COM
C

UTATIONAL
EMISTRY

COMPUTATIONAL CHALLENGES IN
SIMULATING LLARGE DNA OVER
L.LONG TIMES

Simulating DNA’s dynamics requires a sophisticated array of algorithms appropriate for
DNA's impressive spectrum of spatial and temporal levels. The authors describe
computational challenges, solution approaches, and applications that their group has
performed in DNA dynamics.

he venerable deoxyribonucleic acid

molecule has not always held the

spotlight. From Gregor Mendel’s

first careful work in 1865 to the
painstaking evidence Oswald Avery, Alfred Her-
shey, and Marsha Chase and colleagues obtained
from 1944 through 1954, we have experienced
dazzling progress in our appreciation of DNA
and our ability to read, interpret, and manipu-
late heredity’s master molecule. Just short of a
household word, DNA now plays a key role in
medical diagnoses through gene markers, bio-
engineering and nanotechnology constructs, his-
torical analyses, crime and forensics, and family
lineage verifications, to name a few.

As we embark on a new millennium, emerging
genomic research areas seek to characterize gene
products and relate them among species, and ex-
pand our interest beyond a single molecule to in-
tegrated cellular structures and functions. At least
two features are key to achieving these important
giant leaps of genome integration in the coming
decade. The first is a better ability to compute the
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3D structures of biomolecules from the primary
sequence (amino acids in proteins and nucleotides
in nucleic acids). The second is the development
of efficient computational technologies and
strategies to analyze sequences, structures, and
functions. We rely crucially on such tools to ex-
tract knowledge from the wealth of emerging
database information on biomolecules.
Although attention has focused on protein
structure and folding (how single-stranded
polynucleotides fold back on themselves to form
complex 3D molecular architectures), analogous
problems in DNA and its cousin ribonucleic acid
(RNA) are at least as important and perhaps even
more challenging. Unlike the relatively compact
structure of globular proteins, DNA has many
levels of structural hierarchy, from length scales
of nanometers for several base pairs to microm-
eters for several thousand base pairs. Crucial for
recognition by proteins, DNA’s sequence-de-
pendent behavior on the base-pair level must be
analyzed. The study of large-scale DNA folding
on the thousand-base-pair level is also of great
interest because of its importance to the pack-
aging of the genome into chromosomes and the
associated biological regulation processes.
Given these broad goals, studying DNA begs
for multidisciplinary collaborations that involve
not only chemists and biologists but also mathe-
maticians and other physical scientists. In this ar-
ticle, we describe some of the computational

38

COMPUTING IN SCIENCE & ENGINEERING



|

| [
{

groove) {-, ;

| 3

i

|

|

I Mar.
| (majo
1

| groove)

b=
38

(@)

(b)

|

MD 14-bp system

©

_:._.,:,‘--_ —a r ¥
., - W ‘-::Ff.
I e ¥
= .
- "J-l-_.‘,' &
A29 WT

Bending in TATA elements

Figure 1. (a) The TATA-box binding protein (TBP), bound to wildtype adenovirus DNA (with central 5’ TATAAAAG 3’
sequence), whose coordinates are available from the crystal structure. The distorted DNA element from this co-crystal is
rotated to highlight its 90° bend. (b) The molecular-dynamics simulation cell (hexagonal prism) of the AMLP DNA
element. The phosphate-neutralizing sodium ions are yellow and the water molecules are faint red-and-white sticks. The
major (Mgr.) and minor (mgr.) grooves are also shown. (c) The two computed MD-ensemble averages of the TATA box-
containing DNA systems of 14 base pairs, the wildtype sequence (WT), and its single base pair variant 5 TAAAAAAG 3’
(A29, an adenine-rich DNA sequence known as an A-tract). The TATA box is indicated in blue (A29) or red (WT), and the

global helical axes are illustrated for each system.

challenges of simulating DNA’s dynamics, focus-
ing on the large-scale and long-time modeling
work in our group. These approaches incorpo-
rate chemistry and biology as well as elements of
mathematical topology and geometry, elasticity
theory, mechanics, and scientific computing.

The DNA molecule and its inherent
flexibility

The classic DNA double helix that Francis
Crick and James D. Watson described in 1953 is
a flexible ladder-like structure of two intertwined
polynucleotide chains running in anti-parallel
fashion. The nucleotide building block consists
of sugar (deoxyribose), phosphate, and base
units. One strand runs from the C5'-OH group
of the first sugar to the C3'-OH group of the
last, while the complementary strand runs from
C3'-OH of the first sugar group’s partner to the
corresponding C5'-OH end of the last base. The
ladder rails comprise alternating sugars and
phosphates, and each ladder rung is a nitroge-
nous base pair held together by two or three hy-
drogen bonds. Adenine (A) often pairs with
thymine (T), and guanine (G) frequently pairs
with cytosine (C). The spaces formed between
the helical backbone and the imaginary cylinder

that encloses the DNA are termed 7zajor and mi-
nor grooves; they have different dimensions be-
cause of the sugar-based linkages’ asymmetry
with respect to the base-pair plane (see Figure
1).

We use standard atom and dihedral-angle la-
beling schemes for nucleic acids. The sequence
of nitrogenous bases in the 5' to 3' strand speci-
fies the DNA’s composition; thus, the sequence
5" TATAAAAG 3' implies the complementary
strand 5" CTTTTATA 3'. Besides A-T and G-C
base pairs, researchers have observed many other
hydrogen-bonding patterns for normal and mod-
ified bases, especially in RNA molecules. (RNNAs
have uracil (U) instead of thymine, and ribose in-
stead of deoxyribose.) Other references provide
excellent introductions to DNA structure. !

DNA’ 3D structure depends on many factors:
base composition, environmental conditions
(such as relative humidity and salt concentration),
and the presence of other molecules that inter-
act with DNA (such as proteins or drugs). As in
proteins, the DNA sequence contains subtle in-
formation on local variations that can become
collectively pronounced over large spatial scales.
Sequence-dependent variations are manifested
by rotational and translational deformations from
ideal helical orientations (in which the base pairs
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Figure 2. Models of DNA at four different length scales: (a) an A-tract dodecamer with an overall curvature of 11°, (b) a
model of 120 base pairs of a phased A-tract sequence, (c) linear DNA of 1.2 kbp, and (d) supercoiled DNA of 12 kbp. Our
computed dodecamer by all-atom molecular dynamics served as the model for constructing the 120-base-pair system;
the larger linear and supercoiled structures are representative of the thermal equilibrium ensemble, as generated by
Brownian dynamics simulations. The curve for the long DNA represents the double helix.

are all perpendicular to the global helical axis).
Average roll and tilt rotations—deformations
along the long and short base-pair axes, respec-
tively—are generally a few degrees in protein-
free DNA but can be more pronounced for DNA
bound to proteins (see Figure 1). Twist—the ro-
tation along the global helical axis from one base
pair to the next—exhibits a range of values below
and above the average of 34° associated with the
10.5 base pair/turn repeat of canonical B-DNA
in solution. (B-DNA is the classic, most com-
monly observed structural form of DNA.) Other
translational deformations from the idealized
structure identify the base pairs’ locations with re-
spect to the global helical axis.! Since the two hy-
drogen-bonded base pairs may themselves devi-
ate from planarity—we also observe a nonzero
propeller twist angle, which can be large as 20° or
more in certain sequence environments.

As an example of sequence effects, consider
the intrinsically curved DNA in Figure 2 that re-
sults from adenine-rich sequences in which five
or six consecutive adenines are phased with the
helical repeat (A-tracts), as Donald Crothers and
his colleagues first discovered in the early
1980s.* The global helical curve’s overall bend-
ing is not large on the dodecamer level (11°), but
it is pronounced when the sequence pattern, and
thus bending propensity, repeats. Figure 2 also
shows two other lengths of DNA—Ilinear DNA
of 1.2 kbp and supercoiled DNA of 12 kbp (kbp
is thousands of base pairs). From the figure, we
can view short DNA as a relatively stiff and

straight rod, while large DNA resembles flexi-
ble polymers undergoing Brownian motion.

Besides the sequence’s profound effect on
DNA structure, the molecule’s architecture as a
whole—handedness, helical geometry, and so
on—is sensitively affected by the environment.
For example, the canonical B-DNA Crick and
Watson described was deduced from X-ray dif-
fraction analyses of the sodium salt of DNA
fibers at 92% relative humidity. Another right-
handed form of DNA—now termed A-DNA—
emerged from early fiber diffraction data at the
much lower value of 75% relative humidity. This
alternative helical geometry is prevalent in dou-
ble-helical RNA structures. The peculiar left-
handed DNA helix, termed Z-DNA for its
zigzag design, was discovered in the 1970s in
C-G polymers at high salt concentrations. Its bi-
ological significance remains uncertain, but evi-
dence suggests that the conversion from B to Z-
like DNA acts as a genetic regulator.

Beyond these three canonical helical forms,
we now recognize numerous variations in
polynucleotide structures—both helical and
nonhelical forms—duplexes, triplexes, quadru-
plexes, as well as parallel DNA, and hybrids of
RNA, DNA, and other polylners.4 Sdll, B-DNA
is thought to be the dominant form under phys-
iological conditions. One reason for its preva-
lence is that the B-DNA helix can smoothly
bend about itself to form a (left-handed) super-
helical structure (plectoneme, or interwound
structure) with minimal changes in the local
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structure (see Figure 2d). This property facili-
tates distant interactions in long DNA, the
packaging of long stretches of genomic DNA in
the cell—by promoting volume condensation
and protein wrapping—and template-directed
processes such as replication and transcription
that require the DNA to unwind.’ (The genome
content [in total base pairs] varies from organ-
ism to organism but roughly increases with the
number of different cell types. For example,
bacterial genomes have approximately 10° to
107 base pairs, but mammals contain approxi-
mately 10 base pairs. Because the eukaryotic
nucleus size is approximately 5 pm [also the cell
size in prokaryotes], a value much smaller than
the length associated with that amount of
stretched DNA, five orders of magnitude of
DNA condensation must occur.)

DNA'’s two levels of resolution

"Two levels of DNA structure form the central
focus of molecular-simulation research: nu-
cleotide (or base pair) level and kilobase pair
level. The former involves the study of a dozen
or so base pairs, focusing on sequence effects and
local interactions between DNA and proteins or
other biomolecules. The latter involves long cir-
cular or linear DNA, focusing on global struc-
ture and folding kinetics related to biological
processes such as site-specific recombination.5’
High-resolution methods such as nuclear mag-
netic resonance and crystallography for struc-
ture determination guide atomic-level models.
Lower-resolution techniques such as gel elec-
trophoresis and electron microscopy provide in-
formation on supercoiled DNA.

MD applications

An example in the first application area is in-
trinsically bent, adenine-rich DNA studied with
all-atom molecular dynamics (MD). Simulations
produce insights into the controversial relation-
ship between crystallographic and solution data
of DNA A-tracts and the forces that stabilize
bending. Specifically, research supports prefer-
ential bending of A-tracts into the minor
groove,>’ and consolidates experimental obser-
vations concerning the departure of some crystal
models from this orientation. !

MD simulations of protein-binding DNA se-
quences that vary by a single base pair from each
other have helped interpret experimental data'!"!?
regarding the relation between the sequence of
the DNA promoter and the biological transcrip-

tional activity of DNA-protein complexes.
Specifically, many groups’*~"° have simulated
short DNA segments called TATA elements that
bind to the TATA box-binding protein (TBP);
this binding is a prerequisite for transcription ini-
tiation in eukaryotes.!! Significantly, protein bind-
ing imposes a large distortion on DNA. However,
the protein succeeds in inducing this enormous
deformation because of the DNA incisive coop-
eration: evolution has apparently selected the
TATA box element 5" TATAAAAG 3’ found in
adenovirus because of its inherent flexibility.'¢

Our recent simulations of 13 single base pair
TATA variants'® have revealed several features
of this sequence-dependent deformability:

o the preferred TATA sequence bends flexibly
into the DNA’s major groove, commensurate
with the protein deformation (Figure 1);

* optimal backbone shielding by counterions
supports this bending;

* a disordered water-DNA interface further fa-
cilitates this motion and thus TBP binding; and

* specific local motions at the TATA ends are as-
sociated with high-activity sequences.

Intrinsic curvature

Among the many questions addressed by com-
putational scientists studying DNA are the ef-
fects of intrinsic curvature on DNA conforma-
tion,!” DNA site juxtaposition'® (the close spatial
approach of linearly distant regions), and chro-
matin folding.!*** DNA site juxtaposition brings
together in space linearly distant DNA seg-
ments. Many reactions such as site-specific re-
combination and transcription depend on such
a spatial approach; in some cases, this interac-
tion only occurs if the DNA is supercoiled. Sim-
ulations help us understand the reasons for this
requirement, the mechanisms involved in juxta-
position, and the dependence of site juxtaposi-
tion on the level of DNA superhelicity, salt con-
centration, site separation, and DNA length (see
the “Site juxtaposition kinetics” sidebar).

Modeling chromatin folding involves studying
the dynamics of the nucleoprotein complex that
compacts the genomic material in eukaryotic
cells. Dynamics of this spool-like complex (made
of DNA wrapped around histone protein cores)
plays a key role in regulating basic cellular
processes such as chromosomal condensation and
replication. The 11-nanometer nucleosome core
particle’s crystal structure from 1997! was a tour
de force of structural biology, but how higher-
order forms are organized remains a mystery. In
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Site juxtaposition Kinetics

Our recent investigations into supercoiled DNA
dynamics have focused on understanding the jux-
taposition mechanism of linearly distant sites
along the DNA contour and how variations in the
superhelical density and salt concentration affect
the process. Juxtaposition of linearly distant sites,
which occurs on the time scale of milliseconds, is
required for a variety of processes, including site-
specific recombination and certain transcriptional
events. However, current experimental techniques
cannot probe the kinetics involved in great
detail.>2 Surprisingly, we find that the site juxta-
position mechanism depends critically on the salt
concentration. At low salt, we identify random
collision as the dominant mechanism, but at high
salt, juxtaposition proceeds by slithering® (the ran-
dom reptational, bidirectional movements of the
two opposite segments along the superhelical
axis) coupled to branching rearrangements of the
DNA supercaoil.

Specifically, our simulations show that at low
salt concentrations and at low DNA superhelical
densities, the DNA structure is more irregular.
Such loose supercoiling enhances flexibility—the
DNA structure undergoes large global superhelical
distortions. Because supercoiling increases the
equilibrium probability of juxtaposition two orders
of magnitude,* at low salt concentrations we ob-
serve an increase in site juxtaposition rates with
superhelical density commensurate with the
increase in juxtaposition probability.
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In contrast, at physiological concentrations (rela-
tively high salt), the site juxtaposition rate is deter-
mined by the combined effects of slithering,
branch creation and deletion, and interbranch col-
lisions, and is not sensitive to the changes in the

superhelicity.® Here, circular DNAs adopt regular, tightly in-
terwound superhelical structures, usually branched for DNA

larger than 3 kbp (see Figure A). In such branched DNA
structures, these three processes combine to accelerate
the site juxtaposition process.

Theoretical analyses® of site juxtaposition, assuming
purely reptational slithering, reveal an average collision

Figure A. Brownian-dynamics snapshots of 3 kbp circular DNA with superhelical
density 0 =—0.06 under both (1) low (0.01 M) and (2) bigh (0.20 M) salt conditions.
Discrete 30 base-pair segments model the DNA.

time that scales with £3. More realistic motions that involve
branch creation and deletion along with slithering result” in
juxtaposition times that scale approximately as £2. Our sim-
ulations suggest a near-quadratic length dependence of
site juxtaposition rates at high salt conditions.® Hence, at
physiological conditions, the juxtaposition rate is not sensi-
tive to the changes in the equilibrium juxtaposition proba-

particular, elucidating the details of the transition
between the more open and more compact struc-
ture will help us better understand transcriptional
regulation and DNA packaging (see the “Chro-
matin folding simulations” sidebar).

Modeling challenges
The different nature of these levels and associ-

ated problems requires different computational
apparatuses. Namely, the nucleotide level is usu-
ally investigated with all-atom molecular me-
chanics and dynamics protocols,® while the kilo-
base pair level is studied by macroscopic models
investigated with Monte Carlo, Brownian, and
Langevin dynamics.”> The all-atom approach
faces the challenge of large system sizes in fully
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bility, as deduced from Monte Carlo work.

Figure A illustrates the juxtaposition kinetics
at these two salt conditions. At the low
concentration (series Al), juxtaposition of two
sites (indicated by black and green spheres)
proceeds through a rearrangement of the
global structure. At the higher salt concentra-
tion (series A2), the intertwined structure is
fairly regular, and juxtaposition proceeds by
slithering and branch sliding. In particular, a
three-branch structure remains fairly stable at
high salt while thermal motions result in more
drastic rearrangements for the low-salt case. At
high salt, the highlighted beads gradually
slither toward one another and remain in close
proximity from 1.4 ms to 2.0 ms, while at low
salt the juxtaposition event (occurring at 2.0
ms) is short-lived.
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solvated models, sensitivity to force-field and sim-
ulation protocol, accurate treatment of long-
range electrostatic interactions, and limitation of
simulation times and hence configurational sam-
pling range. The macroscopic representation is
limited by model approximations, treatment of
hydrodynamic forces and ionic effects, and prop-
agation methods. Both levels are thus challenged

by fundamental model assumptions and large
computational requirements.

"Table 1 shows typical setups and computational
requirements for these two types of models. Fig-
ure 3 shows the percentage of computational work
for different program components. In all-atom
molecular and Langevin dynamics protocols, the
iterative updating procedure for defining coordi-
nates and momenta is relatively simple, even in
multiple time step (M'TS) methods, and most of
the work involves energy and force evaluation at
each time step. The most expensive part of this
calculation involves the long-range Coulomb po-
tentials and associated forces. Although this task
has largely been accelerated with fast adaptive
multipole or Ewald-type methods that approach
near-linear complexity with size N (typically O(N
log N)), the time step limitation (femtosecond-
order time steps) dictates millions of steps to span
a relatively short time in a biomolecule’ life. M'T'S
methods for both Newtonian and Langevin dy-
namics combined with efficient implementations
on parallel platforms have also helped alleviate this
computational burden,?*~2 letting us simulate
larger system sizes over longer times. Recent work
on alleviating resonance instabilities by the LN al-
gorithm?”?® has extended time step values to well
over 10 fs for the slow forces, with net speedups
as indicated in Table 1 and Figure 3. Still, the com-
putational requirements for atomic-level detail re-
main large. Currently, we can only accomplish
longer simulation times for small systems with
simplified long-range force treatments and dedi-
cated supercomputing time.”’

In Brownian-dynamics (BD) simulations of
supercoiled DNA, the propagation equations
that dictate each set of coordinates are fairly
complex when torsional motion and hydrody-
namic forces are involved—elaborations on the
standard Ermak and McCammon scheme®® are
necessary.’! Prescribing the motion essentially
requires a prediction—correction step because
each discrete segment’s rotation is coupled to the
movement of the associated bead’s local coordi-
nate frame. Incorporating hydrodynamics effects
entails solving a dense linear system that involves
the configuration-dependent hydrodynamic ten-
sor to define the random force at each step. As
we discuss later, this task is generally accom-
plished by a Cholesky factorization, which in-
creases as O(N*) with system size. Although the
electrostatic forces dominate the computational
time for small and moderately sized DNA sys-
tems, the work associated with hydrodynamics
dominates for large systems (see Figure 3). Here
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Chromatin folding simulations denses into a compact form, which is a critical regulator of

Another interesting application involves modeling chro- transcription and replication.
matin, the nucleoprotein complex that compacts the ge- This system’s size demands a biophysical description in
nomic material in eukaryotic cells. The chromatin fiber is the spirit of polymer-level models of DNA.3 The core pro-
composed of a chain of globular histone protein octamers tein complex, however, is much less regular in terms of
connected by linker DNA segments. Continuous with the shape and charge distribution than simple DNA. To model

linker DNA is a 150-base-pair left-handed supercoil of DNA  the electrostatic interactions in this complex, we developed
that is wrapped around each octamer. The entire repeating  an algorithm for optimizing a discrete N-body Debye-

unit of a core particle (octamer plus wrapped DNA) and Huckel potential to match the electric field predicted by the
linker DNA is denoted the nucleosome. Chromatin con- nonlinear Poisson-Boltzmann equation.* The nucleosome

Nucleosome cores

10
)
S o
<
ey
(@)
Linker DNA
-10 Ons 1ns 2ns
3ns 4ns 5ns
Q) 6 ns 7ns 8ns

30 nm

@

Figure B. Chromatin modeling based on our dinucleosome model of two electrostatically charged core particles connected by an 18-nm
linker DNA modeled as an elastic wormlike chain (top left corner). The dinucleosonte folding trajectory in part (1) reveals spontaneous
folding into a condensed structure in a few nanoseconds. We refined the 30-nm fiber (48 nucleosome units) constructed as a solenoid from
the dinucleosome fold motif using Monte Carlo methods to obtain the structure in part (2).
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particles in Figure B use the 277-point charge
model that we incorporate into a macrolevel
polynucleosome model. In this way, a biomole-
cule’s atomic-level details are efficiently inte-
grated into an accurate biophysical description
of a system too large to treat on the atomic
scale. Energy parameters for the DNA (charge
density and elasticity constants) are adopted
from studies of DNA supercoiling. We have
tested the resulting model parameters against
available experimental data, such as trans-
lational diffusion constants from chicken ery-
throcyte polynuclesomes under varying salt
concentrations.®

In Figure B1 we plot a 4-ns trajectory repre-
senting the folding of a two-nucleosome
system at monovalent salt concentration of Cg
=0.05 M. The N-terminal H3 tail is positively
charged and associates with the negatively
charged linker DNA. The linker DNA adopts a
bent configuration. Based on the observed fold
motif for this system, we can construct larger
systems, such as the 48-nucleosome fiber in
Figure B2. The predicted fiber is a right-handed
solenoid with a diameter of approximately 30
nm, in agreement with experimental observa-
tions on chromatin. Our work continues to ex-
plore the internal structure of the 30-nm fiber
and to interpret folding and unfolding proc-
esses associated with acetylation and phospho-
rylation of the histone proteins.®
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we show that an alternative algorithm (which
Marshall Fixman proposed over a decade ago*?)
dramatically reduces computational times for
BD simulations of long DNA. Other recent ap-
plications are described elsewhere.**?*

The elastic model for long DNA

The elastic-rod approximation has proven
valuable for studying superhelical DNA’s global
features (such as long range and time flexibility).
Using ideas from polymer physics, we can char-
acterize long DNA by its contour length £ and a
bending rigidity 4. We can relate the DNA’s
mean square displacement [R*[to the persistence
length p;, which is essentially the length scale on
which the polymer directionality is maintained:

RC=2p, L. 1

Thus, for lengths < p,, we can consider the
DNA to be straight, but for lengths > p;, a bet-
ter description is a bent random coil undergo-
ing Brownian motion. This length-dependent
flexibility is apparent from Figure 2, which
shows DNA on length scales much smaller and
much greater than p;. The persistence length of
DNA in vivo is approximately 50 nm, or ap-
proximately 150 base pairs at physiological
monovalent salt concentrations. The persistence
length is also related to the bending force con-
stant A as

A=pykpT )

where kp is Boltzmann’s constant and T is the
temperature. Thus, the floppy polymer writhes
through space as a wormlike chain, with the
bending rigidity—which tries to keep the DNA
straight—balanced by thermal forces—which
tend to bend it in all directions.

We can write the elastic-deformation energy
as a sum of bending and twisting potentials, with
bending and torsional-rigidity constants (A and
C) deduced from experimental measurements of
DNA bending and twisting.>* Similar to Equa-
tion 2, the torsional rigidity C is related to the
twisting persistence length p,,, by

C=(pp kg T) /2. 3)

"The bending constant does not have the 1/2 fac-
tor because bending involves two axial compo-
nents of the deformation (roll and tilt) perpen-
dicular to the global helical axis.
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Table 1. The complexity of DNA dynamics simulations.

Resolution System and size (N) Technique and protocol  Simulation range CPU performance
All-atom 37,700 atoms MD, Leapfrog, At =1 fs 10 ns 787 days/4 processors
solvated TBP/DNA

All-atom solvated 37,700 atoms LD, LN, At: 1/2/120 fs 10 ns 121 days/4 processors
TBP/DNA

Macroscopic DNA, Supercoiled DNA, Second-order BD, 10 ms 110 days

30 base pairs 12 kbp (400 beads) hydrodynamics,

per bead At: 600 ps

Macroscopic DNA, Linear DNA, 1.2 kbp Second-order BD, 10 ms 10.9 days

8 base pairs per bead (150 beads) hydrodynamics, At: 600 ps

Macroscopic DNA/ 48 nucleosomes Monte Carlo 1 million steps 60 days

protein, 8 base pairs
per bead & protein core

& linker DNA (240 DNA
beads, 48 core beads)

MD stands for molecular dynamics, LD for Langevin dynamics, and BD for Brownian dynamics. All computations are reported on an

SGI Origin 2000 with 300-MHz R12000 processors. The LN scheme, named for its origin in a Langevin normal-mode approach, com-

bines force splitting by extrapolation with Langevin dynamics to alleviate severe resonances and allow large outer time steps.?’

The bending term is proportional to the
square of the curvature K and the twisting en-
ergy is proportional to the twist deformation:

E=Ey+E; :%fKZ(s)ds +%f(w —wp)ds (@)

In these equations, s denotes arc length, and the in-
tegrals are computed over the entire closed DNA
curve of length L. The DNAS intrinsic twist rate is
@) (such as 21710.5 radians between successive base
pairs). In addition to these bending and twisting
deformations, other components account for
stretching interactions, electrostatic (screened
Coulomb in the form of Debye-Hiickel), and hy-
drodynamic interactions (see the sidebar “A com-
putational model for supercoiled DNA”).

BD propagation algorithm and
hydrodynamics

To simulate long-time trajectories of DNA
motion,*® researchers commonly use Donald Er-
mak and J. Andrew McCammon’s** BD algo-
rithm. The algorithm updates particle positions
according to

oD
XN l=xeny
T axj r )

O
. bat a:)(xn)gnﬂ?n

where X” denotes the collective position vector
for the N particles at the nth time step (time
nlt), f” is the systematic force (negative gradi-

ent of the potential energy), D(X”) is the config-
uration-dependent diffusion tensor, and Dj; is the
ijth entry of D(X”). The allowable time step Az
for BD is typically in the range of 100 picosec-
onds, orders of magnitude greater than the sub-
femtosecond time steps used in all-atom MD.
The random-displacement vector R” is in-
cluded to mimic thermal interactions with the
solvent. It is a Gaussian white noise process re-
lated to D with covariance structure given by

R 0, [R)(R") 0= 20t D(X). (6)

(@R™(R™)IT: O for 72 # n.) In the BD algorithm, the
diffusion tensor D defines the hydrodynamic inter-
actions among the particles, as well as the correla-
tion structure of the random motions. A reasonable
choice for the mathematical form of D is the
Rotne-Prager hydrodynamic tensor,”’ which rep-
resents a second-order approximation for two beads
diffusing in a Stokes fluid. (The y 0D, / 0% term
in Equation 5 is also zero for this tensor.)

Obtaining this random force R” in BD algo-
rithms turns out to be the computational bottle-
neck. We can compute a vector R” with covari-
ance specified by Equation 6 according to

R"=2(0)"’Lz ()

where z is a vector of uncorrelated random num-
bers chosen from a Gaussian distribution with
zero mean and unit variance (that is, B"(z”) k=
Oml, F"0= 0). The matrix L comes from a
Cholesky factorization of D":

D=LL". ®)
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Figure 3. The computational complexity of DNA simulations on the all-atom (top) and macroscopic (bottom) levels. The upper
plots correspond to molecular-dynamics calculations, with the fraction of CPU time devoted to calculating the nonbonded
energy and forces (blue line) plotted against the number of atoms, N. The plot in (a) corresponds to the standard Verlet
integrator with At = 1.0 fs, while the plot in (b) corresponds to the LN integrator with the time step protocol of 1/2/120 fs.
The various all-atom systems correspond to lysozyme (A, 2,857 atoms, in vacuo), 12-bp A29 TATA box element (B, 11,013
atoms, solvated in a hexagonal prism), 14-bp A29 TATA box element (C, 15,320 atoms, solvated in a hexagonal prism), triose
phosphate isomerase (TIM) (D, 18,733 atoms, solvated in a truncated octahedral prism), TIM (E, 23,635 atoms, solvated in a
rectangular prism), and the wildtype TBP/WT DNA complex (F, 37,703 atoms, solvated in a rectangular prism). For the plots in
(c) and (d), the fraction of CPU time associated with the hydrodynamics calculations (green lines) and with force calculations
(blue line) in Brownian-dynamics simulations of large DNA is plotted versus the system size in kbp. The red curves in all plots
correspond to the right-hand axis, the total number of days required to compute a trajectory of 10 ns for all-atom MD, and 10
ms for macroscopic BD. All computations were performed on one R12000 processor of an SGI Origin 2000 with 300-MHz
processors.

The Fixman alternative to the Cholesky fac-
torization of D involves calculating y, the vector
of correlated random numbers, as

The above factorization of D requires O(N)
floating-point operations and consumes most of
the CPU’s time for BD simulations of large sys-
tems. Increasing the efficiency of these hydro-
dynamics calculations is the key to alleviating the

y=Sz ©

current limitations on the size of DNA systems
and the time scale of trajectories that we can sim-
ulate using BD.

instead of Equation 7. Here S is the square root
matrix of D (D = S?) and not the Cholesky factor
L. Fixman’s idea was to expand the vector y as a
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A computational model for
supercoiled DNA

Following Stuart Allison’s pioneering work,* we can rep-
resent wormlike DNA as a series of N virtual objects (or
beads) connected in a closed loop. The centers of the
beads, denoted by r;, represent a discrete polymer chain’s
vertices, and local coordinate unit vectors {a;, b;, ¢} associ-
ated with each bead describe the DNA molecule’s internal
configuration. For circular DNA, the index i = N + 1 incides
with the first index i = 1. Euler angles {a;, 3, ¥} specify the
rotation of the (i — 1)th to the ith coordinate system.?

The configuration-dependent potential energy is
modeled as the sum of stretching, bending, twisting, and
electrostatic interactions:

E:E3+EB+ET+E0. (A)

We compute the stretching energy Es from the sum of
squared deviations in segment length:

_hg 2
Es= > Z ("ri _ri+1|| =15) (B)
1=1

where |, is the resting length of each interbead segment and |,
= L/N, where £, is the DNA molecule’s target length. Setting
the stretching constant to h = 1,500kgT / 12 results in devia-
tions in realized segment lengths of less than 1% from |,.>*
We calculate Equation 4 in the main text’s discrete analog
from the set of Euler angles:

AN,
EB+ET:2|_ZBi

0 =1
+LN(a.+._ ° ©
2|0; Y @)

where @, is the equilibrium excess twist due to superhelical

winding: @, = 21to(l,/Iy). Here o is the superhelical density of
DNA, ALk/Lk, is a normalized linking number difference
(typically around —0.05), and |, is the DNA helical repeat
length of about 3.55 nm.

Following Dirk Stigter’s work,® we approximate the elec-
trostatic energy by the Debye-Hiickel potential associated
with point charges at the centers of the beads:

_ W)
cC ¢

exp(—Krij)

rIJ

(D)

j>1+1

where v is the effective linear-charge density along the
chain, ¢is the dielectric constant of water, 1/k is the Debye
length, and r; is the scalar distance between beads i and j.
(We do not consider the j =i + 1 term here, because it is
counted in the stretching term.) For a monovalent salt con-
centration of 40 mM, 1/k = 1.52 nm and v=-3.92 e- nm™.
(This screening parameter « should not be confused with
the curvature symbol introduced earlier.)
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series of Chebyshev polynomials, a calculation
that requires O(N?) operations, compared to the
standard method’s O(N?) operations.

The sidebar “Polynomial expansion for Brow-
nian random force” describes computing the ex-
pansion for y. The procedure requires deter-
mining bounds on the maximum and minimum
eigenvalues of D(X”). (In practice, we can ap-
proximate these bounds—which are required to
scale the matrix for the Chebyshev expansion—
by computing the eigenvalues of D(X®) and as-
suming that the magnitudes do not change dras-
tically.) Then, once we have determined the
order M of the expansion according to some er-

ror criterion, we expand y in terms of polynomi-
als with coefficients determined for the square-
root function.

The computational work required for the
standard Cholesky treatment of hydrodynamics
dominates BD simulations for large systems, as
in Figure 3c. When we apply the vector polyno-
mial expansion described earlier, the hydrody-
namics calculations consume approximately 33%
of the CPU time, regardless of system size.
For a 12-kbp system, BD using the standard
Cholesky factorization requires twice the CPU
time as our implementation of the vector poly-
nomial expansion. This acceleration is not large,
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Polynomial expansion for Brownian
random force

To expand the vector y = Sz, we consider Chebyshev
polynomials defined over the interval [-1, 1]. The scaling
factors k; and k, are introduced, where

G= le + k2| (A)

so that the eigenvalues of G have magnitudes less than 1.
We define the order-M Chebyshev expansion of the square-
root matrix as

M
Sw =mzoam C.(G) (B)

where the {a,,} are scalar coefficients and the {C,,} are the
Chebyshev polynomial functions G. The expansion fory =
Sz has a similar form:

M M
yM = zamcm(G)Z = Zamzm, (C)
m=0 m=0

where z,, is the vector C,(G)z. We found M = 10 suitable
for our applications to achieve errors of less than 0.1% for
3-kbp systems. (We use a double-precision algorithm, with
machine epsilon 10715,

We define the Chebyshev polynomials for the matrix ex-
pansion according to the formula

Cm+1 = ZGCm = Cm—l; CO = I, Cl =G (D)

From this, we obtain the polynomials defining the vector
expansion for z,, = C,,(G)z as

Zmi1 = 2k1Dzp + 2KoZiy — Zmets 20 = Z; 21 = k9Dz + kyz.  (E)

Although calculation of Sy, according to Equation B requires

a series of matrix—-matrix multiplications of complexity
O(N3), the expansion of yy, defined by Equations C and E in-
volves only matrix-vector multiplications, an O(N?) process.

The Chebyshev coefficients for the expansion of a func-
tion g(A) are given by

M
an =3 9A) e () /e’ G}
1=0

where the A; are distributed according to
Rj +1 gm0
K =cosf—— G
j =cospe—T 5 H (G)

In Equation F, c¢y,(A)) represents the mth Chebyshev poly-
nomial for the scalar case:

Crr1(A) = 27 Cn) = Cra); CoA) = 15 ca(A) = A (H)

The function g(};) is the square root function, scaled by the
factors introduced in Equation A:

o -k,

A) =
a(4;) Ak B - [0)
We determine the scaling factors k; and k; so that*

KiAmax + ko =1 )
KiAmin + ko = -1

where Anax @and Apin are reasonable upper and lower
bounds on the eigenvalues of D.
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because the system size in terms of beads is not
large (several hundred, see Table 1). However,
we can realize greater CPU gains for larger sys-
tems. The Chebyshev alternative to the
Cholesky factorization also opens the door to
other BD protocols (such as our recent inertial
BD idea)*®*’ and is crucial to BD studies of finer
models, such as those that are base-pair-based
rather than bead-based. Now that the BD com-
putational bottleneck is reduced to electrostatics
and hydrodynamics (O(N?) for both), fast electro-
static methods help accelerate computation fur-
ther, especially for the chromatin system,’! where
the number of charges is much greater than the
number of hydrodynamic variables or beads.

e have witnessed considerable

progress over the past two

decades in simulating the dy-

namics of DNA, both on the
all-atom and macroscopic levels.%” It was only in
the early 1990s that we could simulate stable, fully
solvated models of DNA oligonucleotides with
traditional MD methods. Both improved force
fields and longer-range electrostatics modeling
created these advances. Although such improve-
ments continue, this success has opened the door
to investigating many of DNA’ subtle sequence-
dependent properties that are key to regulatory
biological processes. The notion of DNA as a pas-
sive partner to protein interactions has largely
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been discarded in favor of the view of DNA as an
important influencing factor on these processes.
Ongoing advances in time-step integration (see
Table 1), configurational sampling, and efficient
implementation of MD programs on parallel ar-
chitectures will continue to push the capabilities
of DNA and DNA-protein modeling toward ex-
perimental time frames. (Of course, these meth-
ods are general and also applicable to proteins).
The parallel studies focusing on DNA struc-
ture and kinetics on scales much greater than its
persistence length require different algorithmic
tools to capture DNA’ inherent floppiness and
strong dependence on the ionic concentration
and solvation. Researchers have applied Monte
Carlo and Langevin and Brownian dynamics to
these problems, but they encounter computa-
tional bottlenecks too. To study kinetic processes
of supercoiled DNA, which are largely unre-
solvable by traditional experimental techniques,
these algorithms must be accelerated and broad-
ened in scope. For example, we can replace the
traditional O(N?) treatment of the random force
in BD simulation with a more economical O(N?)
procedure involving Chebyshev polynomials to
allow the study of much larger DNA systems or
more refined models where each bead represents
a specific base pair. This finer resolution is im-
portant for modeling sequence-dependent bend-
ing and twisting deformations as observed ex-
perimentally (hence appropriate elastic constants
can be derived). This enhanced resolution will
undoubtedly develop significantly in the next
decade. A related review of collective-variable
modeling for nucleic acids appears elsewhere.*
Ultimately, we must bridge the all-atom and
polymer-level representations, but this merging
is technically challenging. Hybrid approaches
such as those that eliminate the explicit repre-
sentation of the solvent molecules through the
use of generalized Born potentials hold great
promise.**? At the spectrum’s other end, intro-
ducing quantum degrees of freedom through hy-
brid molecular mechanics—quantum mechanics
should broaden the scope of problems that we
can study.® To be sure, in all these exciting stud-
ies, computational scientists will continue to play
a key role in advancing our understanding of
macromolecular structure and function. &

The work on DNA supercoiling started with Wilma Olson,
and the recent work on site juxtaposition is in collaboration
with Alex Vologodskii. We gratefully acknowledge support
from the National Science Foundation (ASC-9157582,

ASC-9704681, BIR-9318159), the National Institutes of
Health (RO1 GM55164), and a John Simon Guggenheim
fellowship. Tamar Schlick is an investigator at the Howard
Hughes Medical Institute. (See group papers at http://
monod.biomath.nyu.edu/.)
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