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Inertial stochastic dynamics. I. Long-time-step methods
for Langevin dynamics
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Two algorithms are presented for integrating the Langevin dynamics equation with long numerical
time steps while treating the mass terms as finite. The development of these methods is motivated
by the need for accurate methods for simulating slow processes in polymer systems such as two-site
intermolecular distances in supercoiled DNA, which evolve over the time scale of milliseconds. Our
new approaches refine the common Brownian dynamics~BD! scheme, which approximates the
Langevin equation in the highly damped diffusive limit. Our LTID~‘‘long-time-step inertial
dynamics’’! method is based on an eigenmode decomposition of the friction tensor. The less costly
integrator IBD~‘‘inertial Brownian dynamics’’! modifies the usual BD algorithm by the addition of
a mass-dependent correction term. To validate the methods, we evaluate the accuracy of LTID and
IBD and compare their behavior to that of BD for the simple example of a harmonic oscillator. We
find that the LTID method produces the expected correlation structure for Langevin dynamics
regardless of the level of damping. In fact, LTID is the only consistent method among the three, with
error vanishing as the time step approaches zero. In contrast, BD is accurate only for highly
overdamped systems. For cases of moderate overdamping, and for the appropriate choice of time
step, IBD is significantly more accurate than BD. IBD is also less computationally expensive than
LTID ~though both are the same order of complexity as BD!, and thus can be applied to simulate
systems of size and time scale ranges previously accessible to only the usual BD approach. Such
simulations are discussed in our companion paper, for long DNA molecules modeled as wormlike
chains. © 2000 American Institute of Physics.@S0021-9606~00!50717-X#
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I. INTRODUCTION

Brownian dynamics~BD! algorithms which incorporate
hydrodynamic interactions1 have been widely used to simu
late relatively slow processes~up to several milliseconds! of
large polymers like circular DNA of several kilobase pa
represented by elastic models.2–9 An inertial Langevin treat-
ment which ignores hydrodynamic interactions has also b
introduced.10–12 To our knowledge, an inertial dynamics a
gorithm which includes a full hydrodynamic treatment h
not been applied to a wormlike chain model of a polyme

The BD algorithm, introduced by Ermak an
McCammon,1 is based on the Langevin description of pa
ticle dynamics. A key element in the development of th
algorithm is the assumption that the numerical time step,Dt,
is much greater than the momentum relaxation times,t i ,
which are given by the inverses of the eigenvalues of
matrix M21Z, whereM is the diagonal matrix of particle
masses, andZ is the frictional interaction tensor. The acc
racy of the algorithm depends on another assumption, wh
is often not explicitly checked: that is, the systematic int
particle force remains constant over time scalesgreaterthan
the numerical time step.

Therefore, for BD to be applied, a time step must ex
that is simultaneously greater than the momentum relaxa

a!Author to whom correspondence should be addressed; electronic
schlick@nyu.edu
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times and less than the time scale of fluctuations in the s
tematic forces. The first constraint tends to be easily satis
for the case of elastic polymer models: Momentum rela
ation times are typically in the picosecond range, and
merical time steps are usually in the range of tens to h
dreds of picoseconds.4,6,13In contrast, the extent to which th
second constraint is satisfied for these models has not b
extensively studied. The influence of ignoring the inert
terms on the dynamic behavior remains unclear.

Toward this goal, we have developed a long-time-s
inertial dynamics~LTID ! scheme for integrating the inertia
Langevin dynamics equation. In spirit, this approach is sim
lar to the work of van Gunsteren and Berendsen,14 but differs
in that we consider hydrodynamic coupling between the p
ticles, an essential feature for polymer dynamics. This c
pling is described by the friction matrixZ.

LTID depends on an eigenmode decomposition ofZ.
Based on this decomposition we propagate the eigenmo
with numerical time steps comparable to those commo
used in BD. Thus we can generate trajectories much lon
than would be possible using a traditional integrator, such
the Verlet method.15–17 The decomposition itself consume
the majority of the trajectory computational time since t
friction tensor is configuration dependent, and the decom
sition must be updated as the conformation evolves. The
date requires more computation than the calculation of
interparticle forces because the eigen decomposition requ
il:
3 © 2000 American Institute of Physics
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O(N3) floating point operations, whereN is the number of
particles in the system. However, the traditional BD alg
rithm resorts to a Cholesky factorization of the diffusion te
sor, which also scales asO(N3) in computational cost.~See
Note added in proof.! For the DNA systems presented in th
companion paper,18 we find that LTID is more expensive
than BD ~requiring one order of magnitude more CPU tim
than BD!. The added cost stems mainly from the eigenmo
decomposition, which consumes more CPU time than
Cholesky factorization used in BD. Additionally, LTID re
quires more matrix multiplications for the position and v
locity update equations.

By examining the long-time-step limiting behavior o
the LTID algorithm, we derive two Brownian algorithm
which approximate the LTID method but are less compu
tionally intensive. We denote both methods as ‘‘Brownia
because they involve explicitly tracking only the particle p
sitions, and not the velocities. The first method is identica
the traditional BD algorithm. We call the other ‘‘inertia
Brownian dynamics’’~IBD! because it incorporates a mas
dependent correction term into the BD method. IBD aris
from a singular perturbation expansion of the Lange
equation, and involves a relatively simple modification of t
standard BD algorithm. Since it is similar to traditional B
in terms of time steps allowed and computational compl
ity, yet accurately approximates the inertial effects for t
overdamped systems which we study, IBD promises to b
valuable tool for the long-time simulation of polymer sy
tems. As we show in Ref. 18, IBD incurs a modest comp
tational increase of a factor of 2 compared to BD when
plied to our macroscopic model of DNA. Like BD, bot
LTID and IBD do not produce physical meaningful veloci
distributions. Rather, the effective velocity applied over
time step produces a correct description of position evo
tion.

In Sec. II we present the basic inertial Langevin form
lation for dynamic simulations, and develop the LTID alg
rithm for integrating the governing equations. We then o
tain both our IBD algorithm and the standard BD algorith
by examining the long-time-step limiting behavior of LTID
In Sec. III we implement these methods for a simple h
monic oscillator where analytic results are available. We fi
that LTID produces the expected correlation structure
inertial Langevin motion while BD is reasonable only wh
the system is highly overdamped. For moderate levels
overdamping, IBD captures the inertial behavior that BD
nores. We show that among the three methods, LTID is
only consistent integrator, highlighting its utility as a refe
ence to which IBD and BD may be compared. We also sh
that the IBD time step cannot be arbitrarily small. It has
lower bound limited by the inertial relaxation time and
upper bound limited by the time scale of systematic fo
fluctuations.

In our companion paper18 we demonstrate the implemen
tation of these methods to a macroscopic model for DN
Our simulations of large systems~up to 1500 base pairs!
reveal properties that are sensitive to mass, such as writ
number and radius of gyration autocorrelation functions a
the rate of intermolecular site juxtaposition.
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II. THEORY AND METHODS

A. Langevin description

1. Translation

Consider the Langevin equation:

M v̇~ t !1Z~r ~ t !!v~ t !5 f s~ t !1 f r~ t !, ~1!

where vPR3N is the collective velocity vector for theN
particles in the system, andMPR3N33N is the diagonal
mass matrix. The positive definite friction tensorZ(r (t))
PR3N33N is a function of the configuration,r (t), and de-
scribes the hydrodynamic coupling between the particles
is transmitted through the viscous solvent. The two forces
the right-hand side of Eq.~1! describe the systematic force
f s , or negative gradient of the potential energy function, a
the random force,f r , modeling thermal interactions with th
solvent. The random force is taken to be a zero-mean w
noise process with spatial correlation prescribed by

^ f r~ t !• f r
T~ t8!&52kBTZ~r ~ t !!d~ t2t8!, ~2!

according to the fluctuation–dissipation theorem,19,20 where
kB is the Boltzmann constant andT is the absolute tempera
ture.

We rewrite Eq.~1! in a simple form:

v̇1Av5g, ~3!

whereA5M21Z andg5M21( f s1 f r). In general, the fric-
tion matrix is configuration dependent. To describe the al
rithm, we consider one interval of time stepDt at stepn of
the method, wherer n andvn represent the position and ve
locity at timenDt. We expandA to first order in position at
the current point as

A~r n1Dr !5A~r n!1¹A~r n!•Dr , ~4!

and Dr to first order (Dr 5vnDt), and then substitute the
latter into Eq.~3!:

v̇1@A~r n!1~¹A~r n!•vn!~ t2Dt !#v5g. ~5!

The friction tensor can be defined in terms of the diffusi
tensorD(r (t)):21

Z5kBTD21. ~6!

For bead models a favorable choice forD(r (t)) is the
Rotne–Prager tensor,22 which represents a second-order a
proximation ~in inverse powers of distance! for two beads
diffusing in an incompressible fluid. This diffusion tens
remains positive definite for all molecular configurations a
has a zero gradient. Since the gradient of the friction tenso
¹Z5kBTD21(¹D)D21, together with ¹D(r (t))50, we
have¹A(r n)50 in Eq. ~5!. We now use the diagonal fac
torization ofA(r n): A(r n)5LLLT whereL is diagonal and
L contains the corresponding eigenvectors. Substituting
factorization into Eq.~5! produces

LTv̇1LLTv5LTg. ~7!

Defining the vectorw5LTv, we have the governing equa
tion for the uncoupled eigenmodes of the system:

ẇ1Lw5LTg, ~8!
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or

e2Lt
d

dt
$e1Ltw%5LTg, ~9!

which can be integrated:

wn115e2LDtwn1e2L(n11)DtE
nDt

(n11)Dt

e1LsLTg~s!ds.

~10!

Making the approximation of a constant acceleration,gn,
acting over theDt interval, we obtain the following equatio
for v:

vn115Le2LDtLTvn1LL21~ I2e2LDt!LTgn, ~11!

whereI is the identity matrix. Integrating the velocity equ
tion, we obtain the associated position at time stepn11:

r n115r n1L @L21~ I2e2LDt!#LTvn

1LL21@ IDt2L21~ I2e2LDt!#LTgn. ~12!

Approximating the systematic force as constant ove
fixed interval is reasonable so long as the time step is sm
compared to the rate of change of the force. The piecew
constant approximation of the random force, on the ot
hand, is never strictly valid since a white noise process
no natural time scale. However, we proceed using a disc
random force,f r

n , which is theaverageof the white noise
force acting over the interval:

f r
n5

1

DtEnDt

(n11)Dt

f r~s!ds. ~13!

With f r(t) distributed according to Eq.~2!, it is straightfor-
ward to show thatf r

n obeys

^~ f r
n!~ f r

m!T&52kBTZdnm /Dt, ~14!

wherednm is the usual Kronecker delta. Since the rando
force is taken as the average over a discrete time step
velocity calculated from Eq.~11! is regarded as the effectiv
velocity acting over the interval, and is not equivalent to t
instantaneous particle velocity. Thus for long time steps,vn

does not have the same thermodynamic properties as
continuous velocityv(t) in Eq. ~1!. Nevertheless, as we sha
show, position trajectories computed using Eqs.~11! and
~12! accurately reproduce statistical properties expected
the inertial Langevin equation even for time steps larger t
the entries ofL21.

2. Rotation

For simplicity, we present the Langevin formulation
rotational dynamics for the case where no direct frictio
coupling exits between particle rotations or between ro
tions and translations. The dynamics of each rotational
gree of freedom is given by

miV̇ i1j iV i5ts,i1t r ,i , ~15!

wheremi is the rotational moment of inertial,j i is the rota-
tional friction constant,V i is the angular velocity,ts,i is the
systematic torque, andt r ,i is a random torque with zero
mean and variance described by
a
ll
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^t r ,i~ t !t r , j~ t8!&52kBTj id i j d~ t2t8!. ~16!

With no coupling between the various modes and a cons
torque acting over thenth time step, the solution to Eq.~15!
is immediate:

V i
n115V i

ne2(j i /mi )Dt1
1

j i
@12e2(j i /mi )Dt#~ts,i

n 1t r ,i
n !.

~17!

B. Three algorithms

1. Long-time step inertial dynamics (LTID)

The basic LTID algorithm for translation follows di
rectly from Eqs.~11! and ~12!:

vn115Le2LDtLTvn1LL21~ I2e2LDt!

3LTM21~ f s
n1 f r

n!, ~18!

and

r n115r n1L @L21~ I2e2LDt!#LTvn

1LL21@ IDt2L21~ I2e2LDt!#LTM21~ f s
n1 f r

n!,

~19!

where f s
n is the systemic force andf r

n is chosen from
^( f r

n)( f r
m)T&52kBTZdnm /Dt.

The angular velocity update equation is given by E
~17!, and the rotational update equation is obtained from
tegrating the rotational velocity equation over the finite tim
step:

DQ i
n5

mi

j i
@12e2(j i /mi )Dt#V i

n

1
1

j i
FDt2

mi

j i
~12e2(j i /mi )Dt!G~ts,i

n 1t r ,i
n !. ~20!

HereDQ i
n represents the finite angular rotation about thei th

rotational degree of freedom over thenth time step. The
random torque is chosen based on^(t r

n)2&52kBTj i /Dt.

2. Inertial Brownian dynamics (IBD)

In the limit e2l iDt→0 for all the l i entries ofL, Eqs.
~11! and ~12! can be reduced to

r n115r n1LL21LTDt gn1LL22LT~gn212gn!, ~21!

or

r n115r n1
D

kBT F f nDt1
MD

kBT
~ f n212 f n!G , ~22!

where the diffusion matrix,D, is equal tokBTZ21.21 As for
LTID, f n5 f s

n1 f r
n where f s

n is the systematic force andf r
n is

chosen from̂ ( f r
n)( f r

m)T&52kBTZdnm /Dt.
Equation~22! augments the Ermak and McCammon u

date formula1 with an inertial correction term. Equation~22!
is also a discretization of the differential equation, Eq.~A3!,
which arises from a perturbative expansion of the Lange
equation~see Appendix A!. For the case of a single-variabl
~scalar! Langevin equation, IBD can be compared to the
gorithm of van Gunsteren and Berendsen.14 In Appendix B,
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we show that for a special choice ofDt, the IBD and the van
Gunsteren and Berendsen algorithms have a similar form

The rotational update of Eq.~20! in the limit
e2(j i /mi )Dt→0 reduces to

DQ i
n5

1

j i
FDt~ts,i

n 1t r ,i
n !

1
mi

j i
~ts,i

n211t r ,i
n212ts,i

n 2t r ,i
n !G , ~23!

where the random torque is chosen as for LTID.

3. Brownian dynamics (BD)

The third method we consider is the standard B
scheme, which comes from a stronger restriction on the t
step,Dt. In the limit maxi$li

21%/Dt→0, Eqs.~11! and ~12!
reduce to the standard Ermak and McCammon method:

r n115r n1
D

kBT
f nDt. ~24!

Note that the usual BD formulation

r n115r n1
D

kBT
f s

nDt1Rn, ~25!

with the random displacement covariance struct
^Rn(Rm)T&52DtdnmD, is equivalent to Eq.~24! since
^ f r

n( f r
m)T&52kBTZdnm /Dt and Z5kBTD21. Equivalently,

we can arrive at Eq.~24! by setting the entries in the mas
matrix in Eq.~22! to zero.

For this case, the rotational update equation reduces

DQ i
n5

Dt

j i
~t r ,i

n 1ts,i
n !. ~26!

C. One-dimensional oscillator

To compare the behavior of our long-time-step metho
to that of the traditional BD algorithm, we study the examp
of a one-dimensional oscillator.

1. Langevin dynamics

Consider the Langevin description of the on
dimensional oscillator:

mẍ1z ẋ1ax5 f r ,

^ f r~ t ! f r~ t1t!&52kBTzd~ t2t!,
~27!

wherem is the mass,z is the friction coefficient, anda is the
strength of the harmonic potential. The friction coefficient
related to the usual Langevin damping constant,g5z/m,
where g has units of inverse time. Here,f r(t) is a white
noise process with variance given above. Introducing
nondimensional distancer and times given by

r 5~a/kBT!1/2x, s5~a/z!t, ~28!

Eq. ~27! reduces to

kr̈1 ṙ 1r 5w,
~29!

^w~s!w~s1s!&52d~s2s!,
e

e

o

s

e

wheres is an arbitrary time variable. The nondimension
mass parameterk is related to the dimensional parameters
k5ma/z2. Particles governed by Eq.~29! have equilibrium
position and velocity distributions described by^r 2&51 and

^ ṙ 2&51.

2. Brownian dynamics

The Brownian description of the same system:

ṙ 1r 5w ~30!

produces the same position distribution,^r 2&51, but the ve-
locity is distributed according to

^ ṙ ~s! ṙ ~s1s!&5^r ~s!r ~s1s!&1^w~s!w~s1s!&

5^r ~s!r ~s1s!&12d~s2s!, ~31!

where ^r (s)r (s1s)& denotes the position autocorrelatio
function. Thus the velocities generated from a Browni
simulation are not physically meaningful. Yet a trajectory
positions generated based on BD will be statistically ind
tinguishable from one generated by LD in the highly damp
limit, k5ma/z2→0.

For finite k, the difference between the Langevin an
Brownian trajectories can be striking. In Fig. 1 a Brownian
trajectory (k50) is compared to a Langevin trajectory wit
k55. Both the Langevin and Brownian data sample the sa
canonical position distribution. Yetr (s) fluctuates much
more rapidly for the Brownian case.

FIG. 1. Comparison of position trajectories and autocorrelation functions
Brownian and Langevin motions for a one-dimensional harmonic oscilla
For the Brownian process~solid lines! k50, and for the Langevin proces
~dashed lines! k55. The lower panel plotŝr (s)r (s1s)&LD and ^r (s)r (s
1s)&BD , the position autocorrelation functions for LD and BD trajectorie
respectively.
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3. Autocorrelation functions

A statistical measure of the difference between
Brownian and Langevin motions is the position autocorre
tion function, ^r (s)r (s1s)&. It can be shown tha
^r (s)r (s1s)& for the Langevin system is given by the im
pulse response function of Eq.~29!:

^r ~s!r ~s1s!&LD5
l 2el 1s2 l 1el 2s

l 22 l 1
, ~32!

where

l 1,252
1

2k
~16A124k!. ~33!

Similarly the position autocorrelation for BD is the impuls
response of a first-order system:

^r ~s!r ~s1s!&BD5e2s. ~34!

It is straightforward to verify that̂ r (s)r (s1s)&LD reduces
to ^r (s)r (s1s)&BD for k!1.

Plotted in the lower panel of Fig. 1 iŝr (s)r (s1s)& for
the Brownian and for the Langevin motion. For this choi
of k, the Langevin system is underdamped and the respo
function, a decaying sinusoid, differs markedly from t
Brownian autocorrelation. In what follows we compare t
correlation structure predicted by LTID, IBD, and BD to th
analytic forms of the above-given autocorrelation functio

III. NUMERICAL SIMULATIONS

A. Algorithms for a one-dimensional oscillator

For this nondimensional scalar example, the LTID alg
rithm can be implemented as follows. An initial estimate
the position update is made for thenth time step:

r n11,* 5r n1k~12e2Ds/k!vn

1@Ds2k~12e2Ds/k!#~ f s
n1wn!, ~35!

where f s
n52r n is the systematic force at thenth time and

the random force is chosen from̂(wn)2&52/Ds. Using the
position r n11,* we calculate the force f s

n,* 5
2(r n1r n11,* )/2 to use in the final update:

vn115e2Ds/kvn1~12e2Ds/k!~ f s
n,* 1wn!,

~36!
r n115r n1k~12e2Ds/k!vn

1@Ds2k~12e2Ds/k!#~ f s
n,* 1wn!.

The above-mentioned method is second-order in its tr
ment of the systematic force.~It is straightforward to verify
its second-order accuracy for the harmonic oscillator eq
tion in the absence of thermal forces.!

For the IBD algorithm we use the same first- a
second-order estimates of the systematic force acting
the nth step:f s

n52r n and f s
n,* 52(r n1r n11,* )/2. The ini-

tial position update is given by

r n11,* 5r n1 f s
nDs1k~ f s

n21,* 2 f s
n!

1dr
n1k~dr

n212dr
n!/Ds, ~37!

where^(dr
n)2&52Ds. The final update is given by
e
-

se

.

-
f

t-

a-

er

r n115r n1 f s
n,* Ds1k~ f s

n21,* 2 f s
n,* !

1dr
n1k~dr

n212dr
n!/Ds. ~38!

The BD algorithm is given by

r n11,* 5r n1 f s
nDs1dr

n ~39!

and

r n115r n1 f s
n,* Ds1dr

n , ~40!

wheredr
n is chosen from the same distribution as for IBD

B. Choice of time step

Since we wish to compare the behavior of our long-tim
step methods to that of BD, we choose the time steps for
simulations to be optimal for the BD algorithm, balancin
efficiency with accuracy. Substitution of Eq.~40! into Eq.
~39! yields

r n115r n2 1
2@r n1r n~12Ds!1dr

n#Ds1dr
n . ~41!

For the mean square position we obtain

^~r n!2&5
12Ds1 1

4~Ds!2

12Ds1 1
2~Ds!22 1

8~Ds!3
. ~42!

We note that for accurate reproduction of the canonical
sition distribution, the size of the time stepDs is not related
to the characteristic times of the Langevin system, given
1/u l i u. The choice of time stepDs51/4 results in^(r n)2&
50.9825, allowing us to obtain accurate solutions with t
largest possible time step.

The appeal of the BD algorithm is that it allows tim
steps much greater than the smallest characteristic tim
the Langevin equation. Standard discretizations of the in
tial Langevin equations~such as the Verlet methods15–17 or
Runge–Kutta methods! requires time steps around 1/u4l 1u.
For k50.01, the smallest eigenvalue of the Langevin eq
tion is l 1'100. Thus a reasonable time step for BD is 1
times greater than a reasonable time step for Verlet.

For the less extreme cases, e.g.,k50.1, the required
Verlet time step of around 1/u4l 1u'0.03 is still much smaller
than the BD time step of 1/4. For this value ofk, however,
the behavior of the Langevin system, as measured by
position autocorrelation, is noticeably different from that
the BD system. We shall show that our new algorithms all
us to reproduce the behavior of the inertial Langevin syst
while using time steps equal to or greater than those used
BD.

C. The highly overdamped case, kÄ0.01

In the limit of small k, we expect the Brownian and
Langevin formulations to be indistinguishable. The Lange
equation is highly damped and the Brownian approximat
is sufficient to describe motions governed by the iner
Langevin equation.

Plotted in the upper panel of Fig. 2 are the results fro
BD, IBD, and LTID simulations atk50.01. Results are
based on trajectories of 106 steps usingDs51/4. On the left
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FIG. 2. Comparison of predicted position distribution
and autocorrelation functions for LTID, IBD, and BD
for overdamped oscillators:k50.01 ~top!, and k50.1
~bottom!. Predicted probability distributions of position

~left! are compared to the analytic result,e2r 2/2/A2p,
shown as solid line. The calculated autocorrelati
functions for the position trajectories~right! are com-
pared to the theoretical LD and BD correlation fun
tions @Eqs. ~32! and ~34!#, plotted as dashed and soli
lines, respectively. Results are based on trajectories
length 106 time stepsDs50.25.
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is the probability distribution of position,p(r ), calculated by
each algorithm. The canonical distribution functio
e2r 2/2/A2p is shown as the solid line.

In the right-hand panel the autocorrelation fun
tion ^r nr n1m& for the trajectories calculated from each alg
rithm is plotted. The continuous autocorrelatio
^r (s)r (s1mDs)&LD and^r (s)r (s1mDs)&BD @Eqs.~32! and
~34!# are shown as the dashed and solid lines, respectiv
The autocorrelation for BD and LD are nearly identical a
each algorithm closely reproduces the analytical forms
p(r ) and ^r (s)r (s1mDs)&LD nearly exactly. For these re
sults the effective mass is negligible and the extra work
volved in LTID and IBD compared to BD is unnecessary

D. The moderately overdamped case, kÄ0.1

Analogous results for the case ofk50.1 are presented in
the lower panel of Fig. 2. Once again, these results are b
on trajectories of 106 steps withDs51/4. For this case the
system is still overdamped, yet the BD response funct
differs from that of LD. The computed̂r nr n1m& from IBD
and LTID closely followŝ r (s)r (s1mDs)&LD ~dashed line!
while the computed ^r nr n1m& from BD follows
^r (s)r (s1mDs)&BD . Here, although the system is ov
damped, the effects of mass are not negligible and BD d
not produce the inertial correlation structure.

It is interesting to note that fork50.1 and the time step
of Ds51/4 used here,e2Ds/k5e22.5'0.082. Hence, the re
striction for IBD, namelye2Ds/k'0, is not necessarily ex
cessively strict. Clearly for this case the valuee2Ds/k

'0.082 is small enough for IBD to produce accurate resu
~A systematic study of how the accuracy of BD depen
upon time step is presented in Sec. III G.!

E. Critically damped case, kÄ0.25

For k50.25, we find that IBD behaves poorly withDs
51/4 ~see the following!. For this choice ofDs the param-
ly.

f

-

ed

n

es

s.
s

eter e2Ds/k is approximately 0.37. To decreasee2Ds/k, we
choose a larger time step. For these results, a time step o
is used for the IBD algorithm, resulting ine2Ds/k5e22. For
BD and LTID we useDs51/4 as before.

At k50.25 the Langevin system is critically dampe
Results for this system are presented in the upper pane
Fig. 3. The critically damped Langevin autocorrelation fun
tion differs considerably from that of BD. Again, LTID an
IBD follow ^r (s)r (s1mDs)&LD . Since IBD uses a large
time step, the autocorrelation function is sampled at a low
resolution for IBD than for BD and LTID.

F. Underdamped case, kÄ0.5

In the bottom panel of Fig. 3 are presented results for
slightly underdamped case,k50.5. Here we useDs51/4 for
BD and LTID as for the earlier cases and setDs51 for IBD.
Again, ^r (s)r (s1mDs)&LD is reproduced by LTID and IBD.
Note that IBD predicts a narrow position distribution com
pared to the analytic result,e2r 2/2/A2p.

G. Error analysis

The position variance predicted by each algorithm is
ported in Table I fork50.01, 0.1, 0.25, and 0.5. The com
puted^r 2& is close to 1 for all cases except IBD atk50.5.

The time steps used for IBD, (Ds) IBD , are reported in
the Table I, as well as 1/u4l 1u, a reasonable time step fo
Verlet or Runge–Kutta methods. For the overdamped ca
(k50.01, k50.1), the values of 1/u4l 1u are much smaller
than 1/4, the time step used by BD, IBD, and LTID. Fork
50.25 andk50.5 the values of 1/u4l 1u are closer to 1/4, yet
we use values of (Ds) IBD greater than 1/4 for these cases

As mentioned, application of the IBD method requir
using a time step that is larger thank. To explore the effects
of Ds on the behavior of IBD, we return to the criticall
damped case,k50.25. The behavior will be similar for
smaller values ofk. But the criterion thate2Ds/k is small is



o-
r-
lts

ec-
0

7319J. Chem. Phys., Vol. 112, No. 17, 1 May 2000 Inertial stochastic dynamics. I
FIG. 3. Comparison of position distributions and aut
correlation functions for critically damped and unde
damped oscillators. See the caption to Fig. 2. Resu
for critical damping (k50.25) and underdamping (k
50.5) are shown in the upper and lower panels, resp
tively. Results are based on trajectories of length 16

using time stepsDs50.25 for LTID and BD. For IBD,
Ds50.5 for k50.25 andDs51.0 for k50.5.
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more easily satisfied for smallk and the restrictions onDs
are not as severe. For larger values, the system is un
damped and IBD does not behave well.

Plotted in the upper panel of Fig. 4 are the position d
tributions predicted by IBD for several choices ofDs.
ChoosingDs much smaller than 1/2 results in relative
broad distributions, while largerDs results in relatively nar-
row distributions. In the lower panel is plotted the differen
between the computed autocorrelations^r nr n1m& and the
analytic result̂ r (s)r (s1mDs)&LD . This difference is great-
est atm50. Only for Ds51/2 does^r nr n1m& approximate
the correct correlation structure.

In the upper panel of Fig. 5 we compare the realiz
variancê r 2& from each algorithm as a function of time ste
We see that̂ r 2& asymptotically approaches 1 asDs de-
creases for BD and LTID, while the variance explodes
small time steps for IBD. For the proper choice ofDs
~around 0.5! ^r 2&'1.

We define a mean-square measure of error in the a
correlation function as

E~Ds!5 (
m50

`

@^r nr n1m&2^r ~s!r ~s1mDs!&LD#2Ds.

~43!

TABLE I. The mean square displacement^r 2& predicted by LTID, IBD, and
BD for various choices ofk. Data are based on trajectories of 106 steps with
time steps ofDs51/4 ~BD and IBD! and k-dependent time steps for IBD
~penultimate column!. Also reported is 1/u4l 1u, the approximate time step
required by Verlet or Runge–Kutta methods, which is up to two orders
magnitude smaller thanDs used in our algorithms.

k ^r 2& ~BD! ^r 2& ~LTID ! ^r 2& ~IBD! (Ds) IBD 1/u4l 1u

0.01 0.9836 0.9733 0.9779 0.25 0.0025
0.10 0.9843 0.9698 0.9723 0.25 0.0282
0.25 0.9831 0.9778 0.9653 0.5 0.1250
0.50 0.9850 0.9903 0.8582 1.0 0.1768
er-

-

d

t

o-

This error is plotted versusDs in the lower panel of Fig. 5
for k50.25. For BD, ^r nr n1m& never approaches the ex
pected curve for Langevin dynamics, even in the limit
small time step. For smallDs, the error associated with BD
approaches

FIG. 4. Calculated IBD position distributions at critical damping (k
50.25) at various time steps~0.10, 0.25, 0.50, and 1.0!, upper panel, and the
difference between the computed correlation,^r nr n1m&, and the exact result
for the continuous Langevin equation,^r (s)r (s1mDs)&, Eq. ~32!, lower
panel. The solid line in the upper panel indicates the Boltzmann distribut

e2r 2/2/A2p. Results are based on trajectories of 106 time steps.
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lim
Ds→0

E~Ds!5E
0

`

@^r ~s!r ~s1mDs!&BD

2^r ~s!r ~s1mDs!&LD#2ds5 1
72 . ~44!

The IBD error blows up both for large and for smallDs.
However, near an optimal choice ofDs, the IBD error is
smaller than the LTID error and more than one order
magnitude smaller than the BD error. The error for LTID,
the limit of smallDs, becomes arbitrarily small. Therefore
with respect to the inertial correlation structure, only LTID
a consistent method in that the error goes to zero with
time step.

Neither BD nor IBD is a consistent discretization of th
Langevin equation. In Appendix A we present the contin
ous differential equation@Eq. ~A3!# of which IBD is a con-
sistent discretization.

IV. DISCUSSION AND RECOMMENDATIONS

Over the past two decades, the Brownian dynam
algorithm1 and variations thereof have represented some
the most powerful and efficient methods available for co
puting long-time trajectories of large polymer systems g
erned by Eq.~1!. By reevaluating the approximations mad
in the development of the standard BD algorithm and retu
ing to the inertial description of particle dynamics, we ha

FIG. 5. Computed variance of position,^(r n)2&, and error,E(Ds), in the
correlation function, for each algorithm as a function ofDs. The function
E(Ds), Eq. ~43!, in the lower panel, is the mean-square difference betw
the computed position autocorrelation and the exact result for the contin
Langevin equation. Results are based on trajectories of length 106 time
steps.
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developed algorithms for integrating Eq.~1! which do not
neglect the influence of particle mass on the system dyn
ics.

We have shown that, for a simple harmonic oscillat
the difference between the Langevin and Brownian desc
tions increases as the effective damping decreases. The
sure of effective damping, 1/k5z2/ma can be regarded as
ratio of two time scales:

1

k
5

~z/a!

~m/z!
, ~45!

wherem/z is the characteristic time for inertial relaxation
the absence of other forces, andz/a is the characteristic time
for relaxation in the absence of inertia. Thus the effect
level of damping for polymer systems depends not only
the inertial relaxation times, but also on the potential ene
function. A polymer surrounded by a highly viscous~Stokes!
fluid will require treatment by an inertial algorithm when th
potential energy function is such that the systematic fo
fluctuates on a time scale similar to the inertial relaxat
times.

Since the LTID method consistently reproduces the
ertial correlation structure, it can be used to probe the iner
behavior of polymer systems governed by Eq.~1!. Unfortu-
nately, LTID is more computationally expensive than B
~The computational costs associated with BD, IBD, a
LTID are presented for large DNA systems in the compan
paper.18! The IBD method, on the other hand, is muc
cheaper than LTID.

Yet neither IBD nor BD is a consistent integrator fo
Langevin dynamics~i.e., with errors→0 asDt→0). While
for the overdamped simple harmonic oscillator we were a
to find time steps for which the error associated with IB
was small, rendering IBD attractive for this simple syste
determination of the appropriate IBD time step for a lar
nonlinear system is not guaranteed.

Specifically, we recommend using LTID, BD, and IB
in concert for systems where the importance of inertial
fects is not knowna priori. LTID can serve to generate
reference for the statistical properties of Langevin trajec
ries. Any deviation from the reference, predicted by a B
algorithm, suggests that IBD may be considered. In that c
an appropriate time step should be sought for which the c
figuration distribution is properly sampled and the inert
correlation structure is reproduced.

In our companion paper18 we follow these recommenda
tions in studying a bead model of supercoiled DNA. We fi
that, indeed, BD fails to predict the inertial behavior of eq
librium thermal fluctuations. In addition, we find an appr
priate time step~100 ps! for IBD for this system. For refer-
ence, typical BD time steps used for similar DNA mode
range from 4 to 600 ps.4,6,9 For our DNA systems, the in-
creased computational cost of IBD over BD is a modest f
tor of 2 ~for the same time step!. By exploiting the compu-
tational efficiency of IBD, we compute inertial Langevi
trajectories of several milliseconds in length, time scales
propriate for investigation of the slow process of interm
lecular site juxtaposition.18
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Note added in proof.Since completing this work, we hav
examined intriguing suggestions by Fixman@Macromol-
ecules19, 1204~1986!# on using a vector polynomial expan
sion rather than a Cholesky factorization procedure for
fining the Langevin random forces characterized by
covariance matrix which is the configuration-dependent
drodynamics tensor. We find that approximation of the c
related random force vector based on an expansion in te
of Chebyshev polynomials can produce a dramatic reduc
in complexity fromO(N3) whereN is the system size to nea
O(N2) dependence for very largeN. One drawback of the
Chebyshev expansion is that the factors are not available
reuse if desired~e.g., to allow updating the hydrodynamic
tensor less frequently than every time step!. Still, the
advantages/disadvantages of the matrix factorization ve
vector polynomial expansion should be weighed appro
ately for the application at hand. We describe this algor
mic advance in a forthcoming article, T. Schlicket al., spe-
cial issue of Computing in Science and Engineering devo
to computational chemistry~2000!.
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APPENDIX A: ALTERNATIVE DERIVATION OF IBD

Consider the following differential equation:

m

z
v̇1v5

f

z
, ~A1!

which is the scalar case of the Langevin equation, except
here we considerf (t) to be some continuous process. W
consider a long-time~outer! expansion for the velocity,v
5v01v11O(@m/z#2), wherem/z is a small parameter. Th
zero-order term,v05 f /z, is the Brownian velocity, andv1

5O(m/z). Substituting this expansion into Eq.~A1!, and
neglecting terms higher than first order, we obtain

v5v01v15
1

z F f 2
m

z
ḟ G . ~A2!

For the general case, this equation becomes

ṙ 5
D

kBT F f 2
MD

kBT
ḟ G . ~A3!

The IBD algorithm represents a numerical approximation
this differential equation. Since Eq.~A3! involves the time
derivative of the force, this expansion is not valid when t
force includes a white noise. However, proceeding in
cently, and discretizing Eq.~A3! with the white noise ther-
mal force described by Eq.~2!, we arrive at the IBD algo-
rithm for Langevin dynamics. That the discontinuous wh
noise cannot be differentiated explains our observation
-
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IBD solutions blow up in the small-time-step limit. IBD i
well-behaved and produces accurate results only for fi
time steps.

APPENDIX B: IBD ALGORITHM FOR SINGLE-
VARIABLE LANGEVIN EQUATION

For the scalar case the IBD algorithm can be written

r n115r n1
1

z F f s
nDt2

m

z
~ f s

n2 f s
n21!G

1Rn2
m

z
~Rn2Rn21!/Dt, ~B1!

whereRn obeys

^RnRp&52kBTdnpDt/z. ~B2!

Here,z is the friction coefficient andm is the particle mass
If we chooseDt52m/z, Eq. ~B1! reduces to

r n115r n1
1

z F f s
nDt2

Dt

2
~ f s

n2 f s
n21!G

1Rn2
m

z
~Rn2Rn21!/Dt, ~B3!

which approximates

r n115r n1
1

z F f s
nDt2

~Dt !2

2
ḟ s

nG
1Rn2

m

z
~Rn2Rn21!/Dt. ~B4!

The form of Eq.~B4! is similar to the van Gunsteren an
Berendsen algorithm14 for Brownian dynamics which is
given by

r n115r n1
1

z F f s
nDt1

~Dt !2

2
ḟ s

nG1Rn. ~B5!

This similarity is incidental. In Eq.~B5!, the (Dt)2 term
comes from expanding the force as a power series. For
~B4!, in contrast this term has the opposite sign and acts
an inertial correction term to compensate for a force t
fluctuates on the time scale ofDt.
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