
An Efficient Projection Protocol for Chemical Databases: Singular Value Decomposition
Combined with Truncated-Newton Minimization

Dexuan Xie,†,‡ Alexander Tropsha,§ and Tamar Schlick*,†

Departments of Chemistry and Mathematics, Courant Institute of Mathematical Sciences,
New York University and the Howard Hughes Medical Institute, 251 Mercer Street,

New York, New York 10012

Received June 28, 1999

A rapid algorithm for visualizing large chemical databases in a low-dimensional space (2D or 3D) is presented
as a first step in database analysis and design applications. The projection mapping of the compound database
(described as vectors in the high-dimensional space of chemical descriptors) is based on the singular value
decomposition (SVD) combined with a minimization procedure implemented with the efficient truncated-
Newton program package (TNPACK). Numerical experiments on four chemical datasets with real-valued
descriptors (ranging from 58 to 27 255 compounds) show that the SVD/TNPACK projection duo achieves
a reasonable accuracy in 2D, varying from 30% to about 100% of pairwise distance segments that lie within
10% of the original distances. The lowest percentages, corresponding to scaled datasets, can be made close
to 100% with projections onto a 10-dimensional space. We also show that the SVD/TNPACK duo is efficient
for minimizing the distance error objective function (especially for scaled datasets), and that TNPACK is
much more efficient than a current popular approach of steepest descent minimization in this application
context. Applications of our projection technique to similarity and diversity sampling in drug design can be
envisioned.

1. INTRODUCTION

The dramatic growth of chemical databases in recent
yearsslargely due to advances in combinatorial chemistry
and high throughput screening5sdemands new methods for
database analysis and representation. Compounds in chemical
databases are conventionally characterized by “molecular
descriptors” that reflect chemical connectivity, charge dis-
tribution, shape, physical attributes, and other properties.
From a geometrical viewpoint, each compound is described
as anm-dimensional vector whose coordinators are molecular
descriptors. Therefore, analyses of chemical databases in-
volve clustering, similarity, or dissimilarity sampling of
multidimensional vector objects.

In many applications of database analysis, it is important
to study the distance relationships among the compounds
(points) in the dataset. Such analyses can be facilitated by
mapping these compounds from the high-dimensional space
onto a two- or three-dimensional (2D or 3D) vector space
so that the clustering patterns (distance relationships) can
be observed visually. The projection mapping is often
formulated as a distance-geometry problem: findn points
in 2D (or 3D) so that their interpoint distances match the
corresponding values from them-dimensional space as
closely as possible. Since this problem is typically over-

determinedsthere aren(n - 1)/2 distances but only 2n (3n)
Cartesian coordinates for a system ofn compoundssan
optimal approximate projection mapping is sought. This
involves defining and minimizing a distance error objective
function.

The distance-geometry problem has many important
applications in molecular structure studies,8,15,16 but it is
difficult to solve. Only a local solution can usually be
obtained, and a good starting point is important. See refs 6,
9, and 11 for theoretical analysis and numerical algorithms
related to the distance-geometry problem.

Recently, a distance-geometry approach has been applied
to the analysis and 2D projection mapping of molecular
databases.4,12,17The algorithm was classified as the nonlinear
mapping17 or Sammon4 method. The Sammon method uses
the steepest descent (SD) minimization algorithm and a
randomly chosen starting point. This approach may suffer
from slow convergence and may generate a 2D mapping that
poorly approximates the original distances when the number
of compounds is large. Thus, finding a good initial guess
for the mapping is an important and difficult objective.

In this paper, we define a low-dimensional projection
mapping by thesingular Value decomposition(SVD),10 a
technique used for data compression in many practical
applications such image processing and code deciphering.
It is a factorization of rectangular matrices that reduces to
the usual spectral (eigenvalue) decomposition when the
matrices are square. This factorization, in contrast to
optimization, only requires the input (high-dimensional) data
vectors; no initial projection guess is needed. We assess the
accuracy of the projection according to its level of ap-
proximation to the original intercompound distance values
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in the m-dimensional space. We find that the accuracy of
the SVD mapping depends on the distribution of the singular
value magnitudes: if the first two singular values are much
larger than the others, the 2D mapping has a high accuracy.
This generalizes to mapping in higher dimensions as well;
that is, if the first 10 singular values can be largely separated
from the rest, a 10D projection can be accurate.

To achieve higher accuracy than obtained by the projection
alone, we supplement the SVD projection by minimization
of a new distance error objective function. This minimization
is performed with TNPACK (our truncated-Newton program
package).18,21 With the SVD mapping as the starting point,
TNPACK can efficiently generate a low-dimensional map-
ping that approximates the original distance relationships.
The minimization component is especially important when
SVD alone does not provide a sufficiently accurate mapping
(in terms of matching the original distance relationships).

Numerical experiments are reported on four chemical
datasets (ranging from 58 to 27 255 compounds). These
datasets represent compounds with different types of biologi-
cal activity. They include estrogens (ESTR), an artificial
dataset made of eight groups of compounds with different
phramacological activities (ARTF), monoaminooxidase in-
hibitors (MAO), and pesticides (PEST). All compounds in
these datasets have been characterized with topological
descriptors. In addition, the MAO dataset has also been
characterized by binary descriptors (MAO01). Each com-
pound vector in these datasets has 312 components except
for ESTR, which hasm ) 308. For these datasets, we report
results for both scaled and unscaled data. While scaling
remains an unresolved issue in the field,23 we scaled the
descriptors to the same unit range scale assuming that no
one descriptor dominates the overall distance measures.

We find that, for the unscaled data, the SVD alone
generates an excellent 2D projection: For ESTR, ARTF, and
MAO, about 99% of the distance segments are within 10%
of the original distances; for PEST (27 255 compounds), the
corresponding value is 74%. Moreover, SVD is very fast:
the computational time ranges from 0.08 to 8 min for these
four datasets (on an SGI R10000 processor). The decomposi-
tion has a complexity of orderO(n2m) floating point
operations andO(nm) memory locations. Though TNPACK
offers only marginal improvements when the SVD mapping
alone has a high accuracy, it is very fast, requiring from 1 s
to 27 min for the ESTR, ARTF, and MAO datasets,
respectively. TNPACK minimization is also far more ef-
ficient than the steepest descent minimization (38 times faster
for ESTR and about 110 times faster for MAO), the method
used in refs 4 and 17.

For the scaled datasets, of which the binary MAO01

database serves as an extreme case, we find in contrast that
it is much more difficult to define a satisfactory 2D mapping
by SVD alone. Since the first two SVD values are usually
not much larger than the others in the scaled cases, the
resulting 2D SVD projections can be poor approximations.
However, the TNPACK minimizations that follow SVD
become crucial. For example, the 2D SVD mapping of
MAO01 only has about 0.004% of the distance segments
within 10% of the original distance values. TNPACK
increased this number to 30% in 1 min of CPU time. For
the other scaled datasets, the 2D SVD/TNPACK mappings
have up to about 43% and 80% of the distance segments

within 10% and 20% of the original distance values,
respectively. We also show that the accuracy of SVD and
SVD/TNPACK projections can be improved sharply when
the dimension number of the projection space is increased
from two to five or ten.

Finally, analysis of the 2D projections in terms of chemical
structure similarity reveals that points that are close together
in the 2D mapping have similar chemical structures and vice
versa.

The remainder of the paper is organized as follows. In
section 2, we formulate the mapping problem and the
projection assessment in terms of distance functions (errors).
Sections 3 and 4 outline, respectively, the SVD-based
mapping and our distance-geometry algorithm using
TNPACK to supplement the SVD mapping. Section 5
presents the numerical results and preliminary chemical
structure analyses for both scaled and unscaled datasets.
Conclusions are summarized in section 6.

2. FORMULATION OF THE MAPPING PROBLEM

We express the datasetS as a collection ofn vectors

where each vectorXi ) (xi1, xi2, ...., xim)T consists of them
descriptors{xik}, which are real numbers. We now define
the distance quantitiesδij and dij corresponding to vectors
in the original (Rm) and projected (e.g.,R2) spaces.

From those descriptors, similarity between each pair of
compoundsXi and Xj can be described by the following
Euclidean distance:

There aren(n - 1)/2 distance segments{δij} in S for pairs
i < j.

Assume we have a mapping fromRm to Rlow that takes
each pointXi ∈ Rm to Yi ∈ Rlow, wherelow , m.Typically
the integerlow is 2 or 3, but we uselow ) 10 in some cases
discussed below; the projection cannot be easily visualized
for low > 3, but the compressed matrixS̃ from S (n × low
instead of n × m) can be useful for other database
applications. The corresponding interpoint distances for the
vectorsYi ) (yi1, yi2, ..., yilow)T is denoted asd(Yi,Yj), where

An ideal mapping will generate points{Yi} that match the
original values, i.e., satisfy

for all pairs i < j. However, no such mapping exists in
general because the problem is typically overdetermineds
finding n × low unknowns {yik} satisfying n(n - 1)/2
equations of form (2). An optimal approximate mapping is
thus sought.16

We now define various error measures to assess the
relationship between the original and projected pairwise
distances. Following ref 16, we use the relative error

S ) {X1, X2, ...,Xn}

δij ) [∑
k)1

m

(xik - xjk)
2]1/2 (1)

d(Yi,Yj) ) [∑
k)1

low

(yik - yjk)
2]1/2

d(Yi,Yj) ) δij (2)
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expression as one measure of the quality of the approximation
of d(Yi,Yj) to δij:

whereε, ε̃, anddmin are given small positive numbers of less
than 1. For example, we setε ) 0.1 to specify a 10%
accuracy (dmin ) 10-12 andε̃ ) 10-8). The second case above
(very small original distance) may occur when two com-
pounds in the datasets are highly similar.

The total numberTd of the distance segmentsd(Yi,Yj)
satisfying (3) or (4) reflects the distance preservation of our
mapping. We define the percentageF of the distance
segments satisfying (3) or (4) as

The greater theF values, the better the mapping and the more
information can be inferred from the projected views of the
complex data (assuming the original distances are meaning-
ful).

We also use the following “average relative error” to assess
the mapping:

whereδij in the denominator is replaced by 1 ifδij e dmin.
In addition, we consider the “average absolute error” used
in ref 17:

The objective functionE for distance refinement used in our
minimization phase is defined in section 4 (see 15)).

3. SVD-BASED PROJECTION

SVD is a technique for data compression used in image
processing and code deciphering. Essentially, SVD is a
fractorization for rectangular matrices that reduces to the
eigenvalue decomposition when the matrices are square. SVD
defines two orthogonal coordinate systems (for the domain
and range of the matrix) with corresponding singular values
{σi}. Data compression can be achieved by expressing the
matrix elements in terms of the components corresponding
to κ nonzero singular values rather than allr values (r is the
matrix rank). When thoseκ singular values (σ1 g σ2 g ... g
σκ) are significantly larger than the remaining ones (σκ+1 g
σκ+2 g ... g σr), the rank-κ approximation is good.

In our context, we construct a rectangular matrixX by
listing, in rows, themdescriptors of then dataset compounds:

Typically, n . m for large datasets. The SVD decomposition
of X can be written as

whereUn×n andVm×m are the orthogonal matrices:

where ui ∈ Rn and Vi ∈ Rm. The diagonal matrixΣn×m

contains the singular values arranged in decreasing order:

whereσ1 g σ2 g ... g σr andσr+1 ) ... ) σm ) 0. Thus,X
can be written as the sum of rank-1 matrices:

A rank-κ approximation can be written as10

Let uk ) (u1k, u2k, ..., unk)T andei be ann × 1 unit vector
with 1 in the ith component and 0 elsewhere. The inner
productuk

Tei ) uik. Using (8), we then express each vector
Xi as a linear combination of vectors{Vk}k)1

m :

whereσr+1 ) ... ) σm ) 0. Hence, with{Vk}k)1
m as a new

orthonormal basis ofRm, we expressXi in terms of new
coordinates

The corresponding Euclidean norm|‚| of Xi, |Xi|2 )
∑k)1

m xik
2, is written as

We now use SVD to define thelow-dimensional mapping
vector Yi of Xi as the natural projection ofXi onto the
subspace spanned by the basis vectorsV1, V2, ..., Vlow

for each compoundi, so thatYi can also be written as a vector
of Rlow:

|d(Yi,Yj) - δij| e εδij when δij > dmin (3)

d(Yi,Yj) e ε̃ when δij e dmin (4)

F )
Td

n(n - 1)/2
× 100 (5)

errorr )
(∑i)1

n-1

∑
j)i+1

n |d(Yi,Yj) - δij|2

δij
2 )1/2

n(n - 1)/2
(6)

errora )
(∑

i)1

n-1

∑
j)i+1

n

|d(Yi,Yj) - δij|2)1/2

n(n - 1)/2
(7)

X ) (X1, X2, ...,Xn)
T ) [x11 x12 ... x1m

x21 x22 ... x2m

l l ... l
xn1 xn2 ... xnm

]
X ) UΣVT

U ) (u1, u2, ...,un) and V ) (V1, V2, ...,Vm)

Σ ) diag{σ1, σ2, ...,σm}

X ) ∑
k)1

r

σkukVk
T (8)

Xκ ) ∑
k)1

κ

σkukVk
T |Xκ - X| ) σκ+1

Xi ) XTei ) ∑
k)1

r

σk(uk
Tei)Vk ) ∑

k)1

m

σkuikVk, i ) 1, 2, ...,n

Xi ) (σ1ui1, σ2ui2, ...,σruir, 0, ..., 0)T

|Xi|
2 ) ∑

k)1

r

(σkuik)
2 (9)

Yi ) ∑
k)1

low

σkuikVk

Yi ) (σ1ui1, σ2ui2, ...,σlowuilow) (10)
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The projected vectorYi is alow-dimensional approximation
of Xi with the following relative error expression:

When the first low singular values dominate the rest,
the term∑k)1

low (σkuik)2 becomes much larger than the term
∑k)low+1

r (σkuik)2, resulting in small relative errorsúi for all
1 e i e n.

Let Sh be the collection of thesen mapped vectors from
S: Sh ) {Y1, Y2, ...,Yn}. The error approximation ofSh with
respect to the original datasetS can be described by the
average relative errorú:

If the above average relative errorú is sufficiently small (such
as ú e 0.1), the mappingSh defined by SVD preserves
approximately the distance relationships among then chemi-
cal compounds{Xk} of S; otherwise, this projection can serve
as a starting point for further refinement. Even this achieve-
ment is significant since selecting the starting point is difficult
in distance-geometry problems. It is often selected ran-
domly,16,17 leading to large computational time for conver-
gence and affecting the local solution obtained.

Further, we can write the distance segmentsdij ) |Yi -
Yj| andδij ) |Xi - Xj| as follows:

Clearly, dij is an approximation ofδij with the following
relative error expression:

wheredij e δij, andδij is assumed to be positive. Thus, if
the first low singular values dominate the rest, the above
relative error becomes small for alli < j, implying that the
low-dimensional distancedij is a good approximation of the
original distanceδij.

4. TNPACK REFINEMENT FOLLOWING THE SVD
PROJECTION

When the percentageF defined in (5) (or the errorú
defined in (12)) is not satisfactory, we formulate an objective
functionE and minimize it by our truncated-Newton program
package, TNPACK.18,21 Specifically, we seek a projection
refinement takingY* to Y such that

where the objective functionE(Y) is defined by

Here, Y ) (Y1, Y2, ..., Yn)T ∈ Rlow‚n with Yi ) (yi1, yi2, ...,
yilow) for i ) 1, 2, ...,n, and the weights{ωij} are set as
ωij ) 1/δij

4 if δij
4 g η andωij ) 1 if δij

4 < η. The parameter
η is a small positive number such as 10-12. Equations similar
to (15) have been reported (for example, in ref 17) with
various weight choices.

Since E is a simple polynomial function ofY, its
derivatives are well defined at every vector ofRlow‚n, and a
second-derivative method such as TNPACK can be applied
efficiently. One of the features of TNPACK is an application-
tailored preconditioner matrix (that approximates the Hessian
of the objective function) used to accelerate convergence.20

For the present applications, however, we only used a simple
diagonal preconditioner, namely, terms∂2E(Y)/∂yik

2 (i ) 1,
2, ...,n for k ) 1, 2, ...,low).

Various objective functions have been reported in the
literature for the distance-geometry problem. A typical one
follows:

where{ωij} are weights (refs 4 and 16, for example). Using
ourE of (15) instead ofE defined in (16) can be numerically
advantageous since the potential problem of a near-zero
denominator (d(Yi,Yj) term in∂E(Y)/∂yik) can be avoided. The
two functions are also closely related. Forδij > 0, we have

Hence, if

the relative error inequality (3) holds.

5. NUMERICAL EXAMPLES

The compound datasets used for testing our mapping
approach are as follows: ESTR (n ) 58 andm) 308), MAO
(n ) 1623 andm ) 312), MAO01 (n ) 1623 andm ) 153,
binary descriptors), and PEST (n ) 27 255 andm ) 318).
We also constructed dataset ARTF (n ) 402 andm ) 312)
by merging eight different groups of molecules with different
types of pharmacological activities. Binary descriptors for
MAO01 were generated from the software MACCS II.14

Descriptors for PEST and other datasets were calculated by

úi )
|Xi - Yi|

|Xi|
) [1 - (1 +

∑
k)low+1

r

(σkuik)
2

∑
k)1

low

(σkuik)
2 )]1/2

(11)

ú ) (∑
i)1

n

úi)/n (12)

dij ) [∑
k)1

low

σk
2(uik - ujk)

2]1/2 and

δij ) [∑
k)1

r

σk
2(uik - ujk)

2]1/2

δij - dij

δij

) 1 - [1 +

∑
k)low+1

r

σk
2(uik - ujk)

2

∑
k)1

low

σk
2(uik - ujk)

2 ]-1/2

(13)

E(Y*) ) min
Y∈Rlow‚n

E(Y) (14)

E(Y) ) (1/4)∑
i)1

n-1

∑
j)i+1

n

ωij|d(Yi,Yj)
2 - δij

2|2 (15)

E(Y) ) ∑
i)1

n-1

∑
j)i+1

n

ωij|d(Yi,Yj) - δij|2 (16)

|d(Yi,Yj) - δij|2

δij
2

)
|d(Yi,Yj) - δij|2|d(Yi,Yj) + δij|2

δij
2|d(Yi,Yj) + δij|2

)
|d(Yi,Yj)

2 - δij
2|2

δij
2|d(Yi,Yj) + δij|2

e
|d(Yi,Yj)

2 - δij
2|2

δij
4

|d(Yi,Yj)
2 - δij

2|2

δij
4

e ε
2
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using the software package Molconn-Z1 and Molconn-X,2

respectively.
We considered both unscaled and scaled datasets for our

analyses. We scaled the descriptors{xij} to the same unit
range scale using the following formula for each columnj:

wherexmin,j ) min1eienxij andxmax,j ) max1eienxij. The scaling
procedure (17) is often referred to as a standardization of
descriptors. It assumes that no one descriptor dominates the
overall distance measures, and is widely used in practice.
We have also considered a different scaling procedure in
ref 22, where we found results to be slightly better than those
reported here. Throughout the figures we use the superscript
S notation with the dataset name to indicate scaling; no
superscript implies raw data (unscaled).

For the SVD procedure, we used the NAG library.3 For
simplicity, we used all default parameters of TNPACK18,21

for the minimization that follows the projection. The target
accuracyε in (3) was set to 0.1 and 0.2 (for some tests of
scaled datasets). The termination rule in TNPACK for the
iterates{Yk} is defined as

where εg ) 10-5, and g is the gradient vector ofE. All
computations were performed in double precision on a single
R10000 195 MHz processor of an SGI Power Challenge L
computer at New York University.

5.1. Performance of the 2D SVD and SVD/TNPACK
Mappings. Table 1 displays the performance of the 2D SVD
and SVD/TNPACK mappings for both scaled and unscaled
datasets (including the binary dataset). Because of memory
limitations, TNPACK was not applied to the large dataset
PEST. From Table 1 we see that both the SVD and SVD/
TNPACK duo are efficient in generating the 2D mappings.
The longest SVD CPU time is about 8 min for PEST (n )
27 255), and TNPACK only took 2 min for the ARTF dataset
(n ) 402) to calculate a minimum point ofE.

5.2. Accuracy of the 2D SVD and SVD/TNPACK
Mappings. Table 2 lists five different error assessments to
the 2D SVD and SVD/TNPACK mappings. Hereú is defined
in (12), indicating an average relative error of each 2D SVD
mapping point with respect to the corresponding chemical

compound. The percentageF is defined by (5) to indicate
the portion of the distance segments that satisfy error
requirement (3), that is, are within 10% of the original
distance values. errora is the average absolute error defined
in (7), used in ref 17. errorr is the average relative error
defined in (6). errorrel is the standard relative error defined
as follows:

The smaller these error measurements, the more useful the
2D projection is for subsequent database analysis.

We note from Table 2 that all error values of the SVD
mapping are small for the four unscaled datasets. Three of
them have percent valuesF of about 99 that describe the
portion of distance segments satisfying the error requirement
(3). Hence, the SVD mapping can be considered satisfactory
in preserving the distance relationships in the high-
dimensional space.

Scaling, especially the binary dataset, however, makes the
distance preservation inherently difficult. From Table 2 we
see that the 2D mappings defined by SVD alone have poor
accuracies for the scaled cases. TNPACK greatly improved

Table 1. Performance of the 2D SVD and SVD/TNPACK (TN) Mappingsa

E |g| CPU time

dataset SVD TN SVD TN
no. of TN
iterations SVD TN

Unscaled
ESTR 1.29 0.024 2.65× 10-3 9.12× 10-6 50 0.08 s 1.03 s
ARTF 45.8 3.04 4.98× 10-3 3.21× 10-5 72 2.66 s 1.95 min
MAO 573.3 298.3 2.75× 10-2 2.81× 10-3 83 7.62 s 24.08 min
PEST 8.41 min

Scaled
ESTR 2.18× 102 6.53× 101 2.17× 102 3.86× 10-4 20 0.07 s 0.40 s
ARTF 8.66× 104 2.92× 103 1.49× 103 1.92× 10-2 57 1.16 s 25.31 s
MAO 1.82× 105 6.06× 104 8.35× 103 4.54× 10-1 201 5.62 s 24.66 min
MAO01 2.4× 105 9.79× 104 3.79× 103 9.59× 10-1 11 3.65 s 46.46 s
PEST 6.76 min

a E is the minimization objective function defined in (15).

x̂ij )
xij - xmin,j

xmax,j - xmin,j
, 1 ei en (17)

|g(Yk)| < εg(1 + E(Yk)) (18)

Table 2. Error Estimates of the 2D SVD and SVD/TNPACK
Mappingsa

dataset ú F errorrel errorr errora

SVD Alone for Unscaled Datasets
ESTR 0.08 98.97 6.04× 10-4 1.25× 10-3 2.57× 10-1

ARTF 0.05 98.97 2.69× 10-4 1.55× 10-4 4.19× 10-2

MAO 0.12 99.48 3.92× 10-4 2.75× 10-5 6.92× 10-3

PEST 0.087 74.00 0.1620

SVD Alone for Scaled Datasets
ESTR 0.38 8.47 0.4202 1.37× 10-2 4.22× 10-2

ARTF 0.34 25.38 0.3090 1.72× 10-3 4.63× 10-3

MAO 0.34 1.81 0.5056 4.98× 10-4 1.19× 10-3

MAO01 0.70 0.004 0.6477 5.77× 10-4 3.47× 10-3

PEST 0.15 11.79 0.6314

SVD/TNPACK Duo for Scaled Datasets
ESTR 38.54 0.2047 6.29× 10-3 2.05× 10-2

ARTF 43.26 0.1679 8.73× 10-4 2.52× 10-3

MAO 38.72 0.2397 2.25× 10-4 5.65× 10-4

MAO01 29.10 0.3729 3.46× 10-4 1.99× 10-3

a Hereú, F, errorrel, errorr, and errora are defined in (12), (5), (19),
(6), and (7), respectively.

errorrel ) [(∑
i)1

n-1

∑
j)i+1

n

|d(Yi,Yj) - δij|2) / (∑
i)1

n-1

∑
j)i+1

n

δij
2)]1/2

(19)
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the projection in this regard (F ranges from 30% to 43%),
though it is still less accurate compared to the ones in the
unscaled case.

Figure 1 displays the singular values and their distributions
for all four datasets. From Figure 1a we see that the first
two singular values of the unscaled datasets ESTR, ARTF,
MAO, and PEST are much larger than the others. In contrast,
for the scaled datasets, including the binary dataset MAO01,
the first two singular values are not significantly larger than
the others (Figure 1b).

To fairly compare singular values for the different datasets,
we also normalized the singular values using the following
formula: σ̂i ) σi/max1ejerσj. Parts c and d of Figure 1
compare the distributions of the normalized singular values
σi on seven intervals: (10-k, 10-(k-1)] for k ) 1-6 and
[0, 10-6] for the unscaled and scaled datasets, respectively.
The same trend is evident. This explains why the 2D mapping
is good for the unscaled datasets but poor for the scaled
datasets.

Figure 2 shows that the accuracy of the SVD and SVD/
TNPACK mappings for the scaled dataset can be improved
sharply when the number of dimensions (low) of the
projection space is increased from two to ten. In particular,
SVD alone defines a satisfactory 2D mapping when the
dimension of the projection space is sufficiently large. Here
we analyzed two scaled datasets (ESTRS and ARTFS) in
terms of the percentageF defined in (5) to indicate the
accuracy. The value ofF is nearly doubled whenη ) 0.2
instead of 0.1 in (5). We also found it useful to use higher-
order SVD mappings for the purpose of selecting initial
points for minimization refinement. See ref 22 for an
illustration of a 3D mapping for ARTF.

5.3. TNPACK vs SD.Table 3 compares the performance
between TNPACK and the steepest descent method for
minimizing E(Y) for the datasets ESTR and MAO. SD has
been used in similar applications of multidimensional data
projection,4,17 and hence this comparison is important in the
present application context. Here the termination rule (18)

Figure 1. Singular values and their distributions for ESTR, ARTF, MAO, PEST, and MAO01, unscaled (left) and scaled (right, marked by
superscripts S).
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and the SVD starting point were used by both TNPACK
and SD. We see that TNPACK is much more efficient: 38
times faster than SD for the unscaled ESTR and about 110
times faster for the unscaled MAO to find a minimum point.

5.4. SVD Starting Point vs Random Starting Point.
Table 4 also compares the performance of TNPACK using
the SVD mapping as the starting point with that using a
randomly selected starting point for dataset ARTF. The SVD
starting point clearly helps accelerate the minimization
process significantly.

5.5. Error Objective Function E vsE. Figure 3 compares
our objective functionE with the typical objective function
E given in (16). Here we set the weightsωij ) 1/δij

2 for δij

> 10-12 andωij ) 1 for δij e10-12. The figure shows that

E(Y) e E(Y) for all Y, andE(Y) becomes close toE(Y) asY
approaches a minimum point ofE(Y). Hence, the choice of
the particular function forE between these two formulations
is not important, and our choice (15) is computationally
preferred.

5.6. 2D Mapping Displays.Figure 4 displays the 2D
mappings for ESTR, ARTF, MAO, MAO01, and PEST.
These illustrations also compare the plots of the 2D SVD
and SVD/TNPACK mappings for both scaled and unscaled
datasets (except for PEST). In some cases, an inset shows a
zoomed view. Since the SVD mappings for the unscaled
ESTR, ARTF, and MAO already produce high accuracies
(Table 2), TNPACK refinements change these projections
only slightly. However, the SVD plots for the scaled datasets
including the binary dataset MAO01 have been significantly
changed by TNPACK to improve the distance values in 2D
with respect to the original values.

5.7. Chemical Structure Similarity Analysis. Figure 5
displays the distribution of eight chemical/pharmacological
classes of ARTF based on the 2D SVD/TNPACK mappings
for the scaled and unscaled ARTF. The number of com-
pounds in each class is indicated in the figure after the class
name. We note that clusters corresponding to individual
pharmacological subsets are generally very close to each
other, though partial overlap of clusters is evident.

The ecdysteroids group forms a diverse but separate set
of points. The estrogen class is also clustered and somewhat
separate from the others. The strong overlap of the three
clusters corresponding to D1 agonists, D1 antagonists, and
H1 receptor ligands is reasonable given the relative chemical
similarity of these compounds: all act at receptors of the
same pharmacological class (i.e., G-protein coupled recep-
tors). In fact, some of the H1 ligands have been initially
tested for dopaminergic affinity and are also members of
the other two groups. This explains the complete overlap of
points in some cases.

For further chemical analysis, we select 14 compound
representatives from the estrogen, DHFR, and AChE classes
of ARTF, and display the corresponding submapping in
Figure 6 for the unscaled and scaled data. Selected chemical
structures are shown in Figure 7, plotted from 3D coordi-
nates.

Figure 2. The percentageF defined in (5) increases with the
number of dimensions of the projection space (η ) 0.1 and 0.2
used).

Table 3. Comparison of TNPACK versus SD for MinimizingE

method
final

E
final
|g|

no. of
iterations CPU time

Unscaled ESTR
SD 0.024 1.02× 10-5 33 573 38.46 s
TNPACK 0.024 9.11× 10-6 50 1.03 s

Unscaled MAO
SD 276.14 2.77× 10-3 194 263 49.91 h
TNPACK 298.3 2.81× 10-3 83 0.40 h

Scaled ESTR
SD 6.70× 103 6.79× 10-4 2 260 2.40 s
TNPACK 6.53× 101 3.86× 10-4 20 0.40 s

Scaled MAO
SD 6.01× 104 6.01× 10-1 7 856 2.04 h
TNPACK 6.06× 104 4.54× 10-1 201 0.41 h

Table 4. Comparison of TNPACK Minimization Using the SVD
Mapping as a Starting Point (SVD) versus a Randomly Selected
Starting Point (RAN)

starting
pointX0

final
E

final
|g|

no. of
iterations

CPU time
(min)

Unscaled ARTF
SVD 3.04 3.21× 10-5 72 1.95
RAN 1.42× 104 1.23× 10-2 300 9.63

Scaled ARTF
SVD 2.92× 103 1.92× 10-2 57 0.42
RAN 2.91× 103 2.56× 10-2 112 1.33

Figure 3. Comparison of our objective functionE with the typical
objective functionE given in (16) for ESTR.
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Figure 4. 2D mappings defined by SVD and SVD/TNPACK for ESTR (n ) 58, m ) 308), ARTF (n ) 402,m ) 312), MAO (n ) 1623,m ) 312), PEST (n ) 27 255,m ) 312), and MAO01
(n ) 1623,m ) 153), unscaled and scaled (marked by superscripts S).
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The 2D projections are characterized by several smaller
subclusters and a few singletons. For the estrogens, we
observe common structural motifs in the following subclus-
ters: four-cyclic (points A1, A2, and A3), three-cyclic (C1,
C2), and two-cyclic (D1, D2) molecules. Furthermore, the
three singletons B1, B2, and B3 correspond to unique
structures. This limited analysis, for both the scaled and
unscaled projections, shows that compounds that belong to
the same cluster are generally similar to each other yet less
similar to compounds from other clusters. Further clustering
analysis done in ref 22 also shows that points that are close
in space in the 2D projection are similar, while those that
are distant are dissimilar (diversity application).

Although the DHFR inhibitors and AChE inhibitors come
from different pharmacological classes, we again observe
(b1 or b2 in Figure 6) similar structures (e.g., E1 and E2),

whereas distant points correspond to dissimilar structures
(e.g., F1 and F2). The points E1 and E2, however, are close
in the mapping corresponding to the unscaled data but far
apart in the mapping corresponding to the scaled dataset.
Here the relative errors of the SVD/TNPACK mapping
between points E1 and E2 in both scaled and unscaled cases
are 6.02× 10-2 and 3.88× 10-2, respectively.

6. CONCLUSIONS

Our approach to low-dimensional mappings of chemical
databases represented in the high-dimensional descriptor
space is based on the SVD coupled with the TNPACK
package. The former decomposes the compounds in terms
of generalized eigenvectors whose associated singular values
help analyze the degree of component coupling and depen-
dence. When the first two singular values are large relative

Figure 5. 2D SVD/TNPACK mappings of the eight pharmacological classes, unscaled and scaled (marked by superscript S).

Figure 6. Chemical similarity and diversity of ARTF (see Figure 7 for chemical structures).
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to the others, the 2D projections are fairly accurate in terms
of matching the intercompound distances in the original
space. The SVD projection is followed by minimization of
an objective function to further reduce the amount of distance
discrepancies. This quartic objective function measures the
sum of discrepancies for each pair of compounds (i and j)
between the 2D value (dij) and them-dimensional value (δij).
TNPACK offers an efficient approach for minimization, and
the minimization is rapidly convergent when a reasonable
initial guesssfrom the SVD projectionsis supplied. The
amount of refinement of the SVD projection depends on the
initial value of the objective function: in some cases,
minimization leads to minor improvements and in others
(e.g., scaled datasets) to more substantial function reduction.
The SVD component is very fast, even for large datasets,
and the truncated-Newton minimization is very efficient
compared to the commonly-used steepest descent method
in this context;4,17 we have not implemented TNPACK for
the dataset PEST (27 255 compounds) due to memory
restrictions, but this limitation might be lifted in the future
with a low-memory variant of our minimization algorithm.
Comparison of our distance-geometry approach to a neural
network procedure by Kohonen13 in our related work22 is
also favorable.

In the case of the scaled (including binary) descriptors
considered in this paper, it is more difficult to calculate 2D
projections that approximate well the original distance
distributions even with this SVD/minimization approach.
This is because all scaled descriptors lie within the same
range, and there are in general no dominant singular values.
However, we showed that higher-accuracy projections can

be obtained for these scaled datasets when the projection
dimension is increased from two to ten. Though these higher-
dimensional projections are not easily visualized, the com-
pression of the dataset descriptors can be advantageous in
further applications of the compound library analysis (e.g.,
diversity sampling). See ref 22 for results of a different
scaling, an illustration of a 3D projection, and application
of the mapping to similarity and diversity sampling.

When the intercompound distances in 2D approximate the
original distance relationships well, the 2D projection offers
a simple visualization tool for analyzing the compounds in
a large database. The preliminary analysis offered here of
the correspondence between chemical structure identity and
relative position of the corresponding projection points
indicates that the projection appears reasonable in terms of
formal chemical similarity/diversity. Compounds that belong
to the same cluster also generally belong to the same
chemical and pharmacological class. Furthermore, chemically
similar compounds tend to cluster together even closer within
individual pharmacological groups. Compounds whose chemi-
cal structure differ are generally found farther away. Further
clustering analysis is warranted, though real data for this
purpose are difficult to obtain in practice because real
databases are generally proprietary.

The projection accuracy is high for the unscaled data
because two dominant singular values can be found corre-
sponding to descriptors with large relative magnitudes. This
is not the case for the scaled data. However, the comparison
of projection maps for the scaled vs unscaled dataset ARTF
indicates that, at least qualitatively, both projections provide
a fairly analogous pattern of distribution of different phar-
macological groups as discussed above. The ultimate goal
of any pharmaceutical database analysis method is to
establish and understand structure-activity relationships for
the database compounds and, from this prospective, the
necessity of descriptor scaling for the database mapping
remains an area of future research.

These clustering analyses serve as a first step in the study
of related combinatorial chemistry questions dealing with
large chemical databases, and we hope to examine these
possibilities in future work. Another important application
of our approach deals with comparisons between different
databases in terms of their similarity and diversity. Such
comparisons are an essential part of compound acquisition
strategies currently employed by many pharmaceutical
companies.19 Rapid and efficient projection of a proprietary
database alongside an external database may help in quickly
evaluating their relative similarity/diversity and selecting the
most different external compounds for acquisition and testing.
We emphasize that these analyses depend on the quality of
the original descriptors, an area of research on its own.7 We
invite interested readers to contact us about experimenting
with our projection software SIVER (singular values and
error refinement).
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