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Inertial stochastic dynamics. II. Influence of inertia on slow kinetic
processes of supercoiled DNA
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We apply our new algorithms presented in the companion paper~LTID: long-time-step inertial
dynamics, IBD: inertial Brownian dynamics! for mass-dependent Langevin dynamics~LD! with
hydrodynamics, as well as the standard Brownian dynamical~BD! propagator, to study the thermal
fluctuations of supercoiled DNA minicircles. Our DNA model accounts for twisting, bending, and
salt-screened electrostatic interactions. Though inertial relaxation times are on the order of
picoseconds, much slower kinetic processes are affected by the Brownian~noninertial!
approximation typically employed. By comparing results of LTID and IBD to those generated using
the standard~BD! algorithm, we find that the equilibrium fluctuations in writhing number, Wr, and
radius of gyration,Rg , are influenced by mass-dependent terms. The autocorrelation functions for
these quantities differ between the BD simulations and the inertial LD simulations by as much as
10%. In contrast, when the nonequilibrium process of relaxation from a perturbed state is examined,
all methods~inertial and diffusive! yield similar results with no detectable statistical differences
between the mean folding pathways. Thus, while the evolution of an ensemble toward equilibrium
is equally well described by the inertial and the noninertial methods, thermal fluctuations are
influenced by inertia. Examination of such equilibrium fluctuations in a biologically relevant
macroscopic property—namely the two-site intermolecular distance—reveals mass-dependent
behavior: The rate of juxtaposition of linearly distant sites along a 1500-base pair DNA plasmid,
occurring over time scales of milliseconds and longer, is increased by about 8% when results from
IBD are compared to those from BD. Since inertial modes that decay on the picosecond time scale
in the absence of thermal forces exert an influence on slower fluctuations in macroscopic properties,
we advocate that IBD be used for generating long-time trajectories of supercoiled DNA systems.
IBD is a practical alternative since it requires modest computational overhead with respect to the
standard BD method. ©2000 American Institute of Physics.@S0021-9606~00!50817-4#
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I. INTRODUCTION

In the previous article1 we introduced two new algo
rithms for integrating the inertial Langevin equation wi
hydrodynamic coupling between the particles in a syste
LTID ~long-time-step inertial dynamics! and IBD ~inertial
Brownian dynamics!. In Ref. 1, we showed that LTID, while
employing time steps longer than the inertial relaxat
times, is a consistent numerical integrator for the Lange
equation and captures inertial effects ignored by Brown
dynamics~BD!. IBD is a cheaper inertial integrator which
more accurate than BD~in terms of the statistical propertie
of Langevin trajectories! for time steps comparable to thos
used in BD. Here we compare the dynamics of elastic m
els of supercoiled DNA systems based on the two iner
algorithms to that based on the noninertial~BD! algorithm of
Ermak and McCammon.2

We show that all three simulation algorithms approp
ately sample the configurational space of the canonical
semble by comparing the realized probability distributions
two global DNA descriptors—writhing number, Wr, and r

a!Author to whom correspondence should be addressed; electronic
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dius of gyration,Rg—to those generated by Monte Car
sampling for a 600-base pair~bp! DNA plasmid. In addition,
estimates of the translational diffusion coefficient, a meas
sensitive to the distribution of molecular configuration
agree for the three schemes. This agreement, used to val
IBD and LTID, is expected as neither equilibrium config
ration distributions nor molecular diffusion coefficients d
pend on the mass of the particles in the system. Howe
mass may influence the rate of transition between config
tions.

Indeed, for our DNA model, we find that certain dy
namic properties~e.g., autocorrelation functions of the ge
metric descriptors Wr andRg) are sensitive to the diffusive
approximation made in BD. Although inertial relaxation
time constants are on the order of picoseconds, there exi
non-negligible coupling between fast~picosecond! and slow
~microsecond! processes. This coupling influences the kin
ics of global conformational changes in a mass-depend
manner. Using the autocorrelation function as a conven
measure of the rate of fluctuation of stationary stocha
variables, we note differences between the massless an
inertial systems of 1% and 10% for the rates of Wr andRg

fluctuation, respectively.
il:
3 © 2000 American Institute of Physics
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The behavior predicted in the low-time-step limit
LTID is an accurate representation of inertial dynamics
governed by the Langevin equation. This was shown in R
1 by comparing computational to theoretical results. LTID
semianalytical, based on propagating the frictional mo
over finite time steps, and is thus more expensive than I
and BD. However, the LTID autocorrelation functions pr
vide a benchmark of correlation structure to which the res
from IBD and BD can be compared. We show that IB
based on a singular perturbative expansion of the Lang
equation, matches the inertial behavior of the Langevin eq
tion when the numerical time step is chosen appropriat
Since IBD is much less computationally expensive th
LTID and is competitive with BD in terms of CPU usage, w
show that the IBD algorithm can be used~at a relatively
modest computational cost over BD protocols! when inertial
effects may be important.

We demonstrate this by using IBD to simulate the in
tial dynamics of systems on size and time scales previo
accessible only to BD. Specifically, we analyze the effects
inertia on the biologically important process of sitejuxtapo-
sition. This process refers to the close spatial approach
linearly distant sites along the DNA contour. DNA site ju
taposition can depend critically on superhelicity3–5 and is
important for site-specific recombination reactions6,7 in
prokaryotes. Juxtaposition also plays a role in other p
cesses, such as transcription initiation, where distant D
domains interact, often through protein modulation. The
fluence of supercoiling on the dynamics of juxtaposition h
already been studied using BD simulations of DNA plasm
ranging in size from 600 to 3000 bp.8 Calculations have fo-
cused on estimating juxtaposition times as a function
DNA superhelicity, site separation,8 and the ionic environ-
ment, as well as on deducing the responsible mechanis9

We show here that the mean juxtaposition times for 12
and 1500-bp plasmids depend on whether an inertial or n
inertial algorithm is used. The rate of fluctuations in inte
molecular distance increases and the mean juxtaposition
decreases by 6% and 8% when inertia is incorporated
1200-bp and 1500-bp systems, respectively. An 8% dif
ence in mean juxtaposition time for the 1500-bp system c
responds to a difference of about 30ms between the IBD and
BD formulations. This difference is surprisingly large on t
picosecond time scale of the frictional relaxation of the in
tial modes.

As another application of inertial dynamics, we studi
the relaxation from a torsionally stressed planar circle t
supercoiled state. From a large ensemble of folding traje
ries (;500) computed using LTID, IBD, and BD, we do no
detect any statistically significant differences between
predictions of the three algorithms.

These examples show that mean folding pathways
equilibrium are weakly mass dependent, while slow kine
processes resulting from equilibrium fluctuations are se
tive to inertia. For the biologically important juxtapositio
process, our algorithm IBD is a preferred scheme.

In Sec. II we present the computational model for t
DNA structure and energetics and the detailed impleme
s
f.
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tion of LTID, IBD, and BD for the DNA model. In Sec. III,
we present the following results:

~1! CPU—analysis of the computational costs associa
with the two new algorithms in comparison to the pe
formance of BD,

~2! internal time scales—computed frictional eigenmod
for equilibrium configurations used to calculate the tim
scale for the slithering motion of a 1500-bp system,

~3! equilibrium motions—translational diffusion coeffi
cients, equilibrium configuration distributions for W
andRg , and the Wr andRg autocorrelation functions for
a 600-bp supercoil calculated from LTID, IBD, and B
trajectories,

~4! juxtaposition kinetics—mean juxtaposition times fro
equilibrium trajectories of 600-, 900-, 1200-, an
1500-bp supercoils based on IBD and BD,

~5! nonequilibrium motions—ensemble folding from a pe
turbed state to equilibrium of a 600-bp system, calc
lated using LTID, IBD, and BD.

We conclude in Sec. IV by summarizing inertia’s significa
influence on the time scales of thermal motions contraste
its lack of influence on the mean motion of a statistical e
semble, and by recommending IBD as a viable alternative
the standard BD scheme.

II. METHODS

We have developed feasible methods for simulating
dynamic behavior of macroscopic models of biopolymer s
tems governed by the inertial LD equation with hydrod
namic interactions.1 Here, we apply these methods to a com
putational model of supercoiled DNA.

A. The DNA model

The bead model of supercoiled DNA that we use h
has been introduced and characterized by our group10,8 and
by others.11–15 Appropriate parameter values reproduce e
perimentally observed properties of large DNA. Thou
prior studies of the dynamics of this model have used B
the values for the model parameters~such as bending and
twisting elasticity constants! are expected to be equally vali
for both the noninertial Brownian and the inertial Langev
descriptions of the dynamics since they are calibrated to
produce properties, such as equilibrium configuration dis
butions and diffusion coefficients, that do not depend on
masses of the particles in the system.

The DNA system is represented by a series ofN con-
nected beads. A closed DNA loop is modeled by connect
bead i 5N to beadi 51. Associated with each beadi is a
position, r i , and a local coordinate system of vectors$ai ,
bi , and ci% which define the rotational orientation of th
chain. A complete description of a conformation of the sy
tem requires specification of both the position vectorr and
the $a,b,c% triplet for i 51,...,N. Alternatively, one can
specify the position vector and the Euler angles$a i ,b i ,g i%,
to describe the rotation of the (i 21)th to thei th coordinate
system for each successive bead.11
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The potential energy is modeled as the sum of fo
terms:

E5Es1Eb1Et1Ee , ~1!

to account for stretching, bending, twisting, and electrost
interactions, as follows.

The stretching energy,Es , is computed from

Es5
h

2 (
i 51

N

~ ir i2r i 11i2 l 0!2, ~2!

wherel 0 is the resting length of each interbead segment
l 05L/N ~4 nm here!, where L is the target length of the
DNA molecule. The stretching energy is considered a co
putational device to restrain the length of the DNA to t
target length. Setting the stretching constant toh
51500;kBT/ l 0

2 results in deviations in realized segme
lengths of less than 1% ofl 0 .

The bending energy,Eb , is calculated from the set o
angles $b i%, denoting the deformation between th
( i 21)th and thei th segments:

Eb5
A

2l 0
(
i 51

N

b i
2 , ~3!

whereA denotes the bending rigidity constant, which is e
pressed asA5LpkBT, corresponding toA/ l 0512.5kBT for a
bending persistence lengthLp550 nm,16 and a segmen
length of l 054 nm.

The torsional angle between beads (i 21) andi is given
by the sum of the Euler anglesa i1g i , and the torsional
energy,Et , is calculated as

Et5
C

2l 0
(
i 51

N

~a i1g i2f0!2, ~4!

wheref0 is the equilibrium excess twist due to superhelic
winding:

f052ps~ l 0 / l h!. ~5!

Heres is the superhelical density, andl h is the DNA helical
repeat length of about 3.55 nm. The torsional rigidity co
stant is set toC53310212 erg nm.15

The electrostatic energy is approximated by the Deby
Hückel potential associated with point charges located at
centers of the beads:

Ee5
~n l 0!2

e (
j . i 11

e2kr i j

r i j
, ~6!

wheren is the effective linear charge density along the cha
e is the dielectric constant of water, 1/k is the Debye length,
andr i j is the scalar distance between beadsi andj. The value
of n is parametrized according to the method of Stigter17 so
that the far-field potential predicted by Eq.~6! matches the
solution to the nonlinear Poisson–Boltzmann equation fo
charged cylinder in an ionic solvent. For a monovalent s
concentration of 0.04 M, 1/k51.52 nm andn523.92
e nm21.

We use the radius of gyration (Rg) and the writhing
number ~Wr! as convenient measures of the macrosco
structure of our supercoiled DNA model. The writhing num
r
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ber describes the number of self-crossings of the clo
DNA helical axis, averaged over all planar projections of t
three-dimensional space curve~thus it is generally noninte-
gral!. It can be approximated using the following discretiz
tion of the Gauss double integral:12

Wr5
1

4p (
j 51

N

(
iÞ j

~r j 112r j !3~r j 1 i2r i !•~r j2r i !

ir j2r i i3
. ~7!

The radius of gyration is a measure of the DNA polym
size. It is defined as the root-mean-square displacemen
the hydrodynamic bead centers from the center of mass18

Rg
25

1

N (
i 51

N UUr i2
1

N (
i 51

N

r iUU2

. ~8!

B. Hydrodynamics calculations

The movements of the components of the DNA mod
are coupled to one another through the action of the visc
medium. This viscous coupling is approximated by incorp
rating either the configuration-dependent friction tensorZ
into the LD equation, or the diffusion tensorD into the IBD
and BD equations as previously outlined. For IBD and B
we use the Rotne–Prager diffusion tensor.19 For the LTID
algorithm, we constructZ from the inverse of the Rotne–
Prager diffusion tensor.

For anN-bead systemD is a 3N33N matrix written as

D5F D11 D12 ••• D1N

D21 D22 ••• D2N

A A A

DN1 DN2 ••• DNN

G , ~9!

where eachDi j is a 333 matrix representing the interactio
between thei th and j th beads. For the Rotne–Prager tens
eachDi j is calculated from19

Di j 55
S kBT

3phdD I for i 5 j ~same bead!

S kBT

8phir i j i
D F S I1

r i j r i j
T

r i j
2 D 1

d2

2r i j
2 S 1

3
I2

r i j r i j
T

r i j
2 D G

for iÞ j ~different beads!,
~10!

whered is the bead diameter andh is the viscosity of the
surrounding fluid. The vectorr i j is equal to r i2r j . The
quantity r i j

2 is equal toir i2r j i2.

C. Simulation algorithms

The simulation algorithms were introduced in Ref.
Here we present the implementation of LTID, IBD, and B
for the above-described DNA model. In the following se
tions, vnPR3N is the collective velocity vector for theN
particles in the system at thenth time step. The vectorr n

PR3N is the collective position vector. The entries of th
diagonal matrixMPR3N33N are the masses of particles. Th
positive definite friction tensorZ(r (t))PR3N33N is related
to the diffusion tensor byZ5kBTD21.
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1. LTID

The LTID algorithm requires an eigenmode decompo
tion of the matrixA5M21Z5kBTM21D21. In practice we
construct the decomposition ofA by first factoringD @which
we have calculated from Eq.~10!#:

D5LSLT, ~11!

whereS is a diagonal matrix. Since our system is compos
of beads of equal mass,m, the matrixA can be written as

A5
kBT

m
~LSLT!215

kBT

m
LS21LT, ~12!

which is identical to the decomposition introduced in t
companion paper,1 A5LLLT, where the entries of the diag
onal matrixL are equal tokBT/m times the entries of the
matrix S21.

The correlation structure of the random force term c
be expressed as

^ f r
m~ f r

n!T&5
2kBTdmn

Dt
Z5L̄ L̄Tdmn , ~13!

where the subscriptsn and m refer to time step,dmn is the
usual Kronecker delta, and the matrixL̄ is a square root of
the correlation matrix:

L̄5AS 2mkBT

Dt DLL1/2. ~14!

According to the procedure outlined in Ref. 20, a rand
force vector having the proper correlation@Eq. ~13!# can be
calculated from the above via

f r
n5L̄p, ~15!

wherep is a vector of uncorrelated random numbers cho
from a Gaussian distribution with zero mean and unit va
ance.~See also Note added in proof in Ref. 1 of an altern
tive procedure.! Note that

L̄ L̄T5
2mkBT

Dt
LLLT5

2kBT

Dt
MA 5

2kBT

Dt
Z.

For our DNA model, the torque on each bead acts o
in the ai direction and the random torque,t r ,ai

n , is chosen

from a Gaussian distribution with zero mean and varia
given by

^~t r ,ai

n !2&5
2kBT

Dt
jai

. ~16!

LTID implementation for DNA model. Analogous to the
application of LTID to a simple harmonic oscillator given
the companion paper,1 we construct an algorithm that i
second-order algorithm in its treatment of the system
forces based on calculating a first-order estimate of the c
figuration at the (n11)th time step and using this configu
ration to make an estimate of the force acting at timen
11). We denote the first-order estimate of the configurat
by the bead positions,r n11,* , and the local coordinate sys
tems$a,b,c%n11,* .
i-

d

n

n
-
-

y

e

ic
n-

n

For each bead, we first calculate an estimate of the fi
rotation about theai axis:

DQai

n,* 5
mai

jai

@12e2(jai
/mai

)Dt#Vai

n

1
1

jai

FDt2
mai

jai

~12e2(jai
/mai

)Dt!G
3~ts,ai

n 1t r ,ai

n !. ~17!

The local coordinate system is then rotated byDQai

n,* :

ãi
n11,* 5ai

n ,

b̃i
n11,* 5cos~DQai

n,* !bi
n1sin~DQai

n,* !ci
n , ~18!

c̃i
n11,* 52sin~DQai

n,* !bi
n1cos~DQai

n,* !ci
n .

The tilde notation denotes the initial estimates of the coo
nate axes after the rotation step alone. A further modificat
~described in the following! of the local coordinate axes i
associated with the translation step because of the const
that the beads rotate only about theai axes.

The initial estimate of the position coordinates is giv
by

r n11,* 5r n1L @L21~ I2e2LDt!#LTvn

1LL21@ IDt2L21~ I2e2LDt!#LT~gs
n1gr

n!,

~19!

where

gs
n52M21¹E~r n! ~20!

is the systematic acceleration acting on ther n configuration,
andgr

n is the random acceleration due to the forcef r
n .

To enforce the constraint that the beads are free to ro
only about theai axes, we recompute the local coordina
systems of the particles after the position vector,r n11,* has
been calculated. Namely, we updateai so that it remains
tangent to the DNA segment:

ai
n11,* 5~r i 11

n11,* 2r i
n11,* !/i~r i 11

n11,* 2r i
n11,* !i . ~21!

We definedai
n11,* 5ãi

n11,* 2ai
n11,* . Since we require all

rotations aboutai to vanish, the new displacements a
calculated:10

dbi
n11,* 52~dai

n11,* •b̃i
n11,* !ãi

n11,* ~22!

and thenb8 i
n11,* 5b̃i

n11,* 1dbi
n11,* . Thenbi

n11,* is deter-
mined as the component ofb8 i

n11,* perpendicular toai
n11,* :

bi
n11,* 5

b8 i
n11,* 2~b8 i

n11,* •ai
n11,* !ai

n11,*

ib8 i
n11,* 2~b8 i

n11,* •ai
n11,* !ai

n11,* i
. ~23!

Finally, ci
n11,* can be calculated from the cross product:

ci
n11,* 5ai

n11,* 3bi
n11,* . ~24!

Then using the first-order coordinates, we calculate
estimate of the systematic acceleration,gs

n11,* , and torques,
ts

n11,* , acting on the system at the (n11)th time step.
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The final update of angular velocity and position is o
tained by averaging the systematic torque over the interv

Vai

n115Vai

n e2(jai
/mai

)Dt1
1

jai

@12e2(jai
/mai

)Dt#

3@ 1
2 ~ts,ai

n 1ts,ai

n11,* !1t r ,ai

n #, ~25!

DQai

n 5
mai

jai

@12e2(jai
/mai

)Dt#Vai

n

1
1

jai

FDt2
mai

jai

~12e2(jai
/mai

)Dt!G
3@ 1

2 ~ts,ai

n 1ts,ai

n11,* !1t r ,ai

n #. ~26!

ãi
n115ai

n ,

b̃i
n115cos~DQai

n !bi
n1sin~DQai

n !ci
n , ~27!

c̃i
n1152sin~DQai

n !bi
n1cos~DQai

n !ci
n .

We then make the update of velocity and position by
proximating the systematic acceleration acting over the t
interval to be the average ofgr

n andgr
n11,* :

vn115Le2LDtLTvn1LL21~ I2e2LDt!

3LT@ 1
2 ~gs

n1gs
n11,* !1gr

n#, ~28!

r n115r n1L @L21~ I2e2LDt!#LTvn1LL21@ IDt

2L21~ I2e2LDt!#LT@ 1
2~gs

n1gs
n11,* !1gr

n#. ~29!

Finally, the calculation of the local coordinate axe
$ai

n11 ,bi
n11 ,ci

n11% proceeds according to Eqs.~21!–~24!.

2. IBD

Both the IBD and the BD algorithms are expressed
terms of the diffusion matrixD and do not require an eigen
mode decomposition ofD. If we define the random displace
ment,Rn, to be the displacement associated with the rand
force applied at thenth time step, we can express the IB
algorithm as

DQai

n 5
1

jai

F ts,ai

n Dt1
mai

jai

~ts,ai

n212ts,ai

n !G
1DQ r ,ai

n 1
mai

jai

~DQ r ,ai

n212DQ r ,ai

n !/Dt,

~30!

r n115r n1
D

kBT F f s
nDt1

mD

kBT
~ f s

n212 f s
n!G

1Rn1
mD

kBT
~Rn212Rn!/Dt,

wheref s
n is the system force acting at thenth time step. The

random displacements are correlated according to

^~Rm!•~Rn!T&52DtdmnD. ~31!
-
l:

-
e

,

m

This is the familiar random displacement used in the st
dard BD algorithm. The random displacements can be ca
lated from:2

Rn5L̄p, ~32!

where L̄ comes from the Cholesky factorization, 2DtD
5L̄ L̄T, and again,p is a vector of uncorrelated random num
bers chosen from a Gaussian distribution with zero mean
unit variance. The random angular displacements are cho
from Gaussian distribution with variance given by

^~DQ r ,ai

n !2&5
2kBTDt

jai

. ~33!

IBD implementation for DNA model. Analogous to the
LTID implementation, a second-order estimate of the s
tematic force is used to update the position at each time s
An initial estimate of the position and rotations is made a
cording to

DQai

n,* 5
1

jai

F ts,ai

n Dt1
mai

jai

~ts,ai

n212ts,ai

n !G
1DQ r ,ai

n 1
mai

jai

~DQ r ,ai

n212DQ r ,ai

n !/Dt,

~34!

r n11,* 5r n1
D

kBT F f s
nDt1

mD

kBT
~ f s

n212 f s
n!G

1Rn1
mD

kBT
~Rn212Rn!/Dt.

The calculation of the local coordinate system
$ai

n11,* ,bi
n11,* ,ci

n11,* %, proceeds according to Eqs.~18!
and ~21!–~24!. Using the coordinates, r n11,* and
$ai

n11,* ,bi
n11,* ,ci

n11,* %, we calculate estimates of the sy
tematic forces,f s

n11,* , and torques,ts,ai

n11,* , acting at the

(n11)th time step. The final estimate of the rotations a
position is made according to

DQai

n 5
1

2jai

F ~ts,ai

n 1ts,ai

n11,* !Dt

1
mai

jai

~ts,ai

n211ts,ai

n,* 2ts,ai

n 2ts,ai

n11,* !G
1DQ r ,ai

n 1
mai

jai

~DQ r ,ai

n212DQ r ,ai

n !/Dt, ~35!

r n115r n1
D

2kBT F ~ f s
n11,* 1 f s

n!Dt

1
mD

kBT
~ f s

n211 f s
n,* 2 f s

n2 f s
n11,* !G

1Rn1
mD

kBT
~Rn212Rn!/Dt.

Finally, the update of the local coordinate axes again p
ceeds according to Eqs.~18! and ~21!–~24!.
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3. BD

The BD algorithm is implemented in a manner similar
the IBD algorithm:

DQai

n,* 5
1

jai

ts,ai

n Dt1DQ r ,ai

n ,

~36!

r n11,* 5r n1
D

kBT
f s

nDt1Rn,

where theRn and theDQ r ,ai

n are chosen as above for IBD

As before, the local coordinate axes,$ai
n11,* ,

bi
n11,* ,ci

n11,* %, are updated according to Eqs.~18! and
~21!–~24!. The final update is given by

DQai

n 5
1

2jai

~ts,ai

n 1ts,ai

n11,* !Dt1DQ r ,ai

n ,

~37!

r n115r n1
D

2kBT
~ f s

n1 f s
n11,* !Dt1Rn.

III. RESULTS

In the simulations discussed in the following below w
study closed DNA loops with with the physiological supe
helical density ofs520.06, represented using one hydr
dynamic bead~or equivalently one DNA segment! per 12 bp.
Our smallest system~600-bp, 50 segments,L5200 nm! can
adopt a superhelical form, but is also sufficiently small
make the generation of hundreds of trajectories on a wo
station computationally feasible. For all the simulations co
sidered here, the monovalent salt concentration is set at
M. All computations are performed on a 195 MHz/MIP
R10000 processor of a SGI Power Challenge computer.
eigenvalue decomposition was performed using the RS m
ule from theEISPACK package.

To study the behavior of the model system in equil
rium, we generated several trajectories, each of length 1
for each algorithm. In computing long trajectories, the h
drodynamic matrix~either the friction matrix or the diffusion
matrix, depending on the algorithm! was not updated at ev
ery time step. Jian, Vologodskii, and Schlick10 find that it is
possible to accurately reproduce equilibrium and dyna
properties while updating the diffusion matrix every 6 n
We have reduced this value to 1 ns for all simulations
ported here.

A. Computational performance

Table I reports the percentage of relative computatio
time that each algorithm devotes to calculations involv
hydrodynamics~including the evaluation of the hydrody
namic matrix and its decomposition!, interparticle forces,
and all other steps in the update procedure. Because the
drodynamic matrix is updated at a fixed simulation time
terval, a greater proportion of CPU time is dedicated to
decomposition of this matrix as the time step is increas
Using Dt5100 ps, we see that the LTID algorithm devot
about 39% of CPU time to performing the eigenmode
composition. Another 50% of the CPU time is spent in t
calculation of the matrices involved in the position and v
k-
-
04

he
d-

-
s,

-

ic
.
-

l

hy-
-
e
d.

-

-

locity update Eqs.~28! and ~29!. For this case, only 1% o
CPU time is dedicated to the calculation of interpartic
forces. At the smaller time step,Dt510 ps, a greater propor
tion of CPU time ~4%! is devoted to the calculation o
forces, and the hydrodynamics calculations reduce to 23%
total CPU time.

The IBD algorithm atDt5100 ps dedicates 27% of it
CPU time to the calculation and decomposition of the dif
sion matrix, and nearly 70% of its CPU time to the matr
multiplications in the position update equation. Force cal
lations make up about 7% of total CPU time. BD involves
less complicated update step, with fewer matrix multiplic
tions. Therefore BD spends a greater proportion of its C
time ~45%! on the Cholesky factorization ofD compared to
IBD.

Table II reports the computational time involved in ge
erating a 1 mstrajectory for the various algorithms. For eac
time step~10 and 100 ps!, we see that BD requires the lea
computation and LTID the most. Note that for 10 ps tim
steps the CPU time associated with all methods is roughl
the same order of magnitude. However BD and IBD enjo
speedup factor averaging 8 when the time step is increase
100 ps, while the speedup for LTID is less than a factor o
This difference is due to the hydrodynamics update st
which is more costly for LTID than for either of the othe
algorithms. For a given trajectory length, hydrodynamic u
dates consume a fixed amount of CPU time, regardless o
time step.

TABLE I. The distribution of CPU time for the three algorithms amon
hydrodynamic calculations~matrix evaluation and decomposition!, interpar-
ticle force evaluation, and all other work~including matrix updates for
LTID ! as determined for a 50-bead~600-bp! system. The hydrodynamics
calculations involve a Cholesky factorization for BD and IBD, and an eig
decomposition for LTID.

Method Dt ~ps! % CPU, hydro % CPU, force % CPU, other

BD
10

100
7

45
17
9

75
46

IBD
10

100
4

27
9
7

86
66

LTID
10

100
23
39

4
1

73
60

TABLE II. Computational time for generating a 1 mstrajectory of the
50-bead~600-bp! system for a given algorithm and time step. Computatio
times are reported in hours on a 195 MHz/MIPS R10000 processor of a
Power Challenge computer. The speedup~last column! associated with in-
creasing the time step from 10 to 100 ps is reported.

Method Dt CPU ~h! Speedup

BD
10

100
78
10.9

7

IBD
10

100
169
19.2

9

LTID
10

100
198
114

1.7



ith

re
e

ds
t

ic

on
t

ium

e
s
n
o
a

es
ot
it

on
n
le

im
u
s

the

n
lore

.
f

the

-

7329J. Chem. Phys., Vol. 112, No. 17, 1 May 2000 Inertial stochastic dynamics. II
In Fig. 1 we plot the computational time associated w
generating a 1 mstrajectory as a function of system size,N
~number of beads!, for each algorithm usingDt5100 ps. For
large N, LTID is more than an order of magnitude mo
expensive than either BD or IBD. As expected, CPU tim
grows asN3 in the limit of largeN. We also see that IBD is
roughly twice as costly as BD.

B. Eigenvalue spectrum

The derivation of the IBD and BD algorithms depen
on the assumption that both the numerical time step and
physical time scale of the system~e.g., for configurational
evolution! are large compared to the time scale of the fr
tional decay of the inertial modes. To examine this assum
tion, we calculated the eigen decomposition of the fricti
matrix for a 600-bp system. This decomposition allows us
visualize the eigenmodes associated with an equilibr
structure.

For a 600-bp (N550) system,M21Z is a 1503150 ma-
trix, and has 150 independent eigenvalues,$l i%. The distri-
bution of time constants,$t i%5$l i

21%, for a typical supercoil
configuration is plotted in Fig. 2. Notice that most of th
frictional modes~138 out of 150! have time constants les
than 1 ps. In Fig. 3 we show the supercoil configuration a
the eigenvectors associated with the eight largest time c
stants. The three largest relaxation times correspond to
proximately rigid translational modes; the next three larg
time constants correspond to motions that are mainly r
tional. Unlike zero-frequency normal modes associated w
a Hamiltonian system, the rigid-body modes of the fricti
tensor have finite eigenvalues, corresponding to the frictio
decay times associated with these motions. More comp
internal motions decay more rapidly and the associated t
constants are all less than 1.5 ps. For the dynamics calc
tions presented in the following sections we use time step

FIG. 1. Computational time associated with performing a 1 mstrajectory for
the three methods as a function of system size,N, the number of beads
Computations are performed on a 195 MHz/MIPS R10000 processor o
SGI Power Challenge computer.
he
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10 and 100 ps. ForDt510 ps, the productl iDt is greater
than 3 for the rigid body modes and greater than 6 for
internal motion modes.

C. Slithering motion

Aside from being the basis of the LTID propagatio
scheme, the eigenmode decomposition allows us to exp

an

FIG. 2. The distribution of inertial relaxation times,$t i%, for a typical con-
figuration of a 600-bp minicircle model calculated as the inverse of
eigenvalues of the matrixM21Z. See also Fig. 3.

FIG. 3. Eigenmodes of a 600-bp~50-bead! supercoil. The eigenvectors as
sociated with the eight largest inertial relaxation times (t i) are shown su-
perimposed on top of the supercoil structure.
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internal ‘‘slithering,’’ or a bidirectional conveyor-belt-like
reptational motion in supercoiled DNA. We define slitheri
in our model as the concerted motion of the DNA beads
the direction of the helical axis. For thei th bead we calculate
the slithering direction assi5r i 112r i 21 , and define
sPRe3N as the collective slithering mode for theN particles.
This slithering mode is shown in the top panel of Fig. 4 fo
DNA system of 1500 bp.

Denoting the eigenvectors contained in the matrixL ~see
Sec. II C 1! as l j , we decomposes using the linear combina
tion

s5(
j 51

3N

bj l j , ~38!

where the scalars$bj% are computed from the inner produc

bj5slj . ~39!

The coefficients$bj% are sorted according to descending a
solute value, and their relative magnitudes are plotted in
top panel of Fig. 5, with the first ten values highlighted in t
inset. The lower panel of Fig. 5 shows the time consta
associated with the various eigenmodes. Again, the first
values are highlighted in the inset. Slithering motion is n
described by a single mode than can be independently
cited, but it can be represented approximately by combin
the first fewk modes:

sk5(
j 51

k

bj l j .

For example, the motion described bys3 is shown in the
lower panel of Fig. 4. From Fig. 5 we see that these mo
have approximately equal time constants of about 1.5 ps

Therefore slithering motion decays with a time consta
ts of about 1.5 ps. Using this value with the relationDs

5kBTts /Nm ~wherem is the bead mass! we can calculate

FIG. 4. Slithering of a 1500-bp supercoil. In the top panel, an equilibri
structure is shown, with the slithering mode,s, superimposed. The lowe
panel shows the motion described by summation of the three largest e
mode contributions tos. See the text for details.
n

-
e

ts
n
t
x-
g

s

t,

an effective slithering diffusion coefficient:Ds'2
31028 cm2/s. From this estimate we can calculate the tim
required to slither a given distance. For example, slitherin
distance of 500 nm~the length of the DNA contour for a
system of 1500 bp! would require an average time o
(500 nm)2/2Ds , or about 60 ms. Since the time for reptatio
scales approximately as the cube of the size of the polyme21

we expect a 10 kbp plasmid to have a reptational turno
time of about 17 s. For the same size plasmid, Marko22 esti-
mates a reptation time of 7 s. This reptation time is char
teristic of the time required for linearly distant sites along t
DNA contour to be brought into close proximity by pur
slithering motion. Realistic motions of plasmids—involvin
local slithering combined with the creation, deletion, a
sliding of branches—results in mean juxtaposition times t
scale approximately as the square of the size of
plasmid.22

D. Translational diffusion coefficients

We calculated the translational diffusion coefficien
Dt , from the dynamics trajectories based on each of
three algorithms for several different sizes of DNA sup
coils. Diffusion coefficients were estimated from the traje
tories of the mean square displacements of the cente
mass. The center of mass was calculated from

n-

FIG. 5. Decomposition of the slithering mode for the 1500-bp DNA syste
Upper panel: The relative magnitude of coefficients$bj% are plotted in de-
scending order. Lower panel: The time constants$t j% for the eigenmodes
associated with each$bj% are plotted. The insets show the magnitudes a
the time constants for the first ten modes.
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r c.m.
n 5

1

N (
i 51

N

r n, ~40!

andDt was estimated from

Dt5
NsDt

ts
(
j 51

ts /NsDt S ir c.m.
Nsj

2r c.m.
Ns( j 21)i2

6NsDt
D , ~41!

wherets is the total trajectory length, andNs is the number
of time steps between calculations of mean square displ
ment. A simulation extending tots51 ms was used, andNs

was set to 1 000 steps. For each estimate, five trajecto
were simulated to ensure convergence and improve statis

Table III reportsDt for DNA systems of 600, 900, an
1200 bp calculated based on BD, IBD, and LTID. For ea
algorithm a time step of 100 ps was used. The estima
based on the different algorithms closely agree.

E. Equilibrium distributions

Plotted in the upper panel of Fig. 6 are the probabil
distributions of Wr andRg for the LTID algorithm based on
two different time steps for several 1 ms trajectories of
600-bp system. For each time step a total of ten runs of 1
each were used to deduce the distributions. The trian
represent the distributions calculated using a time step of
ps, while the circles represent the distributions calcula
from a time step of 10 ps. The canonical distributions
these quantities calculated using Monte Carlo~MC! methods
as outlined recently in Ref. 23 are also plotted for compa
son. We see that the LTID algorithm, using either time st
generates probability distributions that agree well with
MC distributions.

The equilibrium distributions of Wr andRg computed
from the ten IBD trajectories of length 1 ms for both tim
steps~middle panel, Fig. 6! agree with the MC distributions
for trajectories computed usingDt5100. However, theRg

distributions computed usingDt510 ps do not match the
expected equilibrium distribution predicted by MC. This
because the IBD approximation is valid for time steps t
are large compared to the inertial relaxation times. A ti
step ofDt5100 is large enough so thate2l iDt is negligibly
small for all inertial relaxation times,l i , and the IBD algo-
rithm samples the same configuration space as LTID
MC. Clearly, the time stepDt510 ps is not sufficiently large
compared to the inertial relaxation times for the DNA sy
tem.

Corresponding results for the BD algorithm~lower pan-
els of Fig. 6! show that the equilibrium probability distribu
tions are correctly predicted. Because the BD scheme re

TABLE III. Translational diffusion coefficients obtained by BD, IBD, an
LTID for supercoiled DNA of various sizes.

DNA size ~bp!

Dt (31028 cm2/s)

BD IBD LTID

600 12.0360.11 11.9760.11 12.0560.11
900 9.1560.09 9.1860.09 9.0960.08

1200 7.7660.06 7.7460.07 7.7260.07
e-
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duces the canonical ensemble in the small-time-s
~differential! limit, proper sampling of the configuration
space does not degrade atDt510 ps, as for IBD.

F. Equilibrium fluctuations

We next report on the autocorrelation functions of t
macroscopic properties Wr andRg computed from equilib-
rium trajectories. For each algorithm—LTID, IBD, an
BD—using bothDt510 and 100 ps, we calculated the aut
correlation functions based on ten trajectories of 1 ms e
of a 600-bp supercoil. For a given propertyA(t), the auto-
correlation functionCA(t) is given by

CA~t!5
^@A~ t2t!2^A~ t !&#•@A~ t !2^A~ t !&#&

^@A~ t !2^A~ t !&#2&1/2
, ~42!

where the bracketŝ•& indicate averages over time.
The average autocorrelation functions from all metho

are shown in Fig. 7. We see that the writhe correlatio
CWr(t), decays much more rapidly than the correlation
the radius of gyration,CRg

(t). The LTID autocorrelation
curves~upper panel! at the two time steps are nearly iden
cal, and a further reduction inDt does not effect either func
tion. The solid curves~LTID, Dt510 ps! for both functions
thus represent the correlation structure of the inertial syst
We use these as a reference for evaluation of the IBD
BD results.

The IBD autocorrelation functions~Fig. 7, middle
panel!, in contrast, are sensitive toDt. At Dt5100 ps, the
IBD Wr and Rg correlations accurately reproduce the cor
lation predicted by LTID~solid lines!. However, theCRg

(t)
memory is greatly exaggerated atDt510 ps. This behavior
is expected since we have shown1 that the configuration
space is not properly sampled by IBD withDt510 ps.

The BD results~lower panel of Fig. 7! deviate from the
correlation structure predicted by LTID at both time ste
and by IBD atDt5100 ps. Specifically, the BD autocorrela
tion functions at the two time steps are nearly identical a
do not approach the inertial dynamics curves. The deca
Rg correlation is significantly slower for BD than for th
LTID or IBD.

By fitting the tails of the correlation curves with expo
nentials we estimate the correlation time constantstWr and
tRg

, for Wr andRg , respectively, for all algorithms for eac
value ofDt. The estimates are presented in Table IV. In t
small-time-step limit (Dt510 ps!, LTID predicts correlation
time constants oftWr50.81ms andtRg

54.8 ms, for Wr and
Rg , respectively. The IBD algorithm reproduces these in
tial correlation times atDt5100 ps but not atDt510 ps, as
expected. BD underestimatestRg

by 10%, regardless of the
time step. Therefore, IBD can be applied using long tim
steps competitive with BD, and still accurately approxima
the effects of inertia on kinetic processes.

G. Site juxtaposition

We next study fluctuations in the distance between t
sites on the DNA chain separated by a fixed contour len
Ls . Plotted in Fig. 8 is a trajectory of the distance,d(t),
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FIG. 6. Equilibrium distributions for
LTID, IBD, and BD obtained from
several trajectories of length 1 ms fo
Wr and Rg for the 600-bp DNA sys-
tem. Ten trajectories were used fo
each time step.
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between two beads~beads number 10 and 35;Ls5300 bp! in
a 600-bp system from an IBD simulation usingDt5100 ps.
The distance between bead centers fluctuates between
10 and 80 nm; the lower value corresponds to a typical d
nition of close approach, or ‘‘juxtaposition.’’8 The fluctua-
tions tend to occur over a time scale on the order of ten
hundreds of microseconds. Also shown in Fig. 8 are
DNA configurations at four representative points along
trajectory, with the positions of beads 10 and 35 indicated
green spheres.

We define the juxtaposition timetJ for two sites along
the DNA contour as the time it takes for the distance
tween them to fall below a thresholdd0 . Thus, given some
starting configuration, the juxtaposition time is the small
positive value oft for which d(t)<d0 . To obtain the equi-
librium mean ^tJ&, we computed several trajectories fro
out
-

to
e
e
y

-

t

different equilibrium starting configurations until all pairs o
beads separated byLs bp had achieved juxtaposition.

For example, for a 1200-bp plasmid~modeled using 100
beads! we measured the time of first juxtaposition for a
pairs of sites separated by the fixed contour length ofLs

5300 bp, or a contour separation of 25 beads. That is, gi
a starting configuration, we continued a trajectory until
100 pairs of beads juxtaposed as defined byd0510 nm; each
such juxtaposition gives a single measure oftJ from one
trajectory. To improve statistics, multiple trajectories we
run, as follows. We ran 20 BD trajectories, yielding a total
2000 measures oftJ and an average juxtaposition tim
^tJ&50.343 ms. Using the identical 20 starting configur
tions and 20 random seeds, we simulated the juxtaposi
trajectories using IBD; an average juxtaposition time
0.330 ms was obtained. A statistical analysis showed that
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FIG. 7. Autocorrelation functions for
LTID, IBD, and BD for Wr andRg as
calculated using time steps of 10 an
100 ps for a 600-bp system.
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difference between these means is significant~Student’s
t-test,p,0.05): juxtaposition occurs more rapidly, on ave
age, in the inertial 1200-bp system than in the mass
1200-bp system.

Using a critical distance ofd0510 nm, we also com-
puted the mean juxtaposition times for contour lengths
180, 240, and 300 bp along a 600-bp plasmid~Table V!. The
differences in estimated̂tJ& between the two algorithms ar
not statistically significant for this much smaller system, a
the dependence of^tJ& uponLs is weak, as also deduced b
Jian, Schlick, and Vologodskii.8 Table V also reports esti
mates of̂ tJ& for larger~900-, 1200-, and 1500-bp! plasmids
with a site separation of 300 bp, and Fig. 9 displays^tJ&
versus plasmid size~vertical bars indicate standard error!. A
statistically significant (p,0.05) difference between th
means is indicated by an asterisk.

Interestingly, for 1200- and 1500-bp plasmids the diffe
ence between BD and IBD predictions of^tJ& is non-
negligible and significant. Intermolecular juxtaposition ten
ss

f

d

-

s

to occurmore rapidlyin the inertial system than in the mas
less system. The difference in^tJ& between the inertial and
noninertial case increases from 6% for a 1200-bp plasmid
8% for a 1500-bp plasmid. For reference, also shown in
figure are juxtaposition times from Huang, Vologodskii, a

TABLE IV. Correlation time constants calculated for a 600-bp system
fitting the tails of the autocorrelation functions for Wr andRg ~Fig. 7! with
exponentials.

Method Dt ~ps! tWr ~ms! tRg
~ms!

BD
10

100
0.77
0.80

4.3
4.3

IBD
10

100
0.78
0.81

6.8
4.8

LTID
10

100
0.81
0.81

4.8
4.8
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FIG. 8. ~Color! The distance,d, between two selected
sites separated by 300 bp in a 600-bp DNA minicircle
plotted vs time for an IBD trajectory usingDt5100 ps.
Also shown are the DNA configurations at four repr
sentative points in the trajectory, with the position
the selected sites indicated by green spheres.
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Schlick ~HVS!9 for the same system using BD with the sam
parameter values. Though the two BD programs are dif
ent, the agreement of the data of HVS data with our BD d
is excellent. Also shown are data from Jian, Schlick, a
Vologodskii,8 which were obtained using a different param
eter set. Namely, we use the salt concentration ofCs540
mM and a torsional rigidity constantC53310212 erg nm,
while they useCs510 mM andC52310212 erg nm. As
either Cs or C is increased, the DNA adopts a more inte
wound structure and juxtaposition times are reduced.

H. Folding dynamics

To determine whether the BD approximation influenc
kinetics of nonequilibrium processes in addition to equil
rium behavior, we examined the folding of DNA from
planar torsionally stressed circle into a relaxed superc
Previous studies have examined this relaxation proces
Langevin dynamics24 and Brownian dynamics,12,25 based on
a limited number~less than 5! of trajectories. Here we com
puted ensembles of several hundred folding trajectories

TABLE V. Mean juxtaposition times for various separation contour leng
Ls ~see the text! along plasmids ranging in size from 600 to 1500 bp,
computed by BD and IBD. Where statistically significant, the relative d
ference between the mean times is reported in the rightmost column.
also Fig. 9.

DNA size ~bp! Ls ~bp! ^tJ& ~ms! ~BD! ^tJ& ~ms! ~IBD! ~%!

180 88.263.8 88.663.9 –
600 240 87.663.8 88.163.8 –

300 93.065.5 93.265.6 –

900 300 237.667.2 230.466.9 –

1200 300 343.067.7 324.967.6 6

1500 300 430.569.1 399.868.8 8
r-
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LTID, IBD, and BD to elucidate statistical differences b
tween the behavior predicted by these algorithms.

Snapshots from a typical folding trajectory~computed
using LTID with Dt510 ps! are shown in Fig. 10 for a 600
bp DNA. The starting configuration is a planar circle wi
Wr50 andRg531.83 nm~equal to the radius of the circle!.
This configuration is not present in the equilibrium ensem
because these values of Wr andRg do not occur in the equi-
librium distributions.1 As the supercoil relaxes, values appr
priate for the equilibrium ensemble are obtained within 4ms.

This single trajectory only represents one possible fo
ing pathway. The relaxation time scale must be evalua
from a statistical ensemble. We therefore calculated 500 s
trajectories from LTID and IBD and 1000 from BD using th

FIG. 9. Mean times of juxtaposition of two sites separated by 300 bp vs
length of the DNA plasmid~600–1500 bp! as computed by IBD and BD a
Dt5100 ps. Vertical bars indicate standard error. The critical distance
d0510 nm is used to determine juxtaposition, as outlined in the text
statistically significant difference (p,0.05 for t-test! between the means is
indicated by an asterisk. BD data from Huang, Vologodskii, and Sch
~Ref. 9! and Jian, Schlick, and Vologodskii~Ref. 8! are shown for reference
See the text note on differences in models.
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FIG. 10. ~Color! Simulation snapshots of 600-bp supercoil relaxation as computed by LTID withDt510 ps. The eight images, at 1ms intervals, show
relaxation from a planar circle to an equilibrium structure. The planar circle has Wr50, andRg531.83 nm, which is equal to the radius of the circle.
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same starting configuration, but different random seeds~for
the random force!. Figure 11 shows Wr~left! andRg ~right!
as functions of time~black lines! for ten of these trajectories
For BD and IBD we usedDt5100 ps and for LTID we used
Dt510 ps.

The means over each total ensemble of trajectories
plotted Fig. 11 as solid red lines. The means plus and m
one standard deviation are plotted as dashed red lines;
the equilibrium means of Wr andRg are indicated by hori-
zontal black lines.

We find that the mean Wr of the LTID ensemble
trajectories relaxes to the equilibrium mean in about 6ms.
This time scale is substantially longer than the time scale
equilibrium fluctuations in Wr~see Table I!.

The radius of gyration, on the other hand, takes e
longer to decay. Between 3 and 20ms, the mean curve un
dershoots the equilibrium mean, indicating an ensemble
structures that are, on average, more compact than in e
librium. Only after 20ms does the ensemble mean ofRg

reach equilibrium. Again, the relaxation time is longer th
the correlation times reported in Table I.

The mean curves for IBD~based on 500 trajectories!
re
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behave similarly to the mean relaxation curves obtained fr
LTID. Writhe relaxes to the equilibrium distribution in les
than 10 ms; while meanRg undershoots the equilibrium
mean for most of the 20ms. The BD writhe andRg evolution
and corresponding ensemble means are qualitatively sim
to those generated by LTID and IBD.

Minor quantitative differences become apparent wh
the mean curves for all of the algorithms are plotted toget
in Fig. 12. Here, Wr andRg are plotted as the ensemb
mean trajectory minus the equilibrium mean. The ensemb
from the different algorithms follow similar folding trajecto
ries. The ensemble mean Wr relaxation curves are indis
guishable between the Brownian and Langevin descriptio
and only small differences are apparent in theRg relaxations.
Therefore, the differences between the LTID, IBD, and B
trajectories are not significant in the finite ensembles co
puted here.

IV. DISCUSSION

We have shown that biologically important motions
supercoiled DNA plasmids as governed by Langevin dyna
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FIG. 11. ~Color! Ensemble relaxation trajectories for Wr andRg calculated using LTID~500 trajectories;Dt510 ps!, IBD ~500 trajectories;Dt5100 ps!, and
BD ~1000 trajectories;Dt5100 ps! for a 600-bp plasmid. In each plot, the thin black curves denote data from the ten arbitrarily selected trajectorie
red lines indicate the ensemble mean over the entire collection of trajectories; dashed red lines indicate the mean plus/minus one standardn.
Equilibrium means are indicated by horizontal black lines.
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ics depend on inertial effects which are ignored by the us
BD approach. A cursory inspection of this result may lead
an apparent contradiction. That is, if the polymer has iner
properties, should not the viscous solvent as well? If t
were so, our use of the configuration-dependent friction t
sor would be inappropriate since it is derived under the
sumption of Stokes flow. However, it is well known that th
motion of DNA systems take place at very low Reynol
numbers where the Stokes approximation is valid. Howe
that the fluid equations reduce to a noninertial form does
imply that the equation for polymer dynamics necessa
will. The amount of effective damping in the Langevin equ
tion determines whether or not the Brownian approximat
is accurate. As we discuss in the companion paper, the l
of effective damping depends not only on the inertial rela
ation times~which depend only on the masses of the p
ticles and the friction tensor!, but also on the potential energ
function of the polymer, which is independent of the equ
tions that govern the motions of the solvating fluid.

Our new algorithms, LTID and IBD, allow us to calcu
late long-time dynamic trajectories of elastic models of
percoiled DNA. These methods are similar to the BD alg
rithm of Ermak and McCammon2 and variations thereof26 in

FIG. 12. ~Color! Mean relaxations for Wr andRg for LTID, IBD, and BD as
computed by the same protocol described for Fig. 11 for the 600-bp sys
The relaxation curves are nearly identical for the three algorithms.
al
o
l

s
-

s-

r,
ot
y
-
n
el
-
-

-

-
-

that they allow relatively long time steps in computing t
motions of a macromolecule governed by the Lange
equation with hydrodynamics. In LTID and IBD, as well a
in the BD formulation, the motions of the particles a
coupled through the potential energy function, which go
erns the interparticle forces, and also through the action
configuration-dependent hydrodynamic interaction tensor
contrast to BD, LTID and IBD have been developed witho
assuming that the dynamical system is fully damped,
noninertial.1

The relative importance of inertia clearly depends up
the property under investigation. Figure 6 shows that LT
IBD, BD, and MC all sample the same equilibrium distrib
tions, providing convincing evidence that our new inert
algorithms produce valid results. While we expect the st
dard Brownian description to be poor when fluctuations
interparticle forces occur over a time scale that is similar
~or faster than! the momentum relaxation times, the effects
inertia on the behavior of our DNA model are not reveal
when the equilibrium distributions predicted by the vario
algorithms are compared~Fig. 6!. Nor are the ensemble av
erage folding trajectories of the 600-bp plasmid stron
mass dependent~Fig. 12!. Configurational transition rates in
equilibrium, however, are sensitive to mass. For fluctuatio
around equilibrium conformations, differences in the writ
ing number and radius of gyration autocorrelation functi
are noted for the various algorithms~Fig. 7!. Namely, the
autocorrelation decay ofRg is faster for the noninertial~BD!
case than for the inertial~LTID, IBD ! cases, withtRg

about

0.5 ms ~10%! smaller for BD trajectories than for LTID tra
jectories. Thus, high-frequency noise is overexaggerate
the BD case compared to IBD, leading to a faster decay
Rg memory.

Unfortunately, LTID cannot compete with BD in term
of efficiency. ForDt5100 ps, LTID requires an order o
magnitude more CPU time than BD to compute a traject
of a fixed length for our 600-bp system~Table II!. For larger
systems, LTID requires about 15 times the computatio
time than BD~see Fig. 1!. Investigations of the rate of site
juxtaposition require the calculation of several trajectories
millisecond length,8 which are not be feasible using LTID.

On the other hand, the IBD algorithm, derived based
a discretization of the Langevin equation or equivalen
from a singular perturbation of the Langevin equation~see
the companion paper1!, is much cheaper than LTID sinc
IBD captures the inertial effects in a single mass-depend
term ~proportional to the time derivative of the systema
force! in the position update equation. Thus IBD, an altern
tive to the standard BD scheme, can be used to study dyn
ics on time scales competitive with BD. The decision to tre
dynamics as noninertial need not, therefore, be imposed
limitations on computational resources. Instead, the dete
nation of whether to include mass can be made based
physical reasoning. Indeed, using IBD, we have been abl
generate trajectories of relatively large systems~up to 1500
bp! over time scales of several milliseconds.

From these long trajectories we find that, for small~600
bp! DNA, neglecting inertia has little effect on the speed
the fluctuations in intermolecular distances~Table V!; but in

m.
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larger systems the effects of mass are apparent in the ju
position times~Table V, Fig. 9!. Simulating a 1200-bp plas
mid using IBD results in mean juxtaposition times that a
6% smaller than the mean times predicted by BD. For 15
bp, this difference increases to 8%. Clearly, inertial effe
become more important as the system size is increased
momentum relaxation times increase, and thus the Brown
approximation becomes less accurate. Biological system
interest can be 10 000 bp and longer.

As is the case for general Langevin integrators,27 the
IBD algorithm works with a time step that is neither to
large nor too small. With the large time stepDt5100 ps, the
IBD algorithm appropriately samples the configuration sp
and reproduces the correlation structure of Wr andRg when
compared to the behavior of the inertial system. The IB
approximation is not accurate, however, in the small-tim
step limit. Just as for the small-time-step behavior of
simple harmonic oscillator presented in the compan
paper,1 IBD fails to sample the canonical ensemble atDt
510 ps~Fig. 6!. This behavior can be understood if we no
that IBD is derived in the long-time-step limit of the LTID
difference equations or as a long-time-step expansion
Langevin dynamics.

In conclusion, for small plasmids, inertia influences t
thermal motions of DNA. The effects of inertia are mo
apparent on the rate of configurational transitions in equi
rium. While the kinetics of equilibrium fluctuations betwee
global configurations~as measured by Wr andRg fluctua-
tions and by mean intermolecular juxtaposition times! are
mass dependent, the mean pathway of relaxation from a
turbed state to equilibrium is not.

Interestingly, the Brownian approximation increases
rate of fluctuations inRg ~a process that occurs on the m
crosecond time scale! but decreases the rate of intermolec
lar site juxtaposition~millisecond time scale!. As it is diffi-
cult to predict a priori the effects of inertia on a given
process, IBD is recommended for computing trajectories
overdamped macromolecular systems governed by Lang
dynamics at time steps comparable with those used with
Important applications of IBD are calculations involvin
many trajectories of millisecond length in order to study t
kinetics of slowly evolving properties, such as the biolo
cally important intermolecular juxtaposition of linearly di
tant sites. As we have seen, both for the DNA system and
ta-
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the simple harmonic oscillator,1 application of IBD requires
the proper calibration of the time step. This can be acco
plished by comparison of equilibrium distributions to tho
generated from some other method such as Monte Carlo
by comparison of dynamic properties to those genera
based on LTID.
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