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A rapid algorithm for visualizing large chemical databases in a low-dimensional space (2D or 3D) is presented
as a first step in database analysis and design applications. The projection mapping of the compound database
(described as vectors in the high-dimensional space of chemical descriptors) is based on the singular value
decomposition (SVD) combined with a minimization procedure implemented with the efficient truncated-
Newton program package (TNPACK). Numerical experiments on four chemical datasets with real-valued
descriptors (ranging from 58 to 27 255 compounds) show that the SVD/TNPACK projection duo achieves

a reasonable accuracy in 2D, varying from 30% to about 100% of pairwise distance segments that lie within
10% of the original distances. The lowest percentages, corresponding to scaled datasets, can be made close
to 100% with projections onto a 10-dimensional space. We also show that the SVD/TNPACK duo is efficient
for minimizing the distance error objective function (especially for scaled datasets), and that TNPACK is
much more efficient than a current popular approach of steepest descent minimization in this application
context. Applications of our projection technique to similarity and diversity sampling in drug design can be
envisioned.

1. INTRODUCTION determined-there aren(n — 1)/2 distances but onlyr2(3n)
) ) ) Cartesian coordinates for a system rofcompounds-an
The dramatic growth of chemical databases in recent optimal approximate projection mapping is sought. This

years-largely due to advances in combinatorial chemistry inyolves defining and minimizing a distance error objective
and high throughput screenfigdemands new methods for  ¢,nction.

database analysis and representation. Compounds in chemical 1,4 distance-geometry problem has many important
databases are conventionally characterized by mOIecmarapplications in molecular structure studfé&® but it is

descriptors” that reflect chemical connectivity, charge dis- difficult to solve. Only a local solution can usually be

tFribution, shape, p?y;ical qttribute;, and othgr' péloper.tliaesd obtained, and a good starting point is important. See refs 6,
rom a geomelrical viewpoint, each compound Is describe 9, and 11 for theoretical analysis and numerical algorithms

as armmdimensional vector whose coordinators are moleculqr related to the distanesgeometry problem.

descriptors. Therefore, analyses of chemical databases in- Recently, a distaneegeometry approach has been applied
volvg _cluste.ring, similarity,. or dissimilarity sampling of to the anaiysis and 2D projection mapping of molecular
multidimensional vector objects. database$!>1"The algorithm was classified as the nonlinear
In many applications of database analysis, it is important mapping” or Sammof method. The Sammon method uses
to study the distance relationships among the compoundsthe steepest descent (SD) minimization algorithm and a
(points) in the dataset. Such analyses can be facilitated byrandomly chosen starting point. This approach may suffer
mapping these compounds from the high-dimensional spacefrom slow convergence and may generate a 2D mapping that
onto a two- or three-dimensional (2D or 3D) vector space poorly approximates the original distances when the number
so that the clustering patterns (distance relationships) canof compounds is large. Thus, finding a good initial guess
be observed visually. The projection mapping is often for the mapping is an important and difficult objective.
formulated as a distanegeometry problem: fingh points In this paper, we define a low-dimensional projection
in 2D (or 3D) so that their interpoint distances match the mapping by thesingular value decompositioSVD),1° a
corresponding values from therdimensional space as technique used for data compression in many practical
closely as possible. Since this problem is typically over- applications such image processing and code deciphering.
It is a factorization of rectangular matrices that reduces to
3116TOFWh-0n; f;rrgeggfﬂdseznclg sholyld t;? iddresseg- Phone: (212) 998-the usual spectral (eigenvalue) decomposition when the
Tl\iev?)\((‘osk Ur)1iversity and th@ﬂbﬁgrdlagﬂgg-iﬂ;dical Institute. ma.m(.:es. are Square'. This f.aCtO”Z.at'on'. n qomraSt to
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in the mdimensional space. We find that the accuracy of within 10% and 20% of the original distance values,
the SVD mapping depends on the distribution of the singular respectively. We also show that the accuracy of SVD and
value magnitudes: if the first two singular values are much SVD/TNPACK projections can be improved sharply when
larger than the others, the 2D mapping has a high accuracythe dimension number of the projection space is increased
This generalizes to mapping in higher dimensions as well; from two to five or ten.
that is, if the first 10 singular values can be largely separated Finally, analysis of the 2D projections in terms of chemical
from the rest, a 10D projection can be accurate. structure similarity reveals that points that are close together
To achieve higher accuracy than obtained by the projectionin the 2D mapping have similar chemical structures and vice
alone, we supplement the SVD projection by minimization versa.
of a new distance error objective function. This minimization =~ The remainder of the paper is organized as follows. In
is performed with TNPACK (our truncated-Newton program section 2, we formulate the mapping problem and the
package}&21 With the SVD mapping as the starting point, projection assessment in terms of distance functions (errors).
TNPACK can efficiently generate a low-dimensional map- Sections 3 and 4 outline, respectively, the SVD-based
ping that approximates the original distance relationships. mapping and our distaneggeometry algorithm using
The minimization component is especially important when TNPACK to supplement the SVD mapping. Section 5
SVD alone does not provide a sufficiently accurate mapping presents the numerical results and preliminary chemical
(in terms of matching the original distance relationships). structure analyses for both scaled and unscaled datasets.
Numerical experiments are reported on four chemical Conclusions are summarized in section 6.
datasets (ranging from 58 to 27 255 compounds). These
datasets represent compounds with different types of biologi- 2. FORMULATION OF THE MAPPING PROBLEM
cal activity. They include estrogens (ESTR), an artificial
dataset made of eight groups of compounds with different
phramacological activities (ARTF), monoaminooxidase in- S={Xy, Xy, ... X}
hibitors (MAQ), and pesticides (PEST). All compounds in
these datasets have been characterized with topologicalvhere each vectaX, = (X1, X2, ..., Xm)" consists of them
descriptors. In addition, the MAO dataset has also been descriptors]x}, which are real numbers. We now define
characterized by binary descriptors (M&Q Each com- the distance quantitie§; andd; corresponding to vectors
pound vector in these datasets has 312 components excefih the original R™ and projected (e.gR? spaces.
for ESTR, which hasn = 308. For these datasets, we report  From those descriptors, similarity between each pair of
results for both scaled and unscaled data. While scalingcompoundsX; and X; can be described by the following
remains an unresolved issue in the fi¢gldye scaled the  Euclidean distance
descriptors to the same unit range scale assuming that no
one descriptor dominates the overall distance measures. il 211/
We find that, for the unscaled data, the SVD alone 0y = [Z(Xik_xjk)] (1)
generates an excellent 2D projection: For ESTR, ARTF, and k=
MAO, about 99% of the distance Segments are within 10% There arm(n — 1)/2 distance Segmen{ﬁij} in S for pairs
of the original distances; for PEST (27 255 compounds), the j < j.
corresponding value is 74%. Moreover, SVD is very fast:  Assume we have a mapping froR™ to R°" that takes
the computational time ranges from 0.08 to 8 min for these gach pointx, € R™to Y; € R, wherelow < m. Typically
four datasets (on an SGI R10000 processor). The decomposithe integelfow is 2 or 3, but we uséow = 10 in some cases
tion has a complexity of ordeO(n’m) floating point  gjiscussed below; the projection cannot be easily visualized
operations an@®(nm) memory locations. Though TNPACK  for jow > 3, but the compressed mat@ from S (n x low
offers only marginal improvements when the SVD mapping instead ofn x m) can be useful for other database

alone has a high accuracy, it is very fast, requiring from 1 s appjications. The corresponding interpoint distances for the
to 27 min for the ESTR, ARTF, and MAO datasets, vectorsy, = (yil, Yizy vees Yilow)T is denoted ag(Yi’Yj)’ where

respectively. TNPACK minimization is also far more ef-
ficient than the steepest descent minimization (38 times faster low 21112
for ESTR and about 110 times faster for MAO), the method d(y,y) = [Z(yik =¥l
used in refs 4 and 17. k=

For the scaled datasets, of which the binary MAO  an ideal mapping will generate poinfs} that match the
database serves as an extreme case, we find in contrast tthriginal values, i.e., satisfy
it is much more difficult to define a satisfactory 2D mapping ' '
by SVD alone. Since the first two SVD values are usually d(Yi!Yj) = aij (2)
not much larger than the others in the scaled cases, the
resulting 2D SVD projections can be poor approximations. for all pairsi < j. However, no such mapping exists in
However, the TNPACK minimizations that follow SVD general because the problem is typically overdetermined
become crucial. For example, the 2D SVD mapping of finding n x low unknowns{yy} satisfyingn(n — 1)/2
MAQy; only has about 0.004% of the distance segments equations of form (2). An optimal approximate mapping is
within 10% of the original distance values. TNPACK thus sought®
increased this number to 30% in 1 min of CPU time. For We now define various error measures to assess the
the other scaled datasets, the 2D SVD/TNPACK mappings relationship between the original and projected pairwise
have up to about 43% and 80% of the distance segmentsdistances. Following ref 16, we use the relative error

We express the datasgtas a collection of vectors
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expression as one measure of the quality of the approximation
of d(Y.,Y]) to (Siji

X11 X2 o Xim
_ T_ X1 X2 oo X
X=X, Xo, o, X)) =[50 o

'min (3) X %n2 oo Xam

d(Y;,Y) =€ when d; =< dy, 4) Typically, n> mfor large datasets. The SVD decomposition
of X can be written as

whereg, €, anddn, are given small positive numbers of less
than 1. For example, we set= 0.1 to specify a 10% X=UzV'

accuracy @min = 1072 andé = 1078). The second case above ,
(very small original distance) may occur when two com- WheréUn., and V. are the orthogonal matrices:
pounds in the datasets are highly similar.

The total numberfTy of the distance segmentXY;,Y;)
satisfying (3) or (4) reflects the distance preservation of our
mapping. We define the percentage of the distance
segments satisfying (3) or (4) as

U=(u, U, ..,u) and V= (v, vy ..., V)

whereu; € R" and »i € R™ The diagonal matrixZ,«m
contains the singular values arranged in decreasing order:

z=diad oy, 0, ...,0.}

Ty
p= n(n — 1)/2 x 100 ®) whereo; = 07 = ... = 0, andoy41 = ... = o = 0. Thus, X
can be written as the sum of rank-1 matrices:
The greater the values, the better the mapping and the more .
information can be inferred from the projected views of the X=S ouu’ (8)
. . ) . KUV

complex data (assuming the original distances are meaning- k;
ful).

We also use the following “average relative error” to assess A rank-« approximation can be written ¥s
the mapping:

K

X =Y ouup IIX* — Xl =0,
0 d(YY) = 02 2 Ok o
i=1j=rF1 5ij2 Let ux = (U, Uz, ..., Un " ande be ann x 1 unit vector
error, = (6) with 1 in theith component and O elsewhere. The inner
n(n — 1)/12 productuje = ux. Using (8), we then express each vector

] ) . X as a linear combination of vectofi} ,_;:
wheredj in the denominator is replaced by 15§ < dmin.

In addition, we consider the “average absolute error” used r m
in ref 17: X =X'g = Zlak(ulel)uk= Z"k“ik”k’ i=1,2,..n
K= K=
n—-1 n ) m
Z d(Y,,Y) — 6, [ 12 wheregr+1 = ... = om = 0. Hence, with{v} -, as a new
&1 4T J ) orthonormal basis oR™, we expressX; in terms of new
error, = (7) coordinates
n(n — 1)/2

o _ _ _ _ X = (04U, Oplig, ...y O, U, O, ..., OF
The objective functior for distance refinement used in our
minimization phase is defined in section 4 (see 15)). The corresponding Euclidean northll of X, IIXIP =
Y e X, is written as
3. SVD-BASED PROJECTION

r
SVD is a technique for data compression used in image ||)(i||2 = Zl(aku”‘)z 9)
processing and code deciphering. Essentially, SVD is a =
fractorization for rectangular matrices that reduces to the
eigenvalue decomposition when the matrices are square. SvD We now use SVD to define tHew-dimensional mapping
defines two orthogonal coordinate systems (for the domain Vector Yi of X as the natural projection ok onto the
and range of the matrix) with corresponding singular values Subspace spanned by the basis vecters., ..., viow
{a}. Data compression can be achieved by expressing the ow
matrix elements in terms of the components corresponding Y =N o
to « nonzero singular values rather thanralialues ¢ is the ' k; Koikk
matrix rank). When those singular valuesd; = 0, > ... >
o,) are significantly larger than the remaining ones.{ = for each compound so thaty; can also be written as a vector
Oe+2 = ... = 0y), the rankk approximation is good. of Rlow:

In our context, we construct a rectangular matixby
listing, in rows, them descriptors of the dataset compounds: Yi = (01Uiy, O3lhig, .., OiguUiion) (10)
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The projected vecto; is alow-dimensional approximation
of X with the following relative error expression:

r I1/2

2
o

Dl B

f=——=[1-|1+ (11)

S ] low ,

(o)
When the firstlow sihgular valukezs dominate the rest,

the term Z:f’:wl(okuik)z becomes much larger than the term
Y ketows1(0kUK)?, resulting in small relative errorg for all
l=<i=n

Let S be the collection of these mapped vectors from
S: S ={Yy, Ya ..., Yn}. The error approximation & with
respect to the original datasétcan be described by the
average relative erraf:

£= (3 5)n 12)

If the above average relative erdis sufficiently small (such
as ¢ =< 0.1), the mappingS defined by SVD preserves
approximately the distance relationships amongitibhemi-
cal compound$Xy} of S otherwise, this projection can serve
as a starting point for further refinement. Even this achieve-
ment is significant since selecting the starting point is difficult
in distance-geometry problems. It is often selected ran-
domly %17 |eading to large computational time for conver-
gence and affecting the local solution obtained.

Further, we can write the distance segmedjts= IlY; —
Yill and oy = IIX; — Xl as follows:

low

_ 2 2112
dj = [kZIUk (U — U1 and
r
_ /
0y = [kZ‘Okz(uik - jk)z]l 2

Clearly, dj is an approximation ob; with the following
relative error expression:

I r ! -1/2
S —d Z o (U — ujk)2
ij ij k=low+1
=1- 13)
6ij low 5 5
zlak (Ui — Uy
k=
] [
whered; < oj, anddj; is assumed to be positive. Thus, if

the first low singular values dominate the rest, the above
relative error becomes small for &l j, implying that the
low-dimensional distance; is a good approximation of the
original distance);.

4. TNPACK REFINEMENT FOLLOWING THE SVD
PROJECTION

When the percentage defined in (5) (or the errog
defined in (12)) is not satisfactory, we formulate an objective
functionE and minimize it by our truncated-Newton program
package, TNPACK?2! Specifically, we seek a projection
refinement takingy* to Y such that

XIE ET AL.

E(Y*) = min E(Y)

YeRown

(14)

where the objective functiok(Y) is defined by

n—-1 n

EY) = W4 3 oyldVy)"— o (15)
i=1 j=1+1

Here,Y = (Yl, Yo, ..., Yn)T e Rown with Yi = (yil, Vi2y vy
yiow) for i = 1, 2, ...,n, and the weight§w;} are set as
wij = Uo*if 0;* = n andw; = 1 if oj* < 5. The parameter

7 is a small positive number such as 10 Equations similar

to (15) have been reported (for example, in ref 17) with
various weight choices.

Since E is a simple polynomial function ofY, its
derivatives are well defined at every vectorRP*", and a
second-derivative method such as TNPACK can be applied
efficiently. One of the features of TNPACK is an application-
tailored preconditioner matrix (that approximates the Hessian
of the objective function) used to accelerate convergéhce.
For the present applications, however, we only used a simple
diagonal preconditioner, namely, terd®&(Y)/dyi? (i = 1,

2, ..,nfork=1, 2, ...,low).

Various objective functions have been reported in the
literature for the distancegeometry problem. A typical one
follows:

n—1 n

E(Y) = Z 6Uij|d(Yian) - 6ij|2 (16)
1=1 j=1+1

where{w;} are weights (refs 4 and 16, for example). Using
our E of (15) instead oE defined in (16) can be numerically
advantageous since the potential problem of a near-zero
denominatord(Y;,Y;) term indE(Y)/dyi) can be avoided. The
two functions are also closely related. Fgr> 0, we have

|d(Yiin) - 5ij|2 i |d(Yi1Yj) - 5ij|2|d(Yian) + 6ij|2
of &G + o
_1dOYY)* - ofF _1d(Y,Y)® — 6717
5i12|d(Yiij) + 5ij|2 - 5ij4
Hence, if

d(Y,.Y)? = 6,77
- <

2
2 <

the relative error inequality (3) holds.

5. NUMERICAL EXAMPLES

The compound datasets used for testing our mapping
approach are as follows: ESTR+£ 58 andm= 308), MAO
(n = 1623 andm = 312), MAQy; (n = 1623 andm = 153,
binary descriptors), and PESH € 27 255 andn = 318).
We also constructed dataset ARTH= 402 andm = 312)
by merging eight different groups of molecules with different
types of pharmacological activities. Binary descriptors for
MAOQ,; were generated from the software MACCSMl.
Descriptors for PEST and other datasets were calculated by
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Table 1. Performance of the 2D SVD and SVD/TNPACK (TN) Mappifgs

llgll no. of TN CPU time
dataset SVD TN SVD TN iterations SVD TN
Unscaled
ESTR 1.29 0.024 2.65% 1073 9.12x 10°© 50 0.08 s 1.03s
ARTF 45.8 3.04 498 1073 3.21x 10°° 72 2.66 s 1.95 min
MAO 573.3 298.3 2.75 1072 2.81x 1073 83 7.62s 24.08 min
PEST 8.41 min
Scaled
ESTR 2.18x 12 6.53x 10* 2.17x 1% 3.86x 104 20 0.07s 0.40s
ARTF 8.66x 10* 2.92x 10 1.49x 10° 1.92x 102 57 1.16s 25.31s
MAO 1.82x 10° 6.06 x 10* 8.35x 10° 4.54x 101 201 5.62s 24.66 min
MAQo; 2.4x 10P 9.79x 10¢ 3.79x 1¢° 9.59x 10t 11 3.65s 46.46 s
PEST 6.76 min

aE is the minimization objective function defined in (15).

Table 2. Error Estimates of the 2D SVD and SVD/TNPACK

using the software package MolconA-Znd Molconn-X? ,
Mapping$

respectively.
We considered both unscaled and scaled datasets for ourdataset ¢ P
analyses. We scaled the descriptpxg} to the same unit SVD Alone for Unscaled Datasets

€0l error erron

range scale using the following formula for each colymn  ESTR  0.08 9897 6.0410* 1.25x 10 257x 10!
ARTF 005 98.97 2.6%10% 1.55x10* 4.19x 102
SV MAO 0.12 99.48 3.9% 10* 275x 10°° 6.92x 1073

% = X T King g o (17) PEST 0087 7400 0.1620

! Xmaxj - Xmin,j SVD Alone for Scaled Datasets

ESTR 0.38 847 0.4202 1.37102 4.22x 102
o T O Sre Thosng WSS 05 T ke ddsdor b
proce_dure (17) is often referred to as a _standard|_zat|on of MAOo, 070  0.004 0.6477 572 104 3.47x 10

descriptors. It assumes that no one descriptor dominates theoest 915 1179 06314

overall distance measures, an_d is widely _used in practice. SVDITNPACK Duo for Scaled Datasets

We have also considered a different scaling procedure in ggtr 3854 0.2047 6.29 1023 2.05x 102
ref 22, where we found results to be slightly better than those ARTF 4326  0.1679 8.7% 104 2.52x 1073
reported here. Throughout the figures we use the superscriptMAO 38.72  0.2397 225 10* 5.65x 10
29.10 0.3729 34610 1.99x 1073

S notation with the dataset name to indicate scaling; no MAOo
superscript implies raw data (unscaled).

For the SVD procedure, we used the NAG libraryor
simplicity, we used all default parameters of TNPAER
for the minimization that follows the projection. The target
accuracye in (3) was set to 0.1 and 0.2 (for some tests of
scaled datasets). The termination rule in TNPACK for the
iterates{ Y} is defined as

aHered, p, erroke, error, and errog are defined in (12), (5), (19),
(6), and (7), respectively.

compound. The percentageis defined by (5) to indicate
the portion of the distance segments that satisfy error
requirement (3), that is, are within 10% of the original
distance values. errgis the average absolute error defined
in (7), used in ref 17. errpitis the average relative error
defined in (6). errqg is the standard relative error defined
as follows:

lg(Y)I < eg(1 + E(Y) (18)

whereeg = 1075, and g is the gradient vector oE. All
computations were performed in double precision on a single -1 n n-1 n
R10000 195 MHz processor of an SGI Power Challenge L error, = 21 Z ld(Y,,Y,) — 5ij|2 / 21 Z 6”2 12
computer at New York University. =5 =5
5.1. Performance of the 2D SVD and SVD/TNPACK (19)
Mappings. Table 1 displays the performance of the 2D SVD
and SVD/TNPACK mappings for both scaled and unscaled The smaller these error measurements, the more useful the
datasets (including the binary dataset). Because of memory2D projection is for subsequent database analysis.
limitations, TNPACK was not applied to the large dataset We note from Table 2 that all error values of the SVD
PEST. From Table 1 we see that both the SVD and SVD/ mapping are small for the four unscaled datasets. Three of
TNPACK duo are efficient in generating the 2D mappings. them have percent valugsof about 99 that describe the
The longest SVD CPU time is about 8 min for PEST= portion of distance segments satisfying the error requirement
27 255), and TNPACK only took 2 min for the ARTF dataset (3). Hence, the SVD mapping can be considered satisfactory
(n = 402) to calculate a minimum point &. in preserving the distance relationships in the high-
5.2. Accuracy of the 2D SVD and SVD/TNPACK dimensional space.
Mappings. Table 2 lists five different error assessments to  Scaling, especially the binary dataset, however, makes the
the 2D SVD and SVD/TNPACK mappings. Hetés defined distance preservation inherently difficult. From Table 2 we
in (12), indicating an average relative error of each 2D SVD see that the 2D mappings defined by SVD alone have poor
mapping point with respect to the corresponding chemical accuracies for the scaled cases. TNPACK greatly improved
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Figure 1. Singular values and their distributions for ESTR, ARTF, MAO, PEST, and MAnhscaled (left) and scaled (right, marked by
superscripts S).

the projection in this regardo(ranges from 30% to 43%), Figure 2 shows that the accuracy of the SVD and SVD/
though it is still less accurate compared to the ones in the TNPACK mappings for the scaled dataset can be improved
unscaled case. sharply when the number of dimension®w) of the

Figure 1 displays the singular values and their distributions projection space is increased from two to ten. In particular,
for all four datasets. From Figure 1a we see that the first SVD alone defines a satisfactory 2D mapping when the
two singular values of the unscaled datasets ESTR, ARTF, dimension of the projection space is sufficiently large. Here
MAO, and PEST are much larger than the others. In contrast,we analyzed two scaled datasets (ESERd ARTF) in
for the scaled datasets, including the binary dataset MAO terms of the percentage defined in (5) to indicate the
the first two singular values are not significantly larger than accuracy. The value qf is nearly doubled whey = 0.2
the others (Figure 1b). instead of 0.1 in (5). We also found it useful to use higher-

To fairly compare singular values for the different datasets, order SVD mappings for the purpose of selecting initial
we also normalized the singular values using the following points for minimization refinement. See ref 22 for an
formula: 6; = oi/max<j<0;. Parts ¢ and d of Figure 1 illustration of a 3D mapping for ARTF.
compare the distributions of the normalized singular values 5.3. TNPACK vs SD.Table 3 compares the performance
o on seven intervals: (16, 100« 1] for k = 1-6 and between TNPACK and the steepest descent method for
[0, 1079] for the unscaled and scaled datasets, respectively. minimizing E(Y) for the datasets ESTR and MAO. SD has
The same trend is evident. This explains why the 2D mapping been used in similar applications of multidimensional data
is good for the unscaled datasets but poor for the scaledprojection” and hence this comparison is important in the
datasets. present application context. Here the termination rule (18)
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s 10'
ESTR ARTF®
o T T 110 T i o: Our objective function
SVDITNPACK f=0.2) SVDTNPACK fn=0.2)
100k 9 N . i 5
B 100 g 1 +: A typical objective function
apk SVINTNPACK f=0.1) 4
S0t SVDNTNPACK fy=0.1) 1
-}
sor SVD n=02) | /0 *©

SVD (n=0.2)

s0r

Percentage p

40t SVD (n=0.1)

Values of objective function

so}
sol
wl .
20 1
10r or 102 . .
a 10 20 a0 40 50 80
0 : - 20 . . Number of TNPACK iterations
o 5 10 . 15‘ i o . s 10 15
Projection dimension Figure 3. Comparison of our objective functidwith the typical
Figure 2. The percentage defined in (5) increases with the objective function& given in (16) for ESTR.
number of dimensions of the projection spage= 0.1 and 0.2
used). E(Y) = E(Y) for all Y, andE(Y) becomes close tB(Y) asY
_ S approaches a minimum point &Y). Hence, the choice of
Table 3. Comparison of TNPACK versus SD for Minimizirig the particular function foE between these two formulations
final final no. of is not important, and our choice (15) is computationally
method E lgll iterations  CPU time preferred.
Unscaled ESTSR 5.6. 2D Mapping Displays.Figure 4 displays the 2D
SNeAck oo gl 10, 3383 3810 mappings for ESTR, ARTF, MAO, MAQ, and PEST.
. . . S A .
U led MAG These illustrations also compare the plots of the 2D SVD
nscale H
SD 276.14 57% 105 194263  49.91h and SVD/TNPACK mappings for both scaled ar_1d unscaled
TNPACK 2983 2 81x 102 83 0.40 h datasets (except for PEST). In some cases, an inset shows a
Scaled ESTR zoomed view. Since the SVD mappings for the unscaled
sD 6.70x 10°  6.79x 104 2 260 2.40s ESTR, ARTF, and MAO already produce high accuracies
TNPACK 6.53x 100 3.86x 1074 20 0.40 s (Table 2), TNPACK refinements change these projections
Scaled MAO only slightly. However, the SVD plots for the scaled datasets
SD 6.01x 10* 6.01x 10! 7856 2.04h including the binary dataset MAfPhave been significantly
TNPACK ~ 6.06x 10*  4.54x 10" 201 041h changed by TNPACK to improve the distance values in 2D
_ o _ with respect to the original values.
Table 4. Comparison of TNPACK Minimization Using the SVD 5.7. Chemical Structure Similarity Analysis. Figure 5

Mapping as a Starting Point (SVD) versus a Randomly Selected

Starting Point (RAN) displays the distribution of eight chemical/pharmacological

classes of ARTF based on the 2D SVD/TNPACK mappings

St"’-‘rtm%’ final final _no. of CcPU time for the scaled and unscaled ARTF. The number of com-
point X E llgll iterations (min) ) L . .
Unscaled ARTE pounds in each class is indicated in the figure after the class
SVD 3.04 391x 10-5 72 195 name. We npte that clusters corresponding to individual
RAN 1.42%x 100 1.23x 10°2 300 9.63 pharmacological subsets are generally .very.close to each
Scaled ARTF other, though pa_rtlal overlap of cIustgrs is evident.
SVD 2.92x 100 1.92x 1072 57 0.42 The ecdysteroids group forms a diverse but separate set
RAN 2.91x10°  2.56x 1072 112 133 of points. The estrogen class is also clustered and somewhat

separate from the others. The strong overlap of the three
and the SVD starting point were used by both TNPACK clusters corresponding to D1 agonists, D1 antagonists, and
and SD. We see that TNPACK is much more efficient: 38 H1 receptor ligands is reasonable given the relative chemical
times faster than SD for the unscaled ESTR and about 110similarity of these compounds: all act at receptors of the
times faster for the unscaled MAO to find a minimum point. same pharmacological class (i.e., G-protein coupled recep-
5.4. SVD Starting Point vs Random Starting Point. tors). In fact, some of the H1 ligands have been initially
Table 4 also compares the performance of TNPACK using tested for dopaminergic affinity and are also members of
the SVD mapping as the starting point with that using a the other two groups. This explains the complete overlap of
randomly selected starting point for dataset ARTF. The SVD points in some cases.
starting point clearly helps accelerate the minimization For further chemical analysis, we select 14 compound
process significantly. representatives from the estrogen, DHFR, and AChE classes
5.5. Error Objective Function E vsE. Figure 3 compares  of ARTF, and display the corresponding submapping in
our objective functiork with the typical objective function  Figure 6 for the unscaled and scaled data. Selected chemical
E given in (16). Here we set the weightg = 1/0;2 for 0j; structures are shown in Figure 7, plotted from 3D coordi-
> 102 andw; = 1 for ; <102 The figure shows that  nates.
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Figure 6. Chemical similarity and diversity of ARTF (see Figure 7 for chemical structures).

The 2D projections are characterized by several smallerwhereas distant points correspond to dissimilar structures
subclusters and a few singletons. For the estrogens, we(e.g., F1 and F2). The points E1 and E2, however, are close
observe common structural motifs in the following subclus- in the mapping corresponding to the unscaled data but far
ters: four-cyclic (points A1, A2, and A3), three-cyclic (C1, apart in the mapping corresponding to the scaled dataset.
C2), and two-cyclic (D1, D2) molecules. Furthermore, the Here the relative errors of the SVD/TNPACK mapping
three singletons B1, B2, and B3 correspond to unique between points E1 and E2 in both scaled and unscaled cases
structures. This limited analysis, for both the scaled and are 6.02x 1072 and 3.88x 1072, respectively.
unscaled projections, shows that compounds that belong to
the same cluster are generally similar to each other yet less 6. CONCLUSIONS
similar to compounds from other clusters. Further clustering  Our approach to low-dimensional mappings of chemical
analysis done in ref 22 also shows that points that are closedatabases represented in the high-dimensional descriptor
in space in the 2D projection are similar, while those that space is based on the SVD coupled with the TNPACK
are distant are dissimilar (diversity application). package. The former decomposes the compounds in terms

Although the DHFR inhibitors and AChE inhibitors come of generalized eigenvectors whose associated singular values
from different pharmacological classes, we again observe help analyze the degree of component coupling and depen-
(b1 or b2 in Figure 6) similar structures (e.g., E1 and E2), dence. When the first two singular values are large relative
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be obtained for these scaled datasets when the projection
dimension is increased from two to ten. Though these higher-
dimensional projections are not easily visualized, the com-
pression of the dataset descriptors can be advantageous in
further applications of the compound library analysis (e.g.,
diversity sampling). See ref 22 for results of a different
scaling, an illustration of a 3D projection, and application

Al (183 Coumestrol) A2 (192 ethinylestradiol) A3 (230 R5020)

N of the mapping to similarity and diversity sampling.
When the intercompound distances in 2D approximate the
original distance relationships well, the 2D projection offers
*&»H / a simple visualization tool for analyzing the compounds in
at a large database. The preliminary analysis offered here of

BLU9GICI 182780) B2 (233 ZEARALENONE) B3 (203 Kepone) the correspondence between chemical structure identity and
relative position of the corresponding projection points
indicates that the projection appears reasonable in terms of

Q formal chemical similarity/diversity. Compounds that belong
to the same cluster also generally belong to the same
Q chemical and pharmacological class. Furthermore, chemically
b similar compounds tend to cluster together even closer within
C1 (193 Genistein) C2 (199 IND 5R) D1 (207 Methoxychlor) D2 (220 PCB3)

individual pharmacological groups. Compounds whose chemi-
cal structure differ are generally found farther away. Further

>§ZH ~ ~ N ﬂ\Z&Z clustering analysis is warranted, though real data for this
w % { purpose are difficult to obtain in practice because real
\‘& N

t&@ﬂ ‘ databases are generally proprietary.
X The projection accuracy is high for the unscaled data

-~

L @77 bemib) | E20150dbpy3ochd-Sox3) - FL 136 dopy3 072 F2 (310 phy2) because two dominant singular values can be found corre-
sponding to descriptors with large relative magnitudes. This
is not the case for the scaled data. However, the comparison
Figure 7. Chemical structures from database ARTF. The index of projection maps for the scaled vs unscaled dataset ARTF
and name are listed for each compound. indicates that, at least qualitatively, both projections provide
a fairly analogous pattern of distribution of different phar-
) ‘ ; ) e macological groups as discussed above. The ultimate goal
of matching the intercompound distances in the original ¢ any pharmaceutical database analysis method is to

space. The SVD projection is followed by minimization of gg¢apjish and understand structueetivity relationships for
an objective function to further reduce the amount of distance the database compounds and, from this prospective, the

discrepancies. This quartic objecti_ve function measures thenecessity of descriptor scaling for the database mapping

sum of discrepancies for each pair of compouridsn(j) remains an area of future research.

2‘3‘3’22‘%2; ezrz gﬁlggﬁg ea r:ldathe:(r;r;j é??onrsr[r?irr]\?r;\i/za;tjiﬁj)é nd These clustering analyses serve as a first step in the study
bp ' of related combinatorial chemistry questions dealing with

the minimization is rapidly convergent when a reasonable large chemical databases. and we hope to examine these
initial guess-from the SVD projectiofris supplied. The ge chemic ’ 1op o
amount of refinement of the SVD projection depends on the possibilities in future Wor_k. Another_ Important appllc_at|0n
initial value of the objective function: in some cases, of our apprpach deals W'th. comparisons betyveen different
databases in terms of their similarity and diversity. Such

minimization |eads to minor improvements and in others comparisons are an essential part of compound acquisition
(e.g., scaled datasets) to more substantial function reduction. P P P q

The SVD component is very fast, even for large datasets,Strategle.S é: urre_ntly emp_lo_yed by_ many pharmac_:eutlcal
o .y companies? Rapid and efficient projection of a proprietary
and the truncated-Newton minimization is very efficient

aiatabase alongside an external database may help in quickly

compared to the commonly-used steepest descent metho evaluating their relative similarity/diversity and selecting the

in this context,’” we have not implemented TNPACK for most diffe?ent external com oun)(;s for actyuisition and tegstin

the dataset PEST (27 255 compounds) due to MEMOTY\\/e emphasize that these E\nal ses de %nd on the qualit gé)f

restrictions, but this limitation might be lifted in the future the ori Fi)nal descriptors. an aregof rese%rch on its b\?w/re y

with a low-memory variant of our minimization algorithm. .~ 9 plors, . .

C : : invite interested readers to contact us about experimenting
omparison of our distanegieometry approach to a neural with our projection software SIVER (singular values and

network procedure by Kohon&nin our related work is error refinperT{ent) 9

also favorable. '
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