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Abstract We describe a rapid algorithm for visualizing large chemical databases in a
low-dimensional space (2D or 3D) as a �rst step in chemical database analyses and drug
design applications. The compounds in the database are described as vectors in the
high-dimensional space of chemical descriptors. The algorithm is based on the singular
value decomposition (SVD) combined with a minimization procedure implemented with
the e�cient truncated-Newton program package (TNPACK). Numerical experiments show
that the algorithm achieves an accuracy in 2D for scaled datasets of around 30 to 46%,
re
ecting the percentage of pairwise distance segments that lie within 10% of the original
distance values. The low percentages can be made close to 100% with projections onto a
ten-dimensional space. The 2D and 3D projections, in particular, can be e�ciently
generated and easily visualized and analyzed with respect to clustering patterns of the
compounds.
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tion, drug design.

1 Introduction

The �eld of combinatorial chemistry was recognized by Science as one of nine areas of
study in 1997 that have great potential to bene�t society [30]. The systematic assembly
of chemical building blocks to form potential biologically-active compounds and their rapid
testing for bioactivity has experienced a rapid growth in both experimental and theoretical
approaches [4]. As experimental synthesis techniques are becoming cheaper and faster, huge
chemical databases are becoming available for computer-aided design, and the development
of reliable computational tools for their study is becoming more important than ever.



The speci�c computational problems involved in chemical libraries can be associated
with certain mathematical disciplines. Library characterization involves the tools of
multivariate statistical analysis and numerical linear algebra (see below for speci�c applica-
tions). The similarity problem in drug design involves �nding from the database a drug
that binds to a speci�c target or a drug that is similar to another drug with known bioac-
tive properties. This search can be performed using 3D structural and energetic searches
or using the concept of molecular descriptors introduced below. In either case, multivariate
nonlinear optimization and optionally con�gurational sampling is involved. The diversity
problem in drug design involves de�ning the most diverse subset of compounds within the
given library. This problem is a combinatorial optimization task, and is known to have a
non-polynomial time complexity [8, 24].

Typically, these combinatorial optimization problems are solved by stochastic and heuris-
tic approaches [26]. These include genetic algorithms, simulated annealing, and tabu-search
variants. As in other applications, the e�ciency of simulated annealing is strongly depen-
dent of the choice of cooling schedule and other parameters. In recent years, several poten-
tially valuable annealing algorithms such as deterministic annealing, multiscale annealing,
and adaptive simulated annealing have been extensively studied.

In special cases, combinatorial optimization problems can be formulated as integer pro-
gramming and mixed-integer programming problems [8, 24, 17]. In this approach, linear
programming techniques such as interior methods, can be applied to the solution of com-
binatorial optimization problems, leading to branch and bound algorithms, cutting plane
algorithms, and dynamic programming techniques. Parallel implementation of combina-
torial optimization algorithms is also important in practice to improve the performance
[26].

One way to analyze a database of n potential biologically active compounds (drugs) is
to characterize each compound in the database by a list of m chemical descriptors. These
variables re
ect atom connectivity, molecular topology, charge distribution, electrostatic
properties, molecular volume, and so on. These descriptors can be generated from several
commercial packages such as the popular Molconnx program [1]. Assigning associated
biological activity for each compound (e.g., with respect to various ailments or targets, which
may include categories like headache, diabetes, protease inhibitors) requires synthesis and
biological testing. Hence, analyses of chemical databases (such as clustering, similarity, or
dissimilarity sampling) can be performed on the collection of m-dimensional real vectors in
the space Rm. However, due to large size of the dataset, some database-analysis tasks (say
the diversity problem) are extremely challenging in practice because exhaustive procedures
are not realistic. Any systematic schemes to reduce this computing time can be valuable.

In this paper we describe an algorithm that produces rapidly two-dimensional (2D) or
3D views of the compounds in a chemical database for clustering analysis. This visualiza-
tion problem is often formulated as a distance-geometry problem: �nd n points in 2D (or
3D) so that their interpoint distances match the corresponding values from Rm as closely as
possible. This approach was implemented by Sammon with the steepest descent (SD) min-
imization algorithm for clustering analysis in 1969 [28]. More recently, Sammon's method
has been applied to the analysis and 2D projection mapping of molecular databases [3, 27].
The SD algorithm with a randomly chosen starting point generally su�ers from slow conver-
gence and may generate a 2D mapping that poorly approximates the original distances. As



an alternative to the distance-geometry approach, a neural network procedure by Kohonen
{ the self-organizing map method [18] { has also been applied to the visualization of chem-
ical databases [6, 11]. This method usually de�nes a mapping based on a 2D regular grid
of nodes such that similar compounds are close to one other on the grid. Compared with a
distance-geometry mapping method, however, it is unclear how the distance relationships
of chemical database are preserved.

Our visualization algorithm consists of two parts. The �rst part de�nes a 2D projec-
tion mapping by the singular value decomposition (SVD) [15], a technique used for data
compression in many practical applications like image processing. This factorization, in
contrast to optimization, only requires the input (high-dimensional) data vectors; it has a
complexity of order O(n2m) 
oating point operation and O(nm) memory locations; no ini-
tial projection guess is needed. We �nd that the accuracy of the SVD mapping depends on
the distribution of the singular-value magnitudes: if the �rst two singular values are much
larger than the others, the 2D mapping has a high accuracy. This generalizes to mapping
in higher dimensions as well; that is, if the �rst ten singular values can be largely separated
from the rest, a 10D projection can be accurate. For scaled datasets as used in practice,
however, two or three dominant singular values cannot generally be found.

The second part re�nes the SVD projection based on the distance geometry approach
when the accuracy of the SVD projection is not satisfactory. Here, the SVD projection
is used as a starting point for the truncated-Newton minimization iterative method. De-
termining a good initial guess for a minimization algorithm is an important and di�cult
objective in the distance-geometry approach. Our new distance error objective function is
minimized with our e�cient truncated-Newton program package, TNPACK [29, 32]. We
call our algorithm the SVD/TNPACK method. This method is also described in [33], along
with other applications. The applications in this paper all involve a natural scaling of the
datasets rather than range-scaling as used in [33]. The projection analysis done here also
illustrates an application to diversity and similarity sampling and presents 3D in addition
to 2D projections.

We report numerical tests of the SVD/TNPACK procedure for two chemical datasets:
an arti�cial dataset made of eight groups of compounds with di�erent pharmacological
activities (ARTF) and a dataset of monoaminooxidase inhibitors (MAO). ARTF and MAO
contain 402 and 1623 compounds, respectively. All compounds in these datasets have been
characterized with 312 topological descriptors. In addition, the MAO dataset has also been
characterized by 153 binary descriptors (MAO01). Since the various chemical descriptors
vary drastically in their magnitudes as well as the variance within the dataset, scaling
is important for proper assessment of distance relationship. Given no chemical/physical
guidance, we consider a natural scaling procedure for ARTF and MAO, such that all scaled
chemical descriptors have a mean of zero and a standard deviation of one.

For these scaled databases, SVD alone produced poor 2D projections (e.g., only about
0:004% of the distance segments are within 10% of the original distances for MAO01), and
the TNPACK minimizations that follow SVD become crucial (e.g., TNPACK increased this
number 0:004% to 30% in less than one minute on an SGI R10000 processor). We also
�nd that a larger number than three of the projection space is required to reach higher
accuracy. Namely, the accuracy can be improved to 96% when the dimension number of
the projection space is increased from two to ten for both scaled ARTF and MAO.



Numerical results also show that SVD is very fast: the computational time is one second
for ARTF (402 compounds) and six seconds for MAO (1623 compounds) on an SGI R10000
processor; TNPACK is also very e�cient (several minutes), and much more e�cient than
SD.

In section 2, we describe a mathematical framework for analysis of chemical datasets.
Sections 3 describes the SVD/TNPACK method. Section 4 presents the numerical results
and chemical structure analyses for the scaled datasets. Conclusions are summarized in
Section 5.

2 Mathematical framework for analysis of chemical databases

We consider a database S of n potential biologically active compounds (drugs), where each
compound is described by a list of m chemical descriptors. Thus, we can express the
database S as a collection of n vectors

S = fX1;X2; : : : ;Xng ;

where vector Xi = (xi1; xi2; : : : ; xim)
T denotes the i-th compound in S, and the real numbers

fxikg are values of the associated chemical descriptors.
The database S can also written as a rectangular matrix X by listing, in rows, the m

descriptors of the n compounds:

X = (X1;X2; : : : ;Xn)
T =

2
66664

x11 x12 � � � x1m
x21 x22 � � � x2m
...

...
. . .

...
xn1 xn2 � � � xnm

3
77775 : (1)

This rectangular matrix typically has n� m for large databases, where n may be of order
million.

To measure the similarity or diversity for each pair of compounds Xi and Xj , we de�ne
distance quantities �ij on the m-dimensional vector space Rm. The simplest one is the
Euclidean distance:

�ij = kXi �Xjk =

vuut mX
k=1

(xik � xjk)2; (2)

where k � k denotes the Euclidean norm. There are n(n� 1)=2 distance segments f�ijg in S
for pairs i < j.

Scaling may be important for proper assessment of distance quantities because the vari-
ous chemical descriptors vary drastically in their magnitudes. Generally, scaled descriptors
fx̂ikg can be de�ned by the following formula: For k = 1; 2; : : : ;m,

x̂ik = ak(xik � bk); 1 � i � n; (3)

where ak and bk are real numbers, and ak > 0. They are called the scaling and displacement
factors, respectively.

In practice, however, it is very di�cult to determine the appropriate scaling and displace-
ment factors for the speci�c application problem [34]. Given no chemical/physical guidance,



the following two scaling procedures are often used. The �rst modi�es each column of X
by setting

bk = min
1�i�n

xik and ak = 1=( max
1�i�n

xik � bk) for k = 1; 2; : : : ;m: (4)

This makes each column in the range [0; 1]. The second sets

bk =
1

n

nX
i=1

xik and ak = 1=

vuut 1

n

nX
i=1

(xik � bk)2 for k = 1; 2; : : : ;m; (5)

so that each scaled column of X has a mean of zero and a standard deviation of one. The
scaling procedure with (4) is also referred to as a standardization of descriptors. Both
scaling procedures (4) and (5) assume that no one descriptor dominates the overall distance
measures.

The distances f�ijg can be used in performing similarity searches among the database
compounds and between these compounds and a particular target. This task can be for-
mulated as �nding:

min
1�i�n

i6=j

�ij ;

where �ij = kXi � Xjk, and Xj is a given target. Note that each distance segment �ij
requires O(m) 
oating-point operations (
ops) to compute, an exhaustive calculation over
all n candidates requires a total of O(nm) 
ops. An e�ective scheme is sought when n and
m are large.

More di�cult and computationally-demanding is the diversity problem. Namely, we
seek to reduce the database of the n compounds by selecting a \representative subset" of
the compounds contained in S, that is one that is \the most diverse" in terms of potential
chemical activity. This problem naturally arises since pharmaceutical companies must scan
huge databases each time they search for a speci�c pharmacological activity. This molecular
diversity problem can be formulated as determining:

max
S0�S

X
Xi;Xj2S0

Xi 6=Xj

kXi �Xjk;

where each S0 contains n0 representative compounds (n0 � n, a �xed integer number).
This is a combinatorial optimization problem, an example of a very di�cult computational
task (NP-complete). An exhaustive search of the most diverse subset S0 requires a total
of O(Cn0

n n20m) 
ops because there are Cn0
n possible subsets of S of size n0 and each subset

takes O(n20m) 
ops. Here Cn0
n = n(n� 1)(n� 2) � � � (n� n0 + 1)=n0.

As a �rst step in solving such similarity and diversity problems, methods that produce
a low-dimensional projection view of the compounds can be used for clustering analysis.

Assume we have a mapping from Rm to Rlow that takes each point Xi 2 Rm to Yi 2
Rlow, where low� m. Typically the integer low is 2 or 3 but we use low > 3 in some cases
discussed below; the projection cannot be easily visualized for low > 3, but the compressed
matrix from X (n � low instead of n � m) can be useful in reducing computer time for



database applications. The intercompound distances for the vectors Yi and Yj is denoted
as d(Yi; Yj). We de�ne it as

d(Yi; Yj) =

vuut lowX
k=1

(yik � yjk)
2:

An ideal projection mapping will generate points fYig such that their distance values match
the original values, i.e., satisfy

d(Yi; Yj) = �ij (6)

for all fi; jg pairs. However, no such a mapping exists in general because the problem is
typically over-determined | �nding n � low unknowns fyikg satisfying n(n � 1)=2 equa-
tions of form (6). An optimal approximate mapping is thus sought based on the distance
geometry approach [25]. Speci�cally, an objective error function E to describe the dis-
crepancy between f�ijg and fd(Yi; Yj)g is constructed, and then we �nd a minimum point
Y � = (Y �

1 ; Y
�
2 ; : : : ; Y

�
n ) with Y �

i 2 Rlow for i = 1; 2; : : : ; n such that

E(Y �
1 ; Y

�
2 ; : : : ; Y

�
n ) = min

Yi2Rlow; 1�i�n
E(Y1; Y2; : : : ; Yn); (7)

where each Yi = (yi1; yi2; : : : ; yilow)
T . The objective function E can be formulated in many

di�erent ways [3, 25, 27]. Here we use the following expression:

E(Y1; Y2; : : : ; Yn) =
1

4

n�1X
i=1

nX
j=i+1

!ij
�
d(Yi; Yj)

2 � �2ij

�2
; (8)

!ij =

(
1=�4ij if �4ij � �;

1 if �4ij < �;

where f!ijg denote weights, and the parameter � is a small positive number such as 10�12.
The �rst and second derivatives of E are well de�ned, and an e�cient second-derivative
method like Newton-type algorithms [12] can be applied.

Various error measures can be used to assess the agreement between the original and
projected pairwise distances. Besides the value of the objective function E, we use the
following percentage � to measure the quality of the approximation of d(Yi; Yj) to �ij for all
pairs i < j:

� =
Td

n(n� 1)=2
� 100: (9)

The variable Td is the total number of the distance segments d(Yi; Yj) satisfying

jd(Yi; Yj)� �ij j � ��ij when �ij > dmin; (10)

or
d(Yi; Yj) � ~� when �ij � dmin; (11)

where �; ~�; and dmin are given small positive numbers less than one. For example, we set
� = 0:1 to specify a 10% accuracy (dmin = 10�12 and ~� = 10�8). The second case above
(very small original distance) may occur when two compounds in the datasets are similar
highly. The greater the � values, the better the mapping and the more information can be
inferred from the projected views of the complex data.



3 The SVD/TNPACK method

The SVD decomposition of the database rectangular matrix X (de�ned in (1)) as U�V T

can be written as the sum of rank-1 matrices [15]:

X =
rX

k=1

�kukv
T
k ; (12)

where r is the rank of matrix X (r � m), uk 2 Rn and vk 2 Rm, respectively, are left
and right singular vectors, and �k is the singular value. All singular values are arranged in
decreasing order:

�1 � �2 � : : : � �r > 0 and �r+1 = : : : = �m = 0:

Let uk = (u1k; u2k; : : : ; unk)
T . Using (12), we can express each vector Xi as a linear

combination of orthonormal basis vectors fvkg
m
k=1 of R

m:

Xi =
mX
k=1

�kuikvk =
rX

k=1

�kuikvk; i = 1; 2; : : : ; n

since �r+1 = : : : = �m = 0. Hence, the compound vector Xi is expressed in terms of new
coordinates

Xi = (�1ui1; �2ui2; : : : ; �ruir; 0; : : : ; 0)
T : (13)

Based on (13), we de�ne the low dimensional vector Yi as the natural projection of Xi

onto the subspace Rlow of Rm:

Yi = (�1ui1; �2ui2; : : : ; �lowuilow)
T ; i = 1; 2; : : : ; n: (14)

When the percentage � de�ned in (9) is not large enough, we improve the accuracy of
the SVD projection (14) by our truncated Newton program package, TNPACK [29, 32] by
minimizing the objective error function E de�ned in (8).

The truncated Newton method [9] consists of both outer and inner loops. The outer
loop de�nes a sequence of solution vectors fY kg expressed in the form

Y k+1 = Y k + �kP
k; k = 0; 1; 2; : : : ;

where Y k and P k are vectors of Rlow�n, P k is a descent direction, �k is the steplength, and
Y 0 is an initial guess. The inner loop de�nes P k by a \truncated" preconditioned conjugate
gradient scheme. The steplength �k is generated by using a line search scheme ([21], for
example).

TNPACK was �rst published in 1992 [29] and updated recently [32]. One of the features
of TNPACK is an application-tailored preconditioner matrix (that approximates the Hessian
of the objective function) used to accelerate convergence [31]. This novel preconditioner
makes TNPACK an e�cient tool for the minimization of molecular potential functions in
comparison to other available minimizers [10, 31]. For the present applications, we used
the new version of TNPACK [32] in combined with a simple preconditioner, namely, the



diagonal part of the Hessian, or terms @2E(Y1; Y2; : : : ; Yn)=@y
2
ik (for i = 1; 2; : : : ; n and

k = 1; 2; : : : ; low).
We use the SVD projection (14) as the starting point Y 0, and terminate TNPACK

iteration at Y k provided that it satis�es

jjg(Y k)jj < �g(1 + jE(Y k)j); (15)

where �g is a small positive number (we used 10
�5), and g is the gradient vector of E. Such

an Y k de�nes the SVD/TNPACK projection.

4 Numerical examples

Two datasets were used for testing our SVD/TNPACK scheme: MAO (n = 1623 and
m = 312) and ARTF (n = 402 and m = 312). ARTF merges eight di�erent groups of
molecules with di�erent types of pharmacological activities. Descriptors for ARTF and
MAO were generated from the software package Molconn-X [1]. We scaled descriptors
using scaling procedure (5), and deleted all zero columns of dataset matrix X. We thus
obtained dense rectangular matrices withm = 202 for scaled ARTF and m = 204 for scaled
MAO. We also considered MAO with binary descriptors, MAO01 (m = 153). The binary
descriptors were generated from the software MACCS II [20].

We used the NAG library [2] to compute the SVD of each dataset. For simplicity, we
used all default parameters of TNPACK [29, 32] for the minimization that follows the SVD
projection. The target accuracy � in (10) was set to 0.1. The termination rule for TNPACK
is (15) with �g = 10�5. All computations were performed in double precision on a single
R10000/195 MHZ processor of an SGI Power Challenge L computer at New York University.

Table 1 displays the performance of SVD and SVD/TNPACK in de�ning 2D mappings
for these datasets. The accuracy of 2D mapping is indicated by the percentage � de�ned in Table 1

(9) (i.e., the portion of the distance segments that are within 10% of the original distance
values). From Table 1 we see that both SVD and TNPACK are e�cient: computer CPU
time ranges from one second to seven minutes. SVD alone yields poor accuracies in terms
of distance preservation (� ranges from 0.004 to 25%). TNPACK greatly improves the SVD
projection in this regard (� ranges from 30 to 46%). Figure 1

To illustrate the reason why the 2D SVD mapping is poor for the scaled datasets,
Figure 1 presents the distributions of the normalized singular values �̂i on seven intervals:
(10�k; 10�(k�1)] for k = 1 to 6 and [0; 10�6]. Here the normalized singular values are de�ned
by

�̂i = �i= max
1�j�r

�j for i = 1; 2; : : : ; r:

From Figure 1 we see that most normalized singular values are not small for the scaled
datasets, implying that the �rst two singular values are not signi�cantly larger than the
others. Hence, the 2D mapping is poor for the scaled datasets. Figure 2

Figure 2 shows that the accuracy (i.e., the percentage � de�ned in (9)) of the SVD
and SVD/TNPACK projections for the scaled datasets can be improved sharply when the
number of dimensions (low) of the projection space is increased from two to ten. We also
found it useful to use higher-order SVD mappings for the purpose of selecting initial points
for minimization re�nement.



Table 2 compares the performance of TNPACK with that of the steepest descent (SD)
method since SD has been used in similar applications [3, 27]. Here both TNPACK and SD Table 2

used the same termination rule (15) and the same SVD starting point. Table 2 shows that
TNPACK is more e�cient (a factor of three) to �nd a minimum point. This e�ciency will
likely become more signi�cant as the database size n increases.

Table 3 compares the performance of TNPACK using the SVD projection as a starting
point with that using a randomly selected starting point. It shows that the SVD starting Table 3

point helps accelerate the minimization process signi�cantly, and generate better 2D map-
pings (smaller values of E). Again, the improvements are likely to be more more signi�cant
as n increases.

Figure 3 displays the 2D mappings of the scaled ARTF, the scaled MAO, and the binary
MAO01. These �gures also compare the plots of the 2D mappings generated by SVD alone Figure 3

and SVD/TNPACK (blue vs. red symbols). The SVD plots have been signi�cantly changed
by TNPACK so as to improve the distance values in 2D with respect to the original values. Figure 4

Figure 4a displays the distribution of eight chemical/pharmacological classes of com-
pounds in ARTF as a result of the 2D SVD/TNPACK mapping. The number of compounds
in each class is indicated in the �gure next the class name. One selected chemical structure
for each class is marked by a black circle and shown in Figure 5. Figure 5

Figure 6
Noting that the 2D mapping has several small subclusters and a few singletons, we

selected six spatially distant points (marked as A1 to A6) from di�erent pharmacological
classes on Figure 4b. See Figure 6 for their chemical structures. This is an application
of the projection to the diversity sampling problem. Note that even within one family the
chemical structures may di�er. As an application to the similarity problem, we also selected
three spatially close points (B1 to B3) from the same H1 ligand class on Figure 4b. Their
similar chemical structures are presented in Figure 6. Figure 7

Finally, we generated the 3D SVD/TNPACK mapping for the scaled ARTF. As ex-
pected, the accuracy of the 3D mapping is higher than the 2D mapping (� = 63:46% for 3D
while � = 46 for 2D with � = 0:1). Four di�erent views of the 3D mapping are displayed in
Figure 7; a single point corresponding to A1 in Figure 4b was removed for better resolution.
From these �gures we see that the 3D mapping is quite similar to the 2D mapping: the
ecdysteroids (red spheres in 3D and red triangles in 2D) and the AChE inhibitors (green
spheres in 3D and green squares in 2D) classes continue to appear separate from the rest
and a strong overlap between D1 agonists, D1 antagonists, H1 ligands, and 5HT ligands
persists.

5 Conclusions

We have presented a mathematical framework for analysis of chemical databases. Our
SVD/TNPACK method is easy to implement and e�cient to use in visualizing large chem-
ical databases in a low-dimensional space (2D or 3D).

The scaled databases make it di�cult to calculate 2D/3D projections that approximate
well the original distance distributions. This is because all scaled descriptors lie within the
same range and there are in general no dominant singular values. However, we showed that
higher-accuracy projections can be obtained for these scaled datasets when the projection
dimension is increased from two to ten or so. Though these higher-dimensional projections



are not easily visualized, the compression of the dataset descriptors can be advantageous in
further applications of the compound library (e.g., diversity sampling) as shown here.

When the intercompound distances in 2D/3D approximate the original distance rela-
tionships well, the 2D/3D projection o�ers a simple visualization tool for analyzing the
compounds in a large database. We emphasize that these analyses depend on the quality
of the original descriptors, an area of research on its own [7]. These clustering analyses can
serve as a �rst step in the study of related combinatorial chemistry questions dealing with
large chemical databases, and we hope to examine these possibilities in future work. It will
also be important to compare our SVD/TNPACK method to the neural network procedure
of Kohonen, both in terms of resulting projection accuracy of clustering and computing
performance. Figure 8 shows a mapping of 32 5D-vectors by our SVD/TNPACK vs. Ko- Figure 8

honen map, where we used the same data set and Kohonen map �gure as given in [18],
page 114. For comparison, a reference tree, the so called minimal spanning tree (where the
most similar pairs of points are linked) [18], is also displayed. The SVD/TNPACK and
Kohonen maps have similar clusters with di�erent patterns. However, the SVD/TNPACK
map appears more similar to the reference tree.

Further work is also needed on extending our SVD/TNPACK approach to large chem-
ical datasets. The huge database might be subdivided as dictated by computer memory,
and the SVD/TNPACK procedure applied to each data subset. To properly assemble these
sub-2D-mappings for the purpose of de�ning a global 2D-mapping, techniques to overlap
the database segments will have to be devised. We intend to discuss this extension scheme
in detail in our subsequent work. We invite interested readers to contact us about experi-
menting with our projection software SIEVER (SIngular Values and Error Re�nement).
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Table 1: Performance of the 2D SVD and SVD/TNPACK (TN) mappings. Here E is the
minimization objective function de�ned in (8), and � the percentage de�ned in (9), which
measures the quality of the approximation of the 2D mapping

Datasets E � TN CPU time
SVD TN SVD TN Itn. SVD (sec.) TN (min.)

ARTF 7:06� 103 2:77� 103 25.91 45.95 31 1.18 0.45

MAO 1:31� 105 5:41� 104 5.51 43.94 33 6.24 7.49

MAO01 2:4� 105 9:79� 104 0.004 29.10 11 3.65 0.77

Table 2: Comparison of TNPACK versus SD for minimizing E

Method Final E Final kgk Iterations CPU time (min.)

ARTF
SD 2:77 � 103 2:77 � 10�3 1375 1.17

TNPACK 2:77 � 103 1:05 � 10�4 31 0.45

MAO
SD 5:42 � 104 5:42 � 10�1 1768 26.35

TNPACK 5:41 � 104 2:21 � 10�1 33 7.49

Table 3: Comparison of TNPACK minimization using the SVD mapping as a starting point
(SVD) versus a randomly selected starting point (RAN)

Starting point X0 Final E Final kgk Iterations CPU time (min.)

ARTF
SVD 2:77 � 103 1:05 � 10�4 31 0.45

RAN 2:87 � 103 1:44 � 10�2 61 0.91

MAO
SVD 5:41 � 104 2:21 � 10�1 33 7.49

RAN 5:55 � 104 3:14 � 10�1 133 25.83
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Figure 1: The distribution of the normalized singular values f�̂ig
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Figure 2: The percentage � de�ned in (9) increases with the number of dimensions of the
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Figure 5: Chemical structure representatives for the eight classes of ARTF (see Figure 4a)



Figure 6: Chemical structures for the diversity and similarity applications of the 2D
SVD/TNPACK projection for ARTF (see Figure 4b)
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Figure 7: Four di�erent views of the 3D SVD/TNPACK mapping for ARTF
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Figure 8: Comparison of SVD/TNPACK versus the Kohonen methods


