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Two algorithms are presented for integrating the Langevin dynamics equation with long numerical
time steps while treating the mass terms as finite. The development of these methods is motivated
by the need for accurate methods for simulating slow processes in polymer systems such as two-site
intermolecular distances in supercoiled DNA, which evolve over the time scale of milliseconds. Our
new approaches refine the common Brownian dynartBf3) scheme, which approximates the
Langevin equation in the highly damped diffusive limit. Our LTIOlong-time-step inertial
dynamics”) method is based on an eigenmode decomposition of the friction tensor. The less costly
integrator IBD(“inertial Brownian dynamics’) modifies the usual BD algorithm by the addition of

a mass-dependent correction term. To validate the methods, we evaluate the accuracy of LTID and
IBD and compare their behavior to that of BD for the simple example of a harmonic oscillator. We
find that the LTID method produces the expected correlation structure for Langevin dynamics
regardless of the level of damping. In fact, LTID is the only consistent method among the three, with
error vanishing as the time step approaches zero. In contrast, BD is accurate only for highly
overdamped systems. For cases of moderate overdamping, and for the appropriate choice of time
step, IBD is significantly more accurate than BD. IBD is also less computationally expensive than
LTID (though both are the same order of complexity as),Bihd thus can be applied to simulate
systems of size and time scale ranges previously accessible to only the usual BD approach. Such
simulations are discussed in our companion paper, for long DNA molecules modeled as wormlike
chains. ©2000 American Institute of Physids$S0021-96060)50717-X]

I. INTRODUCTION times and less than the time scale of fluctuations in the sys-

tematic forces. The first constraint tends to be easily satisfied

Brownian dynamicgBD) algorithms which incorporate for the case of elastic polymer models: Momentum relax-

hydrodynamic interactionshave been widely used to simu- ation times are typically in the picosecond range, and nu-

late relatively slow processeéap to several millisecond®f oo time steps are usually in the range of tens to hun-
large polymers like circular DNA of several kilobase pairs dreds of picosecond3In contrast, the extent to which the

represented by elastic modéfS.An inertial Langevin treat- o e
o o : second constraint is satisfied for these models has not been
ment which ignores hydrodynamic interactions has also been

introduced®12To our knowledge, an inertial dynamics al- extensively studied. The influence of ignoring the inertial
) o . : terms on the dynamic behavior remains unclear.

gorithm which includes a full hydrodynamic treatment has T d thi | h q : dal i ‘

not been applied to a wormlike chain model of a polymer. . 'owar !S goal, we have evg ope fa ong- '|me—'s ep
The BD algorithm, introduced by Ermak and inertial dynamicgLTID) scheme for integrating the inertial

McCammont is based on the Langevin description of par- Langevin dynamics equation. In spirit, this approach is simi-
ticle dynamics. A key element in the development of thislar to the work of van Gunsteren and Berend¥tmyt differs

algorithm is the assumption that the numerical time sdp, in that we consider hydrodynamic coupling between the par-

is much greater than the momentum relaxation times, ticles, an essential feature for polymer dynamics. This cou-
which are given by the inverses of the eigenvalues of theling is described by the friction matrix.
matrix M ~1Z, whereM is the diagonal matrix of particle LTID depends on an eigenmode decompositionZof
masses, and is the frictional interaction tensor. The accu- Based on this decomposition we propagate the eigenmodes
racy of the algorithm depends on another assumption, whickith numerical time steps comparable to those commonly
is often not explicitly checked: that is, the systematic inter-used in BD. Thus we can generate trajectories much longer
particle force remains constant over time scajesaterthan  than would be possible using a traditional integrator, such as
the numerical time step. the Verlet method®>'’ The decomposition itself consumes
Therefore, for BD to be applied, a time step must existthe majority of the trajectory computational time since the
that is simultaneously greater than the momentum relaxatiofriction tensor is configuration dependent, and the decompo-
sition must be updated as the conformation evolves. The up-
dAuthor to whom correspondence should be addressed; electronic maif‘.iate requires more computation than the calculation of the
schlick@nyu.edu interparticle forces because the eigen decomposition requires
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O(N?) floating point operations, whend is the number of |l. THEORY AND METHODS

particles in the system. However, the traditional BD algo-
rithm resorts to a Cholesky factorization of the diffusion ten-
sor, which also scales &(N?) in computational costSee 1. Translation

Note added in proof.For the DNA systems presented in the Consider the Langevin equation:

companion papel® we find that LTID is more expensive .

than BD (requiring one order of magnitude more CPU time ~ Mu(t) +Z(r(t))v(t)=fs(t) +f.(1), (1)
than BD. The added cost stems mainly from the eigenmodgynere , « MM is the collective velocity vector for thél
decomposition, which consumes more CPU time than th‘f’)articles in the system, antl e ®¥N*3N s the diagonal

Cholesky factorization used in BD. Additionally, LTID re- yass matrix. The positive definite friction tensatr (t))
quires more matrix multiplications for the position and ve- _ z3N*3N s g function of the configuratiom,(t), and de-
locity update equations. scribes the hydrodynamic coupling between the particles that
By examining the long-time-step limiting behavior of s transmitted through the viscous solvent. The two forces on
the LTID algorithm, we derive two Brownian algorithms the right-hand side of Eq1) describe the systematic force,
which approximate the LTID method but are less computat_ or negative gradient of the potential energy function, and
tionally intensive. We denote both methods as “Brownian” the random forcef, , modeling thermal interactions with the

because they involve explicitly tracking only the particle po-solvent. The random force is taken to be a zero-mean white
SitionS, and not the velocities. The first method is identical tq']oise process with Spatia| correlation prescribed by

the traditional BD algorithm. We call the other “inertial T )
Brownian dynamics”(IBD) because it incorporates a mass- (Fe(1)- Fr (1)) =2kgTZ(r (1)) 5(t—t'), 2
dependent correction term into the BD method. IBD arisesaccording to the fluctuation—dissipation theorEtf where

from a singular perturbation expansion of the Langevinkg is the Boltzmann constant afidis the absolute tempera-
equation, and involves a relatively simple modification of thetre.

standard BD algorithm. Since it is similar to traditional BD We rewrite Eq.(1) in a simple form:

in terms of time steps allowed and computational complex- |

ity, yet accurately approximates the inertial effects for the v+tAv=g, (©)
overdamped systems which we study, IBD promises to be gnerepA=M 17 andg=M"Y(f.+f,). In general, the fric-

valuable tool for the long-time simulation of polymer sys- tion matrix is configuration dependent. To describe the algo-
tems. As we show in Ref. 18, IBD incurs a modest compUxithm, we consider one interval of time stéy at stepn of
tational increase of a factor of 2 compared to BD when apine method. where” andp” represent the position and ve-

plied to our macroscopic model of DNA. Like BD, both oty at timenAt. We expandA to first order in position at
LTID and IBD do not produce physical meaningful velocity the current point as

distributions. Rather, the effective velocity applied over a

time step produces a correct description of position evolu- A" +ArN)=A(r"+VA(r")-Ar, (4)

tion. and Ar to first order Ar=v"At), and then substitute the
In Sec. Il we present the basic inertial Langevin formu-atter into Eq.(3):

lation for dynamic simulations, and develop the LTID algo- .

rithm for integrating the governing equations. We then ob- v +[A(r")+(VA(r")-v")(t—At)Ju=g. ()

tain both our IBD algorithm and the standard BD algorithm e friction tensor can be defined in terms of the diffusion

by examining the long-time-step limiting behavior of LTID. tensorD(r (1)): 2

In Sec. Ill we implement these methods for a simple har-

monic oscillator where analytic results are available. We find  Z=kgTD ™. (6)

that LTID produces the expected correlation structure fofrgr pead models a favorable choice fox(r(t)) is the
inertial Langevin motion while BD is reasonable only when Rotne—Prager tenséf,which represents a second-order ap-
the system is highly overdamped. For moderate levels ofroximation (in inverse powers of distangdor two beads
overdamping, IBD captures the inertial behavior that BD ig-giffusing in an incompressible fluid. This diffusion tensor
nores. We show that among the three methods, LTID is th@emains positive definite for all molecular configurations and
only consistent integrator, highlighting its utility as a refer- nas a zero gradient. Since the gradient of the friction tensor is
ence to which IBD and BD may be compared. We also showy 7 — keTD~L(VD)D %, together with VD(r(t))=0, we

that the IBD time step cannot be arbitrarily small. It has apnave VA(r" =0 in Eq. (5). We now use the diagonal fac-
lower bound limited by the inertial relaxation time and an torization of A(r"): A(r")=LALT whereA is diagonal and

upper bound limited by the time scale of systematic force contains the corresponding eigenvectors. Substituting this

A. Langevin description

fluctuations. _ . factorization into Eq(5) produces
In our companion pap&twe demonstrate the implemen- )
tation of these methods to a macroscopic model for DNA. LTv+ALTv=L"g. (7)

Our simulations of large systensip to 1500 base pairs Defining the vectow=LTv, we have the governing equa-

reveal properties that are sensitive to mass, such as writhing, . tor the uncoupled eigenmodes of the system:
number and radius of gyration autocorrelation functions and

the rate of intermolecular site juxtaposition. w+Aw=LTg, 8
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or (7ri(O) 7 (1)) =2kgTE 5 8(t—t"). (16)

With no coupling between the various modes and a constant
torque acting over thath time step, the solution to E¢L5)
is immediate:

d
efAt&{EJrAtW}: LTg, (9)

which can be integrated:

1
1_ —(& Im)A — (& /m)A
Wn+1:e—AAth+e—A(n+1)Atf(n+l)Ate+AsLTg(S)dS. Qin+ =Qe (& /mi) t+g[1_e (& fm) t](Tg,i+TP,i)-

nA
‘ (10 17

Making the approximation of a constant acceleratigh, B. Three algorithms
acting over theAt interval, we obtain the following equation
for v:

Un+l:Le*AA1LTUn+ LA*l(l_e*AAt)LTgn’ (11)

wherel is the identity matrix. Integrating the velocity equa-
tion, we obtain the associated position at time stepl:

1. Long-time step inertial dynamics (LTID)

The basic LTID algorithm for translation follows di-
rectly from Eqgs.(11) and (12):

vn+1: Le—AAtLTUn+ LA—l(l _e—AAt)

rn+1:rn+L[A—l(|_e—AAt)]LTvn XLTMil(fg'i‘fP), (18
FLATHIAt— A~ Y(1—e MY ]LTgn, (12 and
n+1l_,n =171 _ a—AAt T..n
Approximating the systematic force as constant over a re=ritL[A(I-e )L
fixed interval is reasonable so long as the time step is small FLA T IAt— A1 —e MY ILTM (04 £,
compared to the rate of change of the force. The piecewise-
constant approximation of the random force, on the other (19

hand, is never strictly valid since a white noise process haghere f_ is the systemic force and; is chosen from
no natural time scale. However, we proceed using a discretg ) (f™) ") =2kgTZ &,/ At.

random force,f;, which is theaverageof the white noise The angular velocity update equation is given by Eq.
force acting over the interval: (17), and the rotational update equation is obtained from in-
1 [(n+1)At tegrating the rotational velocity equation over the finite time
fl=— f.(s)ds. (13)  step:
At nAt
m.
With f,(t) distributed according to Ed2), it is straightfor- A@ir‘:?'[l—e*(gi maton
ward to show thaf}' obeys !
1 m;
((FN(FMT)=2KgTZ 8,/ At, (14) + | At g @-eT @AY (g e, (20)

where é,,, is the usual Kronecker delta. Since the random

force is taken as the average over a discrete time step, thdereA O] represents the finite angular rotation aboutithe
velocity calculated from Eq11) is regarded as the effective "otational degree of freedom over tmeh time step. The
velocity acting over the interval, and is not equivalent to thefandom torque is chosen based(@my)?) =2k T&; /At.
instantaneous particle velocity. Thus for long time steg's,

does not have the same thermodynamic properties as the® Inertial Brownian dynamics (IBD)

continuous velocity (t) in Eq. (1). Nevertheless, as we shall In the limit e A0 for all the \; entries ofA, Egs.

show, position trajectories co_mputed using E¢kl) and (rll) and (12) can be reduced to
(12) accurately reproduce statistical properties expected fo
the inertial Langevin equation even for time steps larger than " *=r"+LA LAt g"+LA LT (g" 1 —g"), (21

; -1
the entries ofA™ . or

2. Rotation Pl png i FOAL+ @(fn—l_fn) ' (22)
For simplicity, we present the Langevin formulation of kT KT

rotational dynamics for the case where no direct frictionalwhere the diffusion matrixD, is equal tokgTZ ~1.?* As for

coupling exits between particle rotations or between rotat TID, f"=fl+ f] wheref? is the systematic force arfd is

tions and translations. The dynamics of each rotational dechosen from((f7")(f") ") =2kgTZ 8,,m/At.

gree of freedom is given by Equation(22) augments the Ermak and McCammon up-

: date formuld with an inertial correction term. Equatid@?2)

M+ &= 7 7, (19 is also a discretization of the differential equation, EAB),

wherem; is the rotational moment of inertiag; is the rota-  which arises from a perturbative expansion of the Langevin

tional friction constant(); is the angular velocityrs; is the  equation(see Appendix A For the case of a single-variable

systematic torque, ane, ; is a random torque with zero (scalaj Langevin equation, IBD can be compared to the al-

mean and variance described by gorithm of van Gunsteren and Berendséim Appendix B,
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we show that for a special choice &f, the IBD and the van 2
Gunsteren and Berendsen algorithms have a similar form.
The rotational update of EQ.20) in the limit

e (&/M)A_, 0 reduces to

1
A®= | At(r+ 7))

m.
+—;(TQ,?1+T?,71—72J—TPJ) , 23)

where the random torque is chosen as for LTID.

3. Brownian dynamics (BD) _ EDD
The third method we consider is the standard BD

scheme, which comes from a stronger restriction on the time 5

step,At. In the limit max{\, '/At—0, Egs.(11) and (12) k3

reduce to the standard Ermak and McCammon method: 2
rtl=yrny if”At (24) a

kgT '
Note that the usual BD formulation =05, 5 10 T 20 35
c
rntl=pny ﬁngt—F R", (25 FIG. 1. Comparison of position trajectories and autocorrelation functions for
B

Brownian and Langevin motions for a one-dimensional harmonic oscillator.
with the random displacement covariance structuré(:dOIr ‘r:‘edE:_ro")‘g:ansprToﬁesl(so"d "”eélkT(& and fozrth“')'-a”gz\’(i” process
. . . ashed linesk=>5. The lower panel plotér(s)r(s+ o and(r(s)r(s
<Rn(Rm) T> =2At8,yD, is equivalent to Eq.(24) since +0))gp, the position autocorre?ation Ifjuncti(()n)s Eor LD) aLr[:d BD tr;j()eciories,
(fR(FMTy=2kgTZ 8,/ At and Z=kgTD 1. Equivalently,  respectively.
we can arrive at Eq(24) by setting the entries in the mass
matrix in Eq.(22) to zero.

For this case, the rotational update equation reduces tQyhere ¢ is an arbitrary time variable. The nondimensional

At mass parametésris related to the dimensional parameters by
AB=—(7 i+ 7)) (26)  k=mal 2. Particles governed by ER9) have equilibrium
! position and velocity distributions described ff)=1 and
L2\
C. One-dimensional oscillator (rH=1.

To compare the behavior of our long-time-step methods _ _
to that of the traditional BD algorithm, we study the example2. Brownian dynamics

of a one-dimensional oscillator. The Brownian description of the same system:

1. Langevin dynamics r+r=w (30
Consider the Langevin description of the one-produces the same position distributign?)=1, but the ve-
dimensional oscillator: locity is distributed according to
mx-+ {x+ax=f, 27 (r(9)r(s+a))=(r(s)r(s+ o)) +(W(s)w(s+a))
(f,(O)f (t+7))y=2kgT¢S(t— 1), =(r(s)r(sta))+248(s—o), (31

wherem s the mass{ is the friction coefficient, and is the where <r(s)r(s+ 0—)> denotes the position autocorrelation
strength of the harmonic potential. The friction coefficient isfunction. Thus the velocities generated from a Brownian
related to the usual Langevin damping constays {/m,  simulation are not physically meaningful. Yet a trajectory of
where y has units of inverse time. Heré,(t) is a white positions generated based on BD will be statistically indis-
noise process with variance given above. Introducing the&inguishable from one generated by LD in the highly damped
nondimensional distanaeand times given by limit, k=ma/2—0.
r=(alkgT)¥%, s=(alO)t, (28) For finite_ K, thg difference blejtween th_e Langevin and
Brownian trajectories can be striking. In Fity a Brownian
Eq. (27) reduces to trajectory k=0) is compared to a Langevin trajectory with
Kitr+r= k=5. Both the Langevin and Brownian data sample the same
r+r+r=w, - - S
29 canonical position distribution. Yet(s) fluctuates much

(w(s)w(s+o))=25(s— o), more rapidly for the Brownian case.
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3. Autocorrelation functions pn+lopng fg’* As+ k(fgfl,* _ fg’*)

A .statlstlcal measure qf thg dlfferenpg between the +d?+k(d?‘1—d?)/As. (39)
Brownian and Langevin motions is the position autocorrela-
tion function, (r(s)r(s+o)). It can be shown that The BD algorithm is given by
(r(s)r(s+a)) for the Langevin system is given by the im-

n+lx _,n n n
pulse response function of E9): ' rrfsAstd, (39)
10 (PYes and
|2e 19— I 1e 2

(r(®)r(st o)) o="— - —. (32 P I= o f0* As+ Y, (40

where whered;' is chosen from the same distribution as for IBD.
1

l12= ﬂ(li V1=4k). (33 B, choice of time step
Similarly the position autocorrelation for BD is the impulse Since we wish to compare the behavior of our long-time-
response of a first-order system: step methods to that of BD, we choose the time steps for our

Y simulations to be optimal for the BD algorithm, balancin
(r(s)r(s+o))gp=¢€" 7. (34 P g g

efficiency with accuracy. Substitution of E0) into Eq.
It is straightforward to verify tha{r(s)r(s+ o)), p reduces (39 yields
to (r(s)r(s+o))gp for k<1. n+l_,.n_1r.ny on n n

< Plotted in trze lower panel of Fig. 1 {s(s)r(s+ o)) for =il - As) rdAs T, (41)
the Brownian and for the Langevin motion. For this choiceFor the mean square position we obtain
of k, the Langevin system is underdamped and the response
function, a decaying sinusoid, differs markedly from the ((rM2)=
Brownian autocorrelation. In what follows we compare the
correlation structure predicted by LTID, IBD, and BD to the

analytic forms of the above-given autocorrelation functions V& note that for accurate reproduction of the canonical po-
sition distribution, the size of the time stéys is not related

to the characteristic times of the Langevin system, given by
1. NUMERICAL SIMULATIONS 1/1;]. The choice of time step\s=1/4 results in{(r")?)
A. A|gorithms for a one-dimensional oscillator =0.9825, aIIOWing us to obtain accurate solutions with the
largest possible time step.
The appeal of the BD algorithm is that it allows time
steps much greater than the smallest characteristic time of
the Langevin equation. Standard discretizations of the iner-

1—As+}(As)?
1-As+i(As)2—%(As)?

(42

For this nondimensional scalar example, the LTID algo-
rithm can be implemented as follows. An initial estimate of
the position update is made for theh time step:

P LE =y (1 — e AsKy,n tial Langevin equationgsuch as the Verlet methods®’ or
Ak Runge—Kutta methodgequires time steps around|4l,].
+[As—k(1—e 2 ](fg+w"), (89 Fork=0.01, the smallest eigenvalue of the Langevin equa-

wheref?= —r" is the systematic force at theth time and  tion isl;~100. Thus a reasonable time step for BD is 100
the random force is chosen fropgw")2)=2/As. Using the times greater than a reasonable time step for Verlet.

position r"*1* we calculate the force f1* = For the less extreme cases, e.lg_.z,O.}, the required
—(r"+r"*1%)/2 to use in the final update: Verlet time step of around [@l;|~0.03 is still much smaller
N1 Ak Ak enx than the BD time step of 1/4. For this value lofhowever,
v r=e P (1-en P (fgT A wh), the behavior of the Langevin system, as measured by the
(Lo g (1 — e Aslk)yn (36)  position autocorrelation, is noticeably different from that of
the BD system. We shall show that our new algorithms allow
+[As—k(1—e 45K ](f2* +wM). us to reproduce the behavior of the inertial Langevin system
while using time steps equal to or greater than those used for

The above-mentioned method is second-order in its treat:

ment of the systematic forcélt is straightforward to verify

its second-order accuracy for the harmonic oscillator equa-

tion in the absence of thermal forces. C. The highly overdamped case, k=0.01
For the IBD algorithm we use the same first- and

second-order estimates of the systematic force acting over N the limit of smallk, we expect the Brownian and
the nth step:f7=—r" and f™* = — (r"+r"*1%)/2. The ini- Langevin formulations to be indistinguishable. The Langevin
0 n .

D.

tial position update is given by gquatiqn is highly damped and the Brownian approxi_mati_on

L . e en is sufficient to describe motions governed by the inertial
= fiAs+Hk(fg T 19 Langevin equation.

+d?+k(d?‘1—dP)/As, 37) Plotted in the upper panel of Fig. 2 are the results from

BD, IBD, and LTID simulations atk=0.01. Results are
where((d")?)=2As. The final update is given by based on trajectories of 48teps using\s=1/4. On the left
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k = 0.01 {over-damped)

05
— analytic - - analytic, LD
+« BD — analytic, BD
0.4 e LTID 0.8 s+ BD
IBD e LTID
o IBD
0.3 o 08
< Py
02 ~ 04 FIG. 2. Comparison of predicted position distributions
and autocorrelation functions for LTID, IBD, and BD
0.1 0.2 for overdamped oscillators=0.01 (top), andk=0.1
(bottom). Predicted probability distributions of position
Y= 0 1 7 3 S TTos 1 15 2 25 3 (left) are compared to the analytic reswt,’ %/ 2,
" mhs shown as solid line. The calculated autocorrelation
’E%; (over-damped) functions for the position trajectorigsight) are com-
’ oyt N . amalytio, LD pared to the theoretical LD and BD correlation func-
04 s+ BD o8 5, — analytic, BD tions [Egs. (32) and (34)], plotted as dashed and solid
' - NN . Tro lines, respectively. Results are based on trajectories of
3 ° IBD length 16 time stepsAs=0.25.
03 o 06 S
z by
02 ~ 04
0.1 02,
0
3 2 -1 0 1 2 3 0 05 1 5 2 25 3
r mAs

is the probability distribution of positiom(r), calculated by etere 2% is approximately 0.37. To decrease*%*, we
each algorithm. The canonical distribution function choose a larger time step. For these results, a time step of 1/2

e 2] 27 is shown as the solid line. is used for the IBD algorithm, resulting & Aslk— g2, For
In the right-hand panel the autocorrelation func-BD and LTID we useAs= 1/4 as beforg. N
tion (r"r"*™) for the trajectories calculated from each algo- At k=0.25 the Langevin system is critically damped.

rithm is plotted. The continuous autocorrelations Results for this system are presented in the upper panel of
(r(s)r(s+mAs)) p and(r(s)r(s+mAs))gp [Egs.(32) and Fig. 3. The critically damped Langevin autocorrelation func-
(34)] are shown as the dashed and solid lines, respectivelgion differs considerably from that of BD. Again, LTID and
The autocorrelation for BD and LD are nearly identical and!BD follow (r(s)r(s+mAs)) . Since IBD uses a large
each algorithm closely reproduces the analytical forms ofime step, the autocorrelation function is sampled at a lower
p(r) and(r(s)r(s+mAs))p nearly exactly. For these re- resolution for IBD than for BD and LTID.

sults the effective mass is negligible and the extra work in-

volved in LTID and IBD compared to BD is unnecessary. F.Underdamped case, k=0.5

In the bottom panel of Fig. 3 are presented results for the
slightly underdamped caske=0.5. Here we us@ s=1/4 for
Analogous results for the caselof 0.1 are presented in BD and LTID as for the earlier cases and Ast=1 for IBD.
the lower panel of Fig. 2. Once again, these results are basépain, (r (s)r(s+mAs)) p is reproduced by LTID and IBD.
on trajectories of 1Dsteps withAs=1/4. For this case the Note that IBD predicts a narrow position distribution com-
system is still overdamped, yet the BD response functiorpared to the analytic resule,” " %12 V2.
differs from that of LD. The compute@"r"*™) from I1BD
and LTID closely follows(r(s)r(s+mAs)) p (dashed ling  G. Error analysis
while the computed (r"r"*™ from BD follows
(r(s)r(s+mAs))gp. Here, although the system is over
damped, the effects of mass are not negligible and BD doe
not produce the inertial correlation structure.

It is interesting to note that fdt=0.1 and the time step -
the Table |, as well as [¥l,|, a reasonable time step for
of As=1/4 used hereg 29k=eg~25~0.082. Hence, the re- | P

. . . Verlet or Runge—Kutta methods. For the overdamped cases
striction for IBD, namelye™29k~0, is not necessarily ex- g b

Vv strict. Clearly for thi h s 35K (k=0.01, k=0.1), the values of 14l,| are much smaller
cegsol\é;y sr|c” earhyf OIrBDItS cas(,je € valee i it than 1/4, the time step used by BD, IBD, and LTID. Hor
o 'S smafl enougnh for 0 produce accuraté resullS._ g 55 angk=0.5 the values of J41,| are closer to 1/4, yet

(A systematic study of how the accuracy of BD dependgNe use values of As)gp greater than 1/4 for these cases.
upon time step is presented in Sec. )G. As mentioned, application of the IBD method requires
using a time step that is larger thenTo explore the effects
of As on the behavior of IBD, we return to the critically
For k=0.25, we find that IBD behaves poorly withs =~ damped casek=0.25. The behavior will be similar for
=1/4 (see the followingy For this choice ofAs the param- smaller values ok. But the criterion thae™ 2% is small is

D. The moderately overdamped case, k=0.1

The position variance predicted by each algorithm is re-
ported in Table | fork=0.01, 0.1, 0.25, and 0.5. The com-
5uted(r2> is close to 1 for all cases except IBD let0.5.

The time steps used for IBDA@)gp, are reported in

E. Critically damped case, k=0.25
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k = 0.25 (critically damped)

0.5

— analytic . -+ analytic, LD
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FIG. 3. Comparison of position distributions and auto-
correlation functions for critically damped and under-
damped oscillators. See the caption to Fig. 2. Results
for critical damping k=0.25) and underdampingk (
=0.5) are shown in the upper and lower panels, respec-
tively. Results are based on trajectories of length 10
using time stepas=0.25 for LTID and BD. For IBD,
As=0.5 fork=0.25 andAs=1.0 fork=0.5.

This error is plotted versuAs in the lower panel of Fig. 5

are not as severe. For larger values, the system is undefier k=0.25. For BD,(r"r"*™) never approaches the ex-
pected curve for Langevin dynamics, even in the limit of
Plotted in the upper panel of Fig. 4 are the position dis-small time step. For smalls, the error associated with BD

damped and IBD does not behave well.

tributions predicted by IBD for several choices dfs.

ChoosingAs much smaller than 1/2 results in relatively
broad distributions, while largeks results in relatively nar-
row distributions. In the lower panel is plotted the difference
between the computed autocorrelatiofrér"*™) and the
analytic resul{r (s)r(s+mAs)) p . This difference is great-
est atm=0. Only for As=1/2 does(r"r"*™) approximate
the correct correlation structure.
In the upper panel of Fig. 5 we compare the realized
variance(r?) from each algorithm as a function of time step.
We see that(r?) asymptotically approaches 1 dss de-
creases for BD and LTID, while the variance explodes at
small time steps for IBD. For the proper choice aAf

(around 0.5 (r?)~1.

We define a mean-square measure of error in the auto-

correlation function as

E(As)=mE:0 [(r"r"*™ —(r(s)r(s+mAs)) p]?As.

(43

TABLE I. The mean square displacemgnt) predicted by LTID, IBD, and

BD for various choices of. Data are based on trajectories of Heps with
time steps ofAs=1/4 (BD and IBD) and k-dependent time steps for IBD
(penultimate column Also reported is 141,|, the approximate time step
required by Verlet or Runge—Kutta methods, which is up to two orders of

magnitude smaller thaAs used in our algorithms.

k (r3 (BD) (r® (LTID)  (r?>) (IBD)  (AS)gp  1/4l,]
0.01 0.9836 0.9733 0.9779 0.25 0.0025
0.10 0.9843 0.9698 0.9723 0.25 0.0282
0.25 0.9831 0.9778 0.9653 0.5 0.1250
0.50 0.9850 0.9903 0.8582 1.0 0.1768

pn

(r($)r(s+mhs)), - 7Ty

approaches

0.5 : :
o 2 As=0.10
a 0 ° As=025
0.4 8 * As=0.50
° As=10
— analytic
0.3t

0.2}

0.1}

-3
r
0.5
0.25
AQ o
0 ra— 2 -l 800 8¢
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FIG. 4. Calculated IBD position distributions at critical damping (

=0.25) at various time stef6.10, 0.25, 0.50, and 1),Qupper panel, and the
difference between the computed correlatiorly"*™), and the exact result
for the continuous Langevin equatiofr,(s)r(s+mAs)), Eq. (32), lower
panel. The solid line in the upper panel indicates the Boltzmann distribution,

e " J27. Results are based on trajectories of fithe steps.
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developed algorithms for integrating E(L) which do not
neglect the influence of particle mass on the system dynam-
ics.

We have shown that, for a simple harmonic oscillator,
the difference between the Langevin and Brownian descrip-
tions increases as the effective damping decreases. The mea-
sure of effective damping, £ £?/ma can be regarded as a
ratio of two time scales:

1.5

(™)

1 (¢la)
—= (45
05 , , , ‘ k (m/{)
"0 0.2 0.4 A 0.6 0.8 1
. * wherem/{ is the characteristic time for inertial relaxation in
10

the absence of other forces, aff@ is the characteristic time
for relaxation in the absence of inertia. Thus the effective
level of damping for polymer systems depends not only on
the inertial relaxation times, but also on the potential energy
function. A polymer surrounded by a highly viscoi&toke$

§10'2- fluid will require treatment by an inertial algorithm when the
potential energy function is such that the systematic force
S fluctuates on a time scale similar to the inertial relaxation
107 times.
Since the LTID method consistently reproduces the in-
107 . ‘ . ertial correlation structure, it can be used to probe the inertial
0 0.2 0.4 0.6 0.8 1

As behavior of polymer systems governed by EL. Unfortu-
_ N ' nately, LTID is more computationally expensive than BD.
FIG. 5. Computed variance of positiot(r")2), and error,E(As), in the (The computational costs associated with BD, IBD, and
correlation function, for each algorithm as a functionAf. The function LTID ted for | DNA t in th .
E(As), Eqg.(43), in the lower panel, is the mean-square difference between are presented lor large systems in the cqmpamon
the computed position autocorrelation and the exact result for the continuod@apeﬁs) The IBD method, on the other hand, is much
Langevin equation. Results are based on trajectories of lendtttiie  cheaper than LTID.
steps. Yet neither IBD nor BD is a consistent integrator for
Langevin dynamicgi.e., with errors—0 asAt—0). While
for the overdamped simple harmonic oscillator we were able

lim E(As)= fx[(r(s)r(er mMAS))gp to find time steps for which the error associated with IBD
0

As—0 was small, rendering IBD attractive for this simple system,
determination of the appropriate IBD time step for a large
—(r(s)r(s+mAs)) pl°do= 7. (49  nonlinear system is not guaranteed.
The IBD error blows up both for large and for smal. Specifically, we recommend using LTID, BD, and IBD

However, near an optimal choice afs, the IBD error is in concert for systems where the importance of inertial ef-

smaller than the LTID error and more than one order of€CtS iS not knowra priori. LTID can serve to generate a
magnitude smaller than the BD error. The error for LTID, in '€férence for the statistical properties of Langevin trajecto-
the limit of smallAs, becomes arbitrarily small. Therefore, 11€S- Any deviation from the reference, predicted by a BD
with respect to the inertial correlation structure, only LTID is &90rithm, suggests that IBD may be considered. In that case,
a consistent method in that the error goes to zero with th&n aPPropriate time step should be sought for which the con-
time step. figuration distribution is properly sampled and the inertial

Neither BD nor IBD is a consistent discretization of the correlation structure is reproduced.

Langevin equation. In Appendix A we present the continu- I Our companion papétwe follow these recommenda-
ous differential equatiofEq. (A3)] of which IBD is a con- tions in studying a bead model of supercoiled DNA. We find
sistent discretization. that, indeed, BD fails to predict the inertial behavior of equi-

librium thermal fluctuations. In addition, we find an appro-
priate time sted100 ps for IBD for this system. For refer-
ence, typical BD time steps used for similar DNA models

Over the past two decades, the Brownian dynamicsange from 4 to 600 p&%° For our DNA systems, the in-
algorithnt and variations thereof have represented some ofreased computational cost of IBD over BD is a modest fac-
the most powerful and efficient methods available for com-tor of 2 (for the same time stepBy exploiting the compu-
puting long-time trajectories of large polymer systems gov-ational efficiency of IBD, we compute inertial Langevin
erned by Eq(1). By reevaluating the approximations made trajectories of several milliseconds in length, time scales ap-
in the development of the standard BD algorithm and returnpropriate for investigation of the slow process of intermo-
ing to the inertial description of particle dynamics, we havelecular site juxtapositioh®

IV. DISCUSSION AND RECOMMENDATIONS
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Note added in proofSince completing this work, we have IBD solutions blow up in the small-time-step limit. IBD is
examined intriguing suggestions by FixmdMacromol-  well-behaved and produces accurate results only for finite
eculesl9, 1204(1986] on using a vector polynomial expan- time steps.

sion rather than a Cholesky factorization procedure for de-

fining the Langevin random forces characterized by a

covariance matrix which is the configuration-dependent hyAPPENDIX B: IBD ALGORITHM FOR SINGLE-

drodynamics tensor. We find that approximation of the corVARIABLE LANGEVIN EQUATION

related random force vector based on an expansion in terms

of Chebyshev polynomials can produce a dramatic reduction FOr the scalar case the IBD algorithm can be written as

in complexity fromO(N?) whereN is the system size to near 1 m

O(N?) dependence for very larg¥. One drawback of the rt=r+ 7 foAt— ?(fg_fg_l)

Chebyshev expansion is that the factors are not available for

reuse if desirede.g., to allow updating the hydrodynamics +R"— T(Rn_Rn—l)/m' (B1)
tensor less frequently than every time stestill, the ¢

advantages/disadvantages of the matrix factorization versughereR" obeys

vector polynomial expansion should be weighed appropri- (R'RP) = 2KgT 8, At/ . (B2)

ately for the application at hand. We describe this algorith-
mic advance in a forthcoming article, T. Schliekal, spe-  Here, is the friction coefficient andn is the particle mass.
cial issue of Computing in Science and Engineering devotedf We chooseAt=2m/{, Eq. (B1) reduces to

to computational chemistrg2000. 1 At
=ty i fSAt——-(f— 3
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The form of Eq.(B4) is similar to the van Gunsteren and
APPENDIX A: ALTERNATIVE DERIVATION OF IBD Berendsen algorithifi for Brownian dynamics which is
iven b

Consider the following differential equation: g y 1 (A)?

m. f =+ S AL+ 5 1l +R". (B5)

—vtv=-—, (A1) ¢

4 4 This similarity is incidental. In Eq(B5), the (At)? term
which is the scalar case of the Langevin equation, except thaiomes from expanding the force as a power series. For Eq.
here we considef(t) to be some continuous process. We (B4), in contrast this term has the opposite sign and acts as
consider a long-timgouten expansion for the velocityy  an inertial correction term to compensate for a force that
=vo+v,+0O([M/{]?), wherem/{ is a small parameter. The fluctuates on the time scale aft.
zero-order termyp,=1/¢, is the Brownian velocity, and,
=0(m/{). Substituting this expansion into E¢Al), and
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