherently of low
resolution as evident from our best structures (5–6 Å
cRMSD). The similarity between the two- and four-body
results partly reflects this limited resolution of our Ca

protein model. Future improvements will undoubtedly be
realizable by modeling side chain interaction centers, as
well as reconstructing all-atom models from low-resolution
protein configurations.39

The importance of multibody potentials in structure
prediction has been recognized by computational struc-
tural biologists.4,8,11,21 Further work in this area should
improve our understanding of the role of multibody poten-
tials in folded protein structures. Recent developments in
nonhomology-based methods in protein structure predic-
tion have incorporated knowledge of secondary structure40

and tertiary restraints.41 These methods are quite success-
ful in producing nativelike conformations with cRMSD of
about #6 Å for a number of small proteins. It is far more
difficult to predict folds well de novo based on physical
principles, such as the method employed in this work.

Analysis of the results reported at the Third Critical
Assessment of Techniques for Structure Prediction (CASP3)
showed that most ab initio predictions gave cRMSD values
of ;10 Å for a set CASP3 proteins,42 although a few
significantly better predictions were reported.43 Despite
this low accuracy attainable to date, the rapid increase in
the number of protein structures should improve the
prospect of the ab initio approach to structure prediction in
the near future. Results of the CASP3 meeting (http://
predictioncenter.llnl.gov/casp4/Casp4.html) indicated con-
siderable progress in fully automated approaches for struc-
ture prediction. Significant improvements in the prediction
of small proteins with no known structures were reported.
Thus, if modeling improvements continue steadily, and

targets for modeling are selected carefully, computer mod-
eling might become an important resource for protein
structure prediction. In the genomic era, the need for
large-scale structural assignment of protein sequences
ensures continued importance of computer modeling.

MATERIALS AND METHODS
Chain Geometry and Simulation Lattice

We now define the protein model, simulation lattice and
the chain growth move directions on the lattice. Since our
model has been presented recently,17 we only summarize
the procedure here. We use a Ca representation for protein
chains with no side-chains. Geometric characteristics of
the protein backbones are reproduced by limiting the Ca

pseudo-bond angles to the range of 63–143° and associat-
ing each Ca vertex with a set of excluded-volume sites
(defined below). Protein configurations generated on the
lattice must satisfy these geometric constraints.

Our (311) lattice model is similar to the family of refined
cubic lattices investigated by Kolinski and Skolnick.8 On
this lattice, possible growth (move) directions are given by
the vectors v 5 xi 1 yj 1 zk, where (x, y, z) [ {( 6 1,
6 3, 6 1), ( 6 3, 6 1, 6 1), ( 6 1, 6 1, 6 3)}. In the chain
growth process, many of these move directions are prohib-
ited by the pseudo-bond angle restrictions and the excluded-
volume requirements. The 26 excluded volume sites associ-
ated with each Ca vertex are separated from it by the
vectors {(61, 61, 61), (61, 61, 0), (61, 0, 61), (0, 61, 61),
(61, 0, 0), (0, 61, 0), (0, 0, 61)}. Here, the lattice spacings
are measured in units of L 5 3.8/=x2 1 y2 1 z2 Å 5 1.146
Å, where the Ca pseudo-bond is 3.8 Å. As found empiri-
cally, this lattice leads to lattice-mapped structures of
native proteins with cRMSD of about 1.5 Å, which is
sufficient to reproduce elements of the secondary struc-
tures and overall protein folds.

Structure Generation by Chain Growth Algorithm
Overview

The chain growth algorithm is conceptually distinct
from current approaches to protein folding based on Me-
tropolis algorithms44 and the multicanonical45 or en-
tropy46 sampling. We recently applied this algorithm to
lattice proteins and showed that it is an effective approach
to thermodynamics and generation of lattice protein struc-
tures. Here, we summarize the methodology detailed
earlier.17

Essentially, the chain growth algorithm generates chain
configurations by sequential addition of links until the full
length of the chain is reached. Since each configuration is
generated de novo, configurations are statistically indepen-
dent. This approach differs markedly from the standard
Metropolis algorithm, in which the successive configura-
tions are linked by a prescribed set of perturbation moves.
The chain growth process is guided by a temperature-
dependent transition probability which is a normalized
Boltzmann factor.47–49 The Boltzmann-weighted transi-
tion probability tends toward growth directions with favor-
able contacts, thereby allowing generation of both open
and compact chain configurations depending on the tem-

172 H.H. GAN ET AL.



perature. This is an extension of the original algorithm for
self-avoiding (athermal) chains by Rosenbluth and Rosen-
bluth.50 The chain growth algorithm has been applied
successfully to simple polymer and peptide systems.47–49

A large number of chain growth configurations is gener-
ated to estimate thermal averages which are calculated
using an importance sampling procedure whereby each
contributing configuration is appropriately weighted.48

Chain generation, ensemble averaging, and
convergence

We generate chains on (311) cubic lattice guided by the
following temperature-dependent transition probability17

Pi~Ri 1 vkiuR1, . . . , Ri; b! 5 exp@2bui~Ri 1 vki!#/

O
ki 5 1

Ci

exp@2bui~Ri 1 vki!# (16)

where the incremental, nonbonded potential energy is

ui~Ri 1 vki! 5 O
j 5 1

i 2 1

uij~Rij! (17)

Other symbols are defined as follows: R1, . . . , Ri are
position vectors of (interaction) sites 1, 2, . . . , i; vki

is the
lattice vector for the chosen direction ki; and Ci is the
number of vacant sites at step i. The first link can be
placed in any direction, and the move directions for
subsequent links are selected according to the transition
probability by a Monte Carlo procedure. At each step, the
potential energies, ui(Ri 1 vki

), for all allowed lattice
growth directions are determined and their transition
probabilities evaluated. The growth directions must sat-
isfy the prescribed range of pseudo-bond angles and ex-
cluded volume requirements. For compact configurations,
the number of allowed moves is much less than the
maximum of 26. This growth process is continued until the
entire chain length (N links) is exhausted. When a dead-
end configuration, i.e., Ci 5 0, is encountered before the
chain is fully grown, the growth process is terminated and
the chain discarded, the next chain is then regrown from
scratch. For our simple Ca model on (311) lattice, more
than 90% of configurations are successfully grown. We
generate about a million configurations to obtain accurate
estimates of thermal averages. More details on chain
generation procedure are described by Gan et al.17

From the chain growth configurations, the average of a
property A in canonical ensemble is given by

^A&b 5 O
$L%

ALWL~b!/O
$L%

WL~b! (18)

where AL is the value of property A for configuration L and
the statistical weight

WL~b! 5 P
i 5 1

N

$ O
ki 5 1

Ci

exp@2bui~Ri 1 vki!#% (19)

We have used an importance sampling procedure to
obtain the above statistical average, which ensures that
the (biased) chain growth configurations are assigned
appropriate weights.48 All successfully grown configura-
tions are counted, each with a statistical weight WL. To
ensure accuracy and convergence of the average ^A&b, the
size of the configurational sample must be sufficiently
large that equilibrium configurations belong to the sample.

The convergence of the average property ^A&b depends
on the size of the configurational ensemble 1, the number
of links b placed at each step of the growth process, and the
lattice coordination number nc. Since the chain growth
algorithm explores all available growth directions at each
step, the number of energy evaluations per step is propor-
tional to (nc)

b. For our (311) lattice with nc 5 24, (nc)
b is

large even for small values of b. We thus choose b 5 1, but
compensate by generating a large sample size on the order
of 1 million. Larger b values would mean reducing the
sample size 1. This could in turn render the importance
sampling approach to computing thermal averages ineffec-
tive.

In this and our previous work,17 we have demonstrated
convergence of thermodynamic and configurational proper-
ties in our implementation of the chain growth algorithm.
Specifically, we found that more than 90% of the chain
configurations are successfully grown. Therefore, the algo-
rithm is considered adequate for the simple model used.
Greater efficiency in the chain growth procedure can be
achieved by optimizing the value of b (number of links
grown at each step), and the sample size. Moreover, the
possibility of using more efficient chain growth algorithms,
as developed recently, might be considered.38 Other effi-
cient Monte Carlo algorithms, such as entropy sampling46

and multicanonical45 algorithms may be viable alterna-
tives for more complex protein models.
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