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Numerical resonance artifacts have become recognized recently as a limiting fac-
tor to increasing the timestep in multiple-timestep (MTS) biomolecular dynamics
simulations. At certain timesteps correlated to internal motions (e.g., 5 fs, around
half the period of the fastest bond stretdhyn), visible inaccuracies or instabili-
ties can occur. Impulse-MTS schemes are vulnerable to these resonance errors since
large energy pulses are introduced to the governing dynamics equations when the
slow forces are evaluated. We recently showed that such resonance artifacts can
be masked significantly by applying extrapolative splitting to stochastic dynam-
ics. Theoretical and numerical analyses of force-splitting integrators based on the
Verlet discretization are reported here for linear models to explain these observations
and to suggest how to construct effective integrators for biomolecular dynamics that
balance stability with accuracy. Analyses for Newtonian dynamics demonstrate the
severe resonance patterns of the Impulse splitting, with this severity worsening with
the outer timestepAt; Constant Extrapolation is generally unstable, but the dis-
turbances do not grow witht. Thus, the stochastic extrapolative combination can
counteract generic instabilities and largely alleviate resonances with a sufficiently
strong Langevin heat-bath coupling)( estimates for which are derived here based
on the fastest and slowest motion periods. These resonance results generally hold for
nonlinear test systems: a water tetramer and solvated protein. Proposed related ap-
proaches such as Extrapolation/Correction and Midpoint Extrapolation work better
than Constant Extrapolation only for timesteps less thasy 2. An effective extrap-
olative stochastic approach for biomolecules that balances long-timestep stability
with good accuracy for the fast subsystem is then applied to a biomolecule using
a three-class partitioning: the medium forces are treatddipoint Extrapolation
via position Verlet, and the slow forces are incorporate@bpstant Extrapolation
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The resulting algorithm (LN) performs well on a solvated protein system in terms
of thermodynamic properties and yields an order of magnitude speedup with respect
to single-timestep Langevin trajectories. Computed spectral density functions also
show how the Newtonian modes can be approximated by using ajsimahe range
of 5-20 pSl. (© 1999 Academic Press

Key Words:molecular dynamics; numerical resonance; symplecticness; force
splitting; multiple timesteps.

1. INTRODUCTION: BIOMOLECULAR SIMULATIONS

With suitable governing force fields and integration protocols, computer simulation:
the time evolution of large biomolecular systems can offer insights into molecular flexil
ity and thermodynamic processes. Yet, the relevance of simulation results to the biolo
community also depends on the physical timescales that can be simulated. Unfortun
computer time is a serious handicap in this regard. Namely, the computational cos
biomolecular dynamics simulations is dominated by the frequent (once per timestep) ¢
uation of the potential energy function and its gradient for a large system. This evalua
frequency cannot be lengthened arbitrarily. Reasonadderacyrequires the timestep to
be a certain fraction of the period associated with the motion being resolved (e.g.,
than one tenth); numericatability dictates an upper bound for the timestep, beyond whi
trajectories become not only inaccurate but nonsensical; finefignanceartifacts—more
erratic disturbances (rather than errors that increase monotonically with the timeste
selected timesteps related to the natural period of the system—Iimit the timestep du
their associated inaccuracies and/or instabilities (see below).

For typical single-timestep, unconstrained biomolecular simulations, these three req
ments are satisfied by stepsizes in the range of 0.5 to 1 fs. This in turn implies one to
million force evaluations just to span a nanosecond in the life of a biopolymer. As the sys
size grows, each such evaluation accountg¥oN?) interactions, wherd\ is the number
of atoms in the system. While approximations are made in practice to reduce the co
long-range interactions, a nanosecond simulation of a solvated, medium-sized biomol
(around 20,000 atoms) can require several weeks of computing time on state-of-the-ar
oratory workstations. A pioneering/Ls simulation of a small protein [1] was only possible
on a massively parallel Cray supercomputer employed in full for about 4 months.

Despite the large computational work of standard explicit integrators, the Verlet met
[2] is often regarded as the “gold standard” of molecular dynamics simulations. Its s
plecticness (i.e., volume preserving in phase space; see [3]) and time reversibility are
suited for low-accuracy long-time simulations of Hamiltonian systems; in particular, Vel
trajectories display good energy conservation in comparison to nonsymplectic methoc

1.1. MTS Approaches and Resonance

Nearly two decades ago, multiple-timestep (MTS) methods were introduced [4, 5] ir
effort to reduce the computational costs of dynamic simulations. MTS methods rely on
observation that the fastest components of the force, which limit the stepsize to 0.5-1 f
on a relatively small spatial scale and hence have linear complexity. In contrast, the e
to calculate the slow, long-range interactions increases with the square of the numb
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particles. This spatial and temporal division can be exploited by using small timeateps (
to resolve the rapidly varying vibrational modes and larger time interval} o update
the costly long-range forces.

In the early to mid 1990s, these approaches were further developed and applie
biomolecular dynamics [6—9]. Many of these developments relied on the rigorous
general factorization formalism (disparate timescales, masses, etc.) of the r-RESPA me
based on the Trotter factorization [6], a special case of which is the Verlet-l method
These methods are symplectic [3] and time reversible, and thus are intended to sim
accurately Hamiltonian dynamics. The requirement for symplecticness dictates that
slow forces be incorporated vilmpulsesthat is, only at the time of their evaluation; hence
the namdmpulse-MTSThese force-splitting schemes also provide modest computatio
speedup (factors of 4-5) [9] over single-timestep trajectories since savings are realized
updating the long-range forces less frequently than the rapidly varying components.

Yet, the outer timestep (long-range force update interval) in Impulse-MTS cannot
lengthened as might be expected based on criteria of reasonable resolutionstifvthe
forces. Instead, it was found that the timescale ofés¢period limits the outer timestep to
somewhat less thaf,/2 in standard protocols (i.e., half the period of the fastest motio
which is around 10 fs). Though the first applications attributed these disturbances to ge!
inaccuracies, they were later recognized as resonance artifacts [10, 11]. These artifact:
been analyzed in connection with implicit integration schemes such as implicit midpc
[12] and related integrators [13, 14], and with MTS (or force-splitting) schemes [10, 1
Impulse-MTS schemes [6, 7] are particularly vulnerable to resonances since relatively |
energy pulses are introduced to the governing dynamics equations when the slow f
are evaluated. These large pulses in turn lead to incorrect physical behavior of the sy:
such as overstretching and/or breaking of bonds [12, 14]. The earlier extrapolative fc
splitting alternatives were abandoned because of their noted energy drift (a consequet
nonsymplecticness).

1.2. A Stochastic MTS Approach

Barth and Schlick have recently developed an alternative nonsymplectic, stochasti
proach termed LN [11, 15] that combines force splitting via extrapolation and stocha
dynamics to overcome this resonance barrier. This combination succeeds, as demons
on proteins [15], because extrapolation alleviates the severe resonances of the impulse
ment, and the Langevin heat bath counteracts the instabilities (or energy drift) characte
of extrapolation.

Of course, these additional terms change the nature of the dynamics. Though sti
speaking, “fictitious dynamics” is generated by this approach, it is expected that the col
urational states are sampled with Boltzmann probabilities. Hence the stochastic metha
described here sample configuration space and are useful for determining thermodyr
and structural information; they should not be used to compute dynamic properties su
rate constants.

The simple Langevin formulation used in LN mimics molecular collisions of a biomol
cule coupled to a heat bath. The friction is related to the fluctuating random force thro
the fluctuation—dissipation theorem; together, these terms are used to maintain the
equilibrium for the system. By choosing the Langevin frictional consiaas small as
possible, just sufficient to ensure numerical stability, we also suggested how to minir
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the effects introduced by the stochastic terms, not present in pure Newtonian formula
[11, 15]. In practice, setting § y <50 ps! has been suggested in these works.

The long-time stability of the scheme yields speedups of an order of magnitude
reference simulations [15]. These physical and computational properties are advanta
in numerous applications of biomolecular simulations that address the critical samf
problem (see, for example, the Broyde and Hingerty article in this volume [16]); only ap
cations that aim at specific kinetic measurements such as rates of conformational trans
demand accurate Newtonian integrators. Moreover, it has long been recommended tha
tiple, shorter dynamic trajectories (started from uncorrelated initial states) be used rz
than a single long trajectory forimproved statistics on sampling and thermodynamics di
the inherent chaos of biomolecular dynamic simulations. Karplus and co-workers rece
demonstrated not only that an individual 5-ns trajectory of a protein (crambin) sampl
fraction of conformational states generated by 10 shorter 120-ps runaytragestruc-
tural and dynamic properties over the 10 trajectories differ from those obtained from e
run and, moreover, thisnsemble averagesembles the X-ray structure most closely [17]
Clearly, efficient sampling approaches are critically needed for macromolecular studie

1.3. Resonance Analyses

In this work, theoretical analyses are developed for various force-splitting strategies
molecular and Langevin dynamics to explain these resonance observations. More impo
the analyses offer guidelines for constructing effective biomolecular integrators that bal:
stability with accuracy given the pragmatic dilemma mentioned above. The linear anal
started in [11] for a one-dimensional (1D) system were based on the symplectic E
method. Here we base derivations on the Verlet discretization [2] and compare resorn
artifacts of Extrapolation versus Impulse force splitting for both Newtonian and Lange
dynamics. Numerical experiments are also performed for nonlinear systems.

Analyses demonstrate the severe resonance patterns of the Impulse splitting, witt
severity worsening with the outer timestept; the general instability of Constant
Extrapolation is also demonstrated, but with disturbances that do not grovAwitrhese
resonance patterns generally extend to Langevin dynamics, but stochasticity for the ex
olative treatment can succeed in counteracting generic instabilities and largely allevi
resonances with a sufficiently strong heat-bath coupljng Estimates fory are derived
here based on the extreme motion periods associated with the fast and slow timescal

We also propose related approaches such as Extended Extrapolation/Correction (
Leap Extrapolation, and Midpoint Extrapolation in an attempt to combine the short-time:
accuracy of the Impulse treatment with the large-timestep stability of Constant Extrap
tion. Unfortunately, these variants do not appear to have any practical value over the
standard cases on their own right; they can, however, improve the accuracy of Constar
trapolation over timesteps less th&gn/2. This finding is exploited to balance short-time
accuracy with long-time stability in LN by relying oMlidpoint Extrapolation(via posi-
tion Verlet) for the medium forces and restricting the medium timestdp, to less than
Tmin/2, and treating the long-range forces®@gnstant Extrapolatiofil5]. Performance of
these variants also highlights the limitations of the 1D linear analysis and emphasize
requirement for analyzing multidimensional linear models and experimenting on non
ear models. Higher dimensionality combined with nonlinearity only aggravates reson:
disturbances.
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Results also demonstrate that force-splitting approaches are more effective for sys
with disparate timescales. A larger system with a greater spread of relevant motion times
is more amenable to force splitting because, for example, in an extrapolative/Langevir
proach the magnitude of the instability or disturbance is proportiongitg Tmax the ratio
of fast period to slow period. The smaller this ratio the milder the instability. Indeed, 1
resonance sensitivity of Impulse-MTS for both Newtonian and Langevin dynamics and
long-time stability of the Langevin/extrapolative approach is demonstrated for a solve
protein. We also find that stochasticity delays the first occurrence of resonance in Newtc
Impulse-MTS from half the period to the period.

1.4. Outline

In Section 2 we detail the 1D linear model problem and the basic procedure usec
Newtonian and Langevin analysis based on the velocity Verlet integration. The 3D
ear model (treated numerically) is also described. Experiments with the 3D linear m
are important for ruling out methods that appear promising for the 1D case. In Sectic
we analyze Newtonian and Langevin dynamics behavior of the linear 1D model for
Impulse and Extrapolation force-splitting variants (both Constant and Midpoint Extra
lation). Section 4 considers a more general framework for hybrid Impulse/Extrapolat
techniques, including Extrapolation/Correction (E/C), Extended Extrapolation/Correc
Cycle (EE/CC), and Leap Extrapolation, the latter also with velocity corrections (“Le
Extrapolation/Correction”). A three-class MTS variant combining Midpoint Extrapolatic
with Constant Extrapolation is then analyzed, to mimic the LN method.

Further results in Section 5 on nonlinear systems—a water tetramer and a sol
protein—confirm our analyses regarding the sensitivity of Impulse treatments to resona
even in the stochastic case, and the long-time stability of extrapolative stochastic vari
They also explain the good performance of Midpoint Extrapolation on a medium times
and hence its usefulness in the three-class LN approach. The LN solvated protein simul
is analyzed with respect to thermodynamic averages and computational gains (compa
single-timestep Langevin simulations), as well as spectral densities at two coupling pa
eters. The spectral density functions show the accurate reproduction of Langevin mod
LN at a larger outer timestep and the reasonable approximation to Newtonian modes ¢
smally value (5 ps?).

Conclusions regarding resonance artifacts in force-splitting schemes and the stoch
extrapolation alternative are presented in Section 6. Much of the detailed numerical at
ses are collected in the appendixes. Readers interested in the main findings relevant t
molecules are directed to the solvated protein subsection (5.2) and the summary (Secti

2. LINEAR MODELS FOR MTS ANALYSIS

Alinear model is a starting point for MTS analysis since the fast forces are near harm
and oscillatory. For this reason, numerical experiments performed in conjunction with |
and its variants [18—20] have shown that, in a large number of systems of real interes
fast forces can be replaced by linear approximations, with good overall results, provided
the linear approximations are updated often. Still, a 1D linear model has limitations: bec:
of commutativity, it does not capture multidimensional linear behavior. A comparison
results between the 1D and 3D linear models emphasizes this limitation.
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2.1. 1D Linear Model

2.1.1. Newtonian dynamicsConsider the simple 1D linear model problem used &
Barth and Schlick [15, 11]:

X=V
{\'/ = —(A+A2)X. (1)

The variablesX andV denote the scalar position and velocity, respectively, for a partic
of unit mass. This system can be considered a harmonic oscillator driven by a linear f
with constantA = A; + A,. However, we set the scalaxs « A1 to represent two motion
components differing in timescales.

The characteristic angular frequencies associated with the two components and the
motion are respectively

o=+, w2=+ha, Q=+/A. (2.2)

The associated characteristic periods are thus

2 2 2
=" =2 1=2 2.3)
w1 w2 Q

Sinceis < A1, T < To = (/A1/22) Ty, the presence of two (largely different) timescale:
motivates the use of force-splitting schemes. Weisedind 1, so that the fast and slow
characteristic periods afie = 2 andT, = 10 (time units) and thus the resonances are eas
viewed.

2.1.2. Langevin dynamicsWe also consider the Langevin extension of the 1D line:
model

X =V
{\’/ = -1+ 22X —yV + R(), @4

wherey is the friction constant. The random forBgt) has a normal distribution described
by

(R)=0, (RM)R())=2yksTs(t —t), (2.5)

whereT is the temperaturésg is Boltzmann’s constant, arédis the Dirac function. Since
the modeled particle has unit mass, the mass is omitted from the autocovariance expre
above.

We also consider the 1D Langevin model problem

X=V
{V =—(A1+ 22+ 13)X —yV 4+ R(), (26

which emulates a three-class partitioning of the force, as in the LN method. The tt
components correspond to fast, medium, and slow forces.
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2.2. Analysis of the 1D Linear Model

2.2.1. Newtonian dynamicsBarth and Schlick [15, 11] examined MTS schemes bast
onthe first order symplectic Euler method. Here we formulate methods based on the Vel
Verlet discretization [2, 3]; this integrator propagates the velocities (at half steps)
positions (at integral multiples of the timestap) of the system (2.1) as follows:

vt —yn - AT g
2
XML — XN 4 A7V 2.7)
AT

(Vi Vn+% _ 20 Axntt
5 .

The superscript refers to the numerical approximationsXfandV at timenAr.
The associated step-to-step propagation opedatpx”, V"} — {X"1, v"*+1}isdefined
by the equation

xv11 [ 1 o] ac)[ 1 o][xn
Vn+1 - —%A 1 0 1 —%A 1 \VAL
XI’]
= AV\/(AT, A)|:Vn:| . (28)

where each matrix multiplication corresponds to one sweep through the (2.7) loop.
propagation matriAyy(At, A) is symplectic and determines the stability of the methot
It can be shown [11] that stability is achieved for

AT <2/v/A. (2.9)

This is the familiar linear stability requirement on the timeste@ ¢fr (T =the period)
[20]. Throughout this work we assume that the (inner) timegtepobeys this stability
restriction.

The following interpretation of Velocity Verlet proves useful later [10]. Let

2

AT 0
6(At, A) =arcco 1—7A , G(AT, A) =

1
0 \/A(1- L(ar2a))

Then we factorAyy as

cos® sind

Avv (AT, A)=G(AT, A) {—Siﬂ@ cosd

} G(AT, A)?

to emphasize similarity ofA,y to a rotation matrix, a consequence of symplecticne:
(conservation of area in phase space). The physical angular freq@e(gy. (2.2)) is
numerically approximated by affective angular frequendg4, 13]

_ O(At, A)
o AT

Qeff =Q+ O(ATD). (2.10)
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2.2.2. Langevin dynamics We analyze the stability and resonance independent of t
random force (i.e.R(t) = 0), following [15, 11]). We assume that the inner timestep is su
ficiently small (A7 — 0) to justify the asymptotic approximation. Equation (2.4) become

X4+ yX+AX=0

(recall A = A1 + A7), and admits an analytic solution of the form

{xm 2.11)

_ X(0)
V(t):l =€ AL(t,A, )/) |: :l ,

V (0)

where detf\, ) = 1. We only consider the underdamped oscillator cage{4A), since the
overdamped case is not relevant to biomolecules (the position becomes a sum of da
exponentials, with oscillatory characteristics thereby lost). For the underdamped case
propagatorA, is

cogw,t) + 55— sin(w,t) L sin(wyt)
ALt A, y) = N _ , (2.12)
_%(1+iﬁ)$mwﬁ) coS, 1) — - sin(w, 1)
where
2
w, = A—?%. (2.13)

2.3. 3D Linear Model

Before testing MTS variants on nonlinear problems, we also consider numerical re:
for a 3D linear model from Biesiadecki and Skeel [10] for three colinear particles (of u
mass) connected by springs of constdatandk,. The potential energy of this systems is

V(r1,12,13) = 3ka (Ir2 — 1] = 1% + 3ka (Ir3 — 12| — 12)?,
and the corresponding differential equation is

ki —kg O 0 0 O
X=—||=ki ki 0|+ |0 ko —ko| |X=(Ki+KX.
0 0 O 0 —ks ko

Since the matriceK; andK; are not commutative, the system cannot be reduced to thi
independent 1D models of type (2.1). The system has two fundamental frequencies,
+/2k1 andw, = /2k», corresponding to the nonzero eigenvaluek pandK,, respectively.
We choose the numerical valukes= 72/2, ko, = 72/50 to reproduce the fundamental pe-
riodsT; =2 andT, =10 used in the 1D linear model above. See also Garcia-Arcititié
[21] for a theoretical stability analysis of a linear multidimensional model.

3. IMPULSE VERSUS EXTRAPOLATION

We now examine the resonance/stability behavior of the Impulse and Extrapolation N
schemes (the latter in both Constant and Midpoint forms) applied to the linear 1D problen
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both Newtonian and Langevin dynamics. These results are considered graphically alon
those for the 3D linear model.

3.1. Newtonian Impulse

Impulse-MTS evaluates the slow force componemt (X here) at timestepat that are
k times larger than thoseA) used for the fast component £, X). We refer toAt and
At =kArt as theinner and theoutertimesteps, respectively. Impulse Verl&vgrlet-1” )
applied to the linear test problem (2.1) becomes

X0 = xn
VIO = yn— ke, XN
For i=0:k-1

vii+3l =yl A X0
xli+1 = X[  Arv[i+i]
i+ —y[i+3] _ At X0+

End

XN+l — xIK

v+l — Ik kATT)sz[k]

(Here the superscripts in brackets denote the indices of the inner iterations.) One st
this method advances the solution frotkAz) to (n + 1)(KAT).

To express the associated propagation maiyixfor Impulse-Verlet we first introduce
the “impulse” matrix

Pv(AT, Az, K) 10
\Y) T, A2, = . .
ke, 1

The propagation matrix of Impulse Verlet can then be expressed as
A (AT, A1, A2, K) = PV (AT, ki, K) Ayv (AT, A1) Py (AT, A2, K). (3.1)

The determinant oAy is one since each of the matrices on the right hand side of (3.1) |
unit determinant.

A full theoretical analysis of the resonance is presented in Appendix A. The conclus
is that resonant spikes appear neailtiples of the fast (effective) half peri@hd their
amplitude increasewith the outer timestep.

3.1.1. Resonance analysidNumerically computed eigenvalue magnitudes are shown
Fig. 1, as functions of the outer timesteps. Recallthanda, in (2.1) were chosen to yield
a fast period of 2 time units and a slow period that is five times larger and thereby facili
the viewing of resonances. We see that the resonant spikes appearétt tifanteger
multiples of the fast half perioch{T;/2). The amplitude of the resonant spikes increast
linearly with the outer timestep; furthermore, the spikes become wider.

For the 3D linear model, Fig. 2 reveals for Impulse Verlet resonant spikes at odd multi
of the fast half period as expected; however, the other resonant spikes do not appear a
multiples of the fast half period, but approximatelykatz = 1.6 and 3.2, a behavior not
predicted by the 1D model. For sufficiently large outer timesteps the method is unstab



FIG. 1.

(top) and Langevin (bottom) dynamigs~=0.162, of five methods, all shown versus the outer timestep.

FIG. 2.

(bottom), dynamics, versus the outer timestep, for Impulse, Constant Extrapolation, and Midpoint Extrapolz
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3.1.2. Asymptotic interpretation.Consider now the case when the inner timestep
very small, At — 0, while the outer timestepAz is kept constant. The Impulse Verlet
(and in generahnyconsistent impulse MTS method) for the 1D linear model becomes

X0 = xn

VIO =N KAy, X0

Solve for 0< t < kAT:

X =V, V=—11Xy, given
X(0) = X[, v (0) =V

X1 = X (kA7)

VM=V (kAT) — K570, X (KAT).

The above system can be solved analytically to obtain the propa@fater 9(X"*1, vn+ly/
(X", VM), which has unit determinant and trace given by

trace( A%) =2 cog\/A1KAT) — sm(\fkm) (3.2)

This formula is similar to (A.1) in Appendix A, and the analysis developed there appli
The conclusion is thato matter which discretization is used for the fast subsystem in
MTS framework the resonant behavior is simidarlong asAz is sufficiently small; thus,
resonance is inherent to impulse force splitting.

3.2. Langevin Impulse
The asymptotic Langevin propagator for Impulse MTS is
ARY(KAT, Ay, Ao, y) =€ % Py(AT, A, K)AL(KAT, A1, ¥) P (AT, 22, K).
and it follows that
det(Py™") = det(Py AL Py) =1

asPy i

and hence the spectrum Af
case { < 2w),

is the product of matrices of unitdeterminant. To determine the elgenvalﬁé,g”(gf
"9 we evaluate the trace of this matrix in the underdampe

Ao
trace( P,"ang) 2 cogwy , KAT) —KAT—= sin(wy ,KAT), (3.3)
w1, y
wherew; , =+/A1 — y2/4. This trace expression resembles (A.1), and a similar analy
holds. The conclusion is that, for most outer timesteps, the spectrlkkfrc‘?fconsists ofa
pair of complex conjugate eigenvalues (of modulus(expkAt/2)). For outer timesteps
close to multiples of the characteristic half period, or

KAT ~ (M — B)—=2 EE V (3.4)

whereTy, = (27)/w1,,, the spectrum oAlV "9 becomes real; that is, the system exhibit
resonance artifacts. By substituting (3.4) into (3.3) and estimating the valgdsoifvhich
the trace is a maximum or a minimum (i.e., those values for which the instability occt
we obtain
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This relation indicates the linear increase of spike width with the outer timestep. For
value of 8, assuming.,/A1 is small, we estimate the amplitude of the resonant first spi
(m=1)as

A
e (1+ «/§n2> .
Al

For stability,y must to be large enough to keep the first spike below one. This leads to
following lower bound ofy for numerical stability,

NI i )»2 4 ks )»2

If instead of the asymptotic approximation we consider a numerical implementation,
resonance condition (3.4) involves the “effective half peri@@f}f /2. In general, the larger
the value ofy, the largerTy , is; thus resonance appears at larger outer timesteps. Thi
another advantage of using Langevin dynamics.

Numerically calculated eigenvalue magnitudes are shown in Fig. 1 for the 1D lin
problem. For large enough values pf(for which the top of the first spike is less than
one) the method is stable. The valpye=0.162 used here was calculated from Eq. (3.7
usingi; =2, A, = 2/25 (see below). The resonance patterns can be noted with grow
severity asAt increases, as in Newtonian dynamics.

For the 3D linear model (Fig. 2), Impulse force-splitting shows resonance patterns
for larger timesteps, i.eAt > 3.5.

3.3. Newtonian Constant and Midpoint Extrapolation

An extrapolative MTS method also evaluates the slow component of thedtimes less
often than the fast force, but it incorporatessgproximatiorof the slow force at each inner
timestep. The simplest approximation is base€onstant Extrapolationwhich calculates
the slow forces at the beginning of the outer timestep. The altermdidioint Extrapolation
evaluates the slow component of the force at a coordinate vector that approximate
solution halfway through thét sweep; it is reasonable to expect that this variant mig
yield better resolution of the slow forces for certain protocols. When applied to the lin
test problem (2.1), both schemes can be written as

X[ = xn
vl =yn
6] _ {X[O] [Constant Extrapolation
X0 4 (kA7/2)VIO  [Midpoint Extrapolatiof
For i=0:k-1

vzl = il ax (5, X0 45, XIED)
XU+ = X111 4 Arv[i+i]
v+ —y[i+3] At (5, XI+1 4 3, XIE))
End
Xn+1 — x[Kl
v+l — V[k]
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We now introduce the matrices

—1AT%, 0

Ece(At, A1, A2) = 1. 3 ,
—A'L’)xz + ZAT )\.1)\2 0

—3AT%, —2kAT3),

Emve(AT, A1, A2) = ,
—ATho+ FAT3 gk, —3KATZA 4+ FKATAA,

for the Constant and Midpoint Extrapolation variants, respectively, and then express
propagator of Newtonian Extrapolation as

k—1
Aw(AT, A1, 22, K) = AV (AT, A  + Y Avv(AT, 1) Ew(AT, A1, 3),  (3.6)
j=0

wherexx stands foiICE or ME (Constant and Midpoint Extrapolation, respectively).

3.3.1. Resonance analysisThe analyses of the Constant and Midpoint Extrapolatic
methods are presented in Appendixes B and C, respectively. The main conclusion is th
Constant Extrapolation resonant spikes @ateredaround odd multiples of the effective
half period, withamplitudes independent of the outer timegiEppproximately H A,/A1.
For Midpoint Extrapolation, resonant spikes occur for outer timestkse tg but smaller
than odd multiples of the effective half period, but tamplitudes increase with the outer
timestepas Impulse-MTS. Both methods are unstable for nonresonant timesteps and
require a stabilizing technique (e.g., a weak coupling to a heat bath) to guarantee num
stability (and avoid systematic energy drifts) for timesteps that are not small.

The numerically computed eigenvalue magnitudes in Fig. 1 show that Constant Extr:
lation is generally unstable. The resonant spikes appear around odd integer multiples
fast half period In Ty /2) but their amplitude is constant, regardless of the outer timest:
The bottoms of the extrapolation spikes have magnitude unity. For Midpoint Extrapolat
Fig. 1 shows, in contrast, resonant spikes of increasing magnitude. The same generic
bility between spikes is seen as for Constant Extrapolation, but for small outer steps |
than one effective quarter period) this instability is very mild.

For the 3D linear problem, both methods are also unstable (Fig. 2), but the instability
be alleviated through stochasticity (see below). The instability of Midpoint Extrapolati
at small outer steps is again milder than that for Constant Extrapolation.

3.3.2. Asymptotic interpretation.The analysis for the 1D linear model for Constan
Extrapolation is collected in Appendix B, and for Midpoint Extrapolation in Appendix (
We conclude that any consistent integrator with sufficiently small displays similar
resonance patterns: with Constant Extrapolation spike amplitudes are independént ¢
but with Midpoint Extrapolation they increase witt.

3.4. Langevin Constant and Midpoint Extrapolation

Any method that discretizes the Langevin equation with Constant and Midpoint Extr
olation approximates (for small7) the asymptotic system

X+ yX 4+ A X + 2 XE =0,
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for 0<t <kAt and X(0) = X°, X(0)=V?°, whereX!El was defined for each scheme in
the algorithm above. The solution has the form

X (kA7)
V (kA1)

vt L XO
} =€ 2 A*inga(t, A, A2, Y) [VO} ,
where the subscriptx again refers to the method-dependent matrix for ConstaR) (

and Midpoint ME) Extrapolation. LettingS= sin(wy,, kA7) andC = coqw; , kA7), we
express the propagatat2"®® for Constant Extrapolation as

(1 + %) (C + ol S) ne'tt S
—ony(1+2)(

and for Midpoint Extrapolation as

ALanga (1+ %) (

—wl,y(1+ Q-;)(H 452)5 c- 2 +ﬁk%(1+ L )s

cTONKAT, A1, Ao, y) =

)

21,

2
4;:%?)8 C—.~S

S rkhr S rkaz
. )_)»ze i+gkAr(V,+c_ez)
1y =Y

For Constant Extrapolation, “resonant” outer timesteps satisfy ~ (2m+1)Ty , /2; the
propagator exp-ykAt/2) ALY%? has two real eigenvalues,

_ykat _rkar A _ ykac
=—e2, I;=—€ ¢ —)\—(1+e

Thus, the lower points of each spike lie on the curve(expt/2), and the amplitude of the
spikes is approximately, /A1 (1 + exp(—yKkAt/2)).

Unconditional stability is obtained if all the upper points of the spikes are less than
in absolute value. This reduces to

_ ykar Ao — rkar 2/ 1 Ao
e 1) <1 >——log|l1l+2—]).
7 +)\1( + ) < =4 y = ’—7'[2—{—1 g( + )»1)

This is a slightly sharper estimate than that given in [15, 11], which was

Y = (2v/A1/m) log(1 + 22/A1).

However, numerical experiments suggest that, while qualitatively correct, neither estir
is sufficient for stability; a practical lower bound (for the linear 1D problem) was empirica
found to be

2«/ 4 )\.2
7I 1+2 = | 1+2— |, 3.7
y > ] og( + M) 1, T_log( + /\1) (3.7)

a value for which the linear stability was confirmed numerically.
Interestingly, the Langevin formulation introduces a second family of resonances
outer timesteps equal to integer multiples of the characteristic fast period

At~ mTy,.



88 SANDU AND SCHLICK

For these values the propagator expkAr/2) AZY92 has two real eigenvalues,

_ykar _ykar A2 _ ykar
rh=e 2z, rh=e 2 +—(1—e 2 )

Al
At these values the tops of the spikes lie on the curveg-exp/2); the resonant spikes
are now below this curve. The amplitudes of the spikes in this case are proportion:
1— exp(—ykAt/2), and are clearly much smaller than at odd multiples of the fast peric
when they were proportional to£ exp(—y kA1 /2).
For Midpoint Extrapolation, resonance occurs when the outer timestep is “near” an
multiple of the fast half period, i.ekAt ~ (2m+1— )Ty, /2, whereg is a smaLIIang)asitive

number; the width of the spike is thgTy ,, /2. The propagator eXp-ykAt/2) Aye~ " has
two real eigenvalues,

. 2 KA
ry ~ e {—1+ (y + a)l,y) ztﬁn} ,

w1,y

kA kz( _ykar _ ykar A2 y? kAt
r~-e 2z ——(14¢e 2 )—e ([ 1+ —= || — ——fm.
2 A * ( * kl) (wl,y oLy 2 g

This implies that, at large outer timesteps, the method is less stable than Constant Ext
lation.

In Fig. 1 numerical results are shown for Langevin Constant and Midpoint Extrapolat
for the 1D model. The value gf was chosen according to (3.7). Note that the top of the fir
Constant Extrapolation spike—and hence all spikes—is not greater than one; the Con
Extrapolation method is stable for the 1D linear model. Also note the second family
“small” resonant spikes appearing near multiples of the fast period, a family not pre:
in Newtonian dynamics. For Midpoint Extrapolation the spikes are larger for large oL
timesteps.

For small x,/x1, relation (3.5) predicts the lower bound~ (Zﬁnkz)/(lel) for
the stability of the impulse method, while relation (3.7) gives the boume(8m i)/
(v/m2 — 1TyAq) for the stability of Constant Extrapolation. These two bounds have &
proximately the same magnitude.

The 3D linear model also shows resonance masking through stochasticity (Fig.
The valuey ~0.162 estimated by (3.7) stabilizes the Constant Extrapolation scheme
At=kA1 <Ty/2; the larger value ofy =0.3 renders a stable Constant Extrapolatiol
scheme up taAt =2.5. Larger values of will increase the stability range. The bound
given by (3.7) was derived to keep the eigenvalue magnitukda at= T, /2 less than unity.
While in the 1D case, this estimate also ensures that the eigenvalue magnitudes for |
outer timesteps are then less than unity, the 3D problem requires ajaigenaintain sta-
bility beyondT; /2. Midpoint Extrapolation shows better stability for small outer timestep
followed by a sharp rise in eigenvalue magnitude; at large outer steps, it is less stable
Constant Extrapolation.

We suggest in conclusion from this linear analysis that Midpoint Extrapolation mic
be successfully used in a stochastic framework with small outer timesteps; Constant
trapolation appears successful with larger outer timesteps provided that the bath cou
parametel is strong enough to compensate for inherent instabilities of the method.
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4. IMPULSE/EXTRAPOLATION VARIANTS

To combine the benefits of small-timescale accuracy of the Impulse method with
longer-timescale stability of Constant Extrapolation, it is reasonable to consider a c
bination: the slow force is kept constant during an outer timesdpner steps) but, in
an attempt to reduce the error introduced by this approximation, velocities are corre
at the beginning and at the end of each outer timestep. The correcting “impulses” |
magnitudes equal to the difference between the slow force values at the timestep enc
and the extrapolative value (tlseterm below). These corrections are considerably mild
than the pulses used in the pure impulse treatment.

4.1. General Hybrid Framework

For the model problem (2.1), one step of Impulse/Constant Extrapolation using an
trapolation value of for the slow force reads

X[ = xn
VIO =N 4 KA (5, X0 - ¢)
For i=0:k-1
v+l =i 4 A (—aa X+ &)
xli+1 — x0i1 4 Apy[i+i]
vi+1 — y[i+3] + % (_klx[i+1] +5)
End
xn+1 x[k]
VL VIK g KA (XK g)

If £ is constant throughout the integration, symplectic methods can be obtained |
pendix D). In particular, the choicg= 0 gives the Impulse Verlet method. A natural choic
for the extrapolation valué is the slow force evaluated at some pa¥it (£ = —1, X*). In
this case this variant scheme reads

X0 = xn
VIO =N — kA5, (X1 — X*)
for i=0:k—-1

vzl = vl — a0 4 5%
X0+1 — X0l 4 Afv[i+%]
v+l — V[|+ 1_ ( l)([i+1] +)\2X*>
end
XN+l — x[K
vl Ik kATT)\z(X[k] — X*)

The theoretical treatment of this hybrid family is facilitated by its resemblance to both |
pulse and Constant Extrapolation. We first define the following matrix (which correspo
to the choiceX* = X" and theExtrapolation/CorrectiorfE/C] method),

E/CV T, A2,
/ kér;z 0
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Then the propagator associated with the family is

Eie(AT, A1, A2, K) = — (1 + Py (AT, 22, KAy ) EEjcv(AT, A2, K)
k-1
+ Pv(AT, Az, k)< Z A{/\/)ECE(AT, A1, A2)
=0
=1 —-Av+Pv(Ace—1).

The updating formula is then

Xn+1 Xn X
{V”’Ll] = Av (AT, A1, A2, K) {V”} + Ee(At, Aq, A2, K) [V*} . (4.1)

The relevant propagatoA() depends on the choice #f. Holding X* constant throughout
the integration results in a symplectic scheme but thenX* can be a poor approximation
to —A,X". Adjusting X* each outer timestep (as in E/C) leads to a better extrapolation,
the nonsymplecticness is reflected in a systematic energy drift.

Another possibility is to updat&* every p outer steps, wherp is a chosen integer. We
call this methodExtended Extrapolation/Correction Cyc{&E/CC). This hybrid makes
sense for situations where the rafig/A, is large; reasonable accuracy might then b
obtained for a largk (=At/At), but this choice must be balanced with the limitlodue
to resonance considerations. The computational complexity of this EE/CC variant doe:
exceed that for E/C, since the slow forces are still evaluated once each outer timester

Finally, the “Leap Extrapolation” variant attempts to achieve a larger range of stabi
than Constant Extrapolation by symmetrizing the extrapolation process and using a two
rather than a one-step extrapolation scheme.

We examine these hybrid methods in turn to determine whether they might work be
than pure Impulse and Constant Extrapolation.

4.2. Extrapolation/Correction (E/C)

The choiceX* = X" in the above scheme yields impulse velocity corrections after ea
outer timestep. This approach was considered by several groups to reduce the energ
of extrapolation [22, 23, 10]; the derivation in [10], in particular, was motivated by tl
desire to approximate Verlet equivalence [7] for Constant Extrapolation. It has been n
that correcting only for velocities improves numerical performance. This is the version
consider.

When applied to the 1D linear problem (2.1), E/C yields the following protocol:

X[ = xn
Vv —yn
For i=0:k—-1
vli+il — il _ Ar (3, X111 4 2, X0
xli+1 — X[ 4 A,V[wz]
i+ —y[i+3] _ At (3, XI+1 4, X0)
End
Xn+1 X[k
vl — Ik _ kgrkz(x[k]_x[o])
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The E/C propagator can be derived directly as
Ag/cv(AT, A1, A2, K) = (I + Egjcv) Ace — Egjevs (4.2)
or by using X*, V*] =[X", V" in Eq. (4.1) to obtain (omitting arguments for clarity)
Ae=I1+Pv(Ace— 1) =1 + (Egecv+ ) (Ace — |) = Ag/cv. 4.3)

4.2.1. Resonance analysisWe defer the theoretical analysis to Appendix E. This anal
sis shows that resonant spikes are centered around odd multiples of the effective half p
and that their heights increase almost linearly with the outer timestep. Between resc
spikes, there are additional (nonresonant) instabilities that increase with the outer time:

Figure 1 shows the eigenvalue magnitudes for the E/C propagator; the method is gen
unstable and performs better than Constant Extrapolation (but not better than Impulse)
for small outer timesteps, say less than4. Resonant spikes appearoald multiples of
the fast half period only. Thus, as concluded by Barth and Schlick [11, 15], this hyt
approach seems useful only for small outer timesteps. Results of the LangeViracase
shown for reference in Fig. 1; but the method does not appear to have practical utilit
its own right though we found it useful in a three-class MTS scheme (see below and ir
water tetramer figure).

4.2.2. Asymptotic interpretation.The analysis developed in Appendix E for the 1L
model confirms the basic results—good behavior for outer timesteps less than one qt
the fast period and linearly increasing spike amplitudes.

4.3. Extended Extrapolation/Correction Cycle (EE/CC)
The EE/CC propagator fqy macrosteps is formally written a&2¢,cc and is defined by

Age/cc(AT, A1, A2, K)P
p-1
= A|V(A‘L', )»1, )»2, k)p + Z A|V(A‘L', )»1, )\2, k)J E|E(A‘L’, )»1, )»2, k) (44)
j=0

or equivalently

Aee/cc(AT, A1, A, K)P
p—1
=1+ Z Av(AT, 21, A2, K) Pv(AT, A2, K) (Ace(AT, A1, A2, k) — 1), (4.5)
i=0

A complete theoretical analysis of the resonanceégficc is possible for the 1D linear
model but complicated. We restrict our study to the numerically obtained eigenvalues.
In Fig. 1, the absolute values of the spectruméAgk,cc are plotted as a function of
the outer timestep fop=1 (E/C) andp =10 (EE/CC). The curve becomes flatter @ms
increases, and tends to approximate the Impulse curve. Interesting resonance patter

2The Langevin propagator of E/C is related to that of the Langevin Constant Extrapolation propagator b
Langa Langa

relation Agj&, (KAT, A1, A2, ¥) = (I + Egev) Ace " — Egjev. Calculations show that the eigenvaluesﬁ«’@“ﬂ:‘-’;,a
are resonant for botkAr = (2m+ 1T, , /2 (large spikes) andAt =mT,, (small spikes).
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also be observed. We conclude that the method is useful only for small outer times
and has no advantage over the other splitting variants. We report the Langevin behavi
EE/CC for reference in Fig. 1 fgr = 0.3, but do not consider the method further; additione
experiments substantiate this conclusion.

4.4. Leap Extrapolation

Leap Extrapolation is motivated by methods that “symmetrize” the force extrapolat
process [24] to obtain stable, long-time integrators for Hamiltonian systems. The n:
“Leap” is appropriate for the two-step process: we evaluate the slow foxé and then
advance the numerical solution fraqid"=1, V"=1} to { X"+, V"*+1} while keeping the slow
force constant, at itX" value; in the next step we evaluate the slow forcext! and
advance the numerical solution frofix", V"} to {X"*2, V"*2} while keeping the slow
force equal to itsX"** value, and so on. When applied to the linear test problem (2.1), Le
Extrapolation reads

X[O] — anl
V[O] :\/n—l
For i=0:2k-1
vzl = vl Ax (5, X014 5, X0
X+ = X0 4 Apv[i+d]
vi+ = v li+3]  Ax o X+ 4, x0)

End
Xn+l X[Zk]
\Vj n+1 _ -V [2K]

We also consider a velocity-correcting version (“Leap Extrapolation/Correction”):

X0l = xn-1

VIO =vn=1 — kAT, (XD — XM
VI = Vi) A2 (X 4 2pX0)
xli+11 — 01 4 ArV[iJr%]
VI +1]—V['+1] ( X[I+1]+)L Xn)

End
Xn+l X[Zk]

Vn+l V[Zk] kA‘L')\.z (X [2k] _ Xn)

The relevant propagator for the two-step scheme is written as

Xn+1 XN

\VALS Ee(AT, A1, A2, 2k) Av (AT, A1, Ao, 2k) \VAL
Xn B | 0 anl
VAL anl

It is straightforward to show that the propagator above has a determinant oflone i§
sufficiently small.



RESONANCE IN FORCE-SPLITTING INTEGRATORS 93

1.5 = . . 18 t i .
1D Leap Ex. 10 Leap EAC
1.4 14
Boadgl ngb ALl
1 f T T -r I
05 st -
a 1 2 a 4 & B.B a 1 2 a 4 i BE
1.2 B
S L |-_|_ i |
3 T, | ™ J| [ | J
L e, ERL f |4 |41
[T - 506 [~ Mt |
T
= na i }|'_..-| . 1
£ 0 i 2 a 4 5 88 £ @ 1 Z a 4 i BA
E g £ ; .
= -
R 30 Leap Ex.| Z15| 30 Leap EAC ||
i i g
2 . v { it # r'-“ T T - 4
S 8 I IR NI W
) i POkt -l | ol N N N s P |
"-u 1 2 a 4 & 8.8 a 1 2 a 4 § BE
o . ; . . ) . . :
5 - 15 |
SR il
0.5 1- J.T Ry 05| T :-If -
| 4 1 1
I:'n:- 1 2 1 4 5 f.8 a 1 2 a 4 i BB

Ourtear Tirrseeston [ At Chiler Timaskap (K Ax)

FIG. 3. Eigenvalue magnitudes for the Leap Extrapolation Method (left, Simple; right, Impulse Correcti
for the Newtonian 1D Linear Model (first row), Langevin 1D Linear=£0.162, second row), Newtonian 3D
Linear Model (third row), and Langevin 3D Mode} & 0.3, last row).

The numerically calculated eigenvalues are presented in Fig. 3 for both the 1D lir
and 3D linear models, Newtonian and Langevin dynamics. The non-corrected version
top) for the 1D model exhibits no resonant spikes; the corrected version (right top) sh
large resonant spikes near multiples of the fast half period and, in addition, small resc
spikes at odd multiples of the fagtiarter period As characteristic of impulse methods, the
heights of the spikes increase with the outer timestep.

Unfortunately, Leap Extrapolation shows a marked instability for the 3D linear moc
The Langevin extensions, also shown in Fig. 3 with= 0.3, reveal complex resonance
patterns. We thus discard this method, in addition to EE/CC, from further considerat
These hybrids do not appear to offer any practical benefits over Impulse and Con:
Extrapolation.

4.5. Three-Class Splitting by Extrapolation

Finally, to analyze a three-class extrapolative method as LN [20, 15], we consider
Langevin 1D linear model of system (2.6), where the random force is given by Eq. (2
A stochastic extrapolative approach is motivated by the goal of long-time stability :
large computational savings rather than accurate Hamiltonian dynamics. In this cas
is advantageous to use a method that yields better accuracy than Constant Extrapc
for the medium force class to improve the accuracy on the medium timescale. Candic
include Extrapolation/Correction (see good behavior in Fig. ok T;/2), Impulse, and
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Midpoint Extrapolation. We have implemented Midpoint Extrapolation, though limited te:
also suggest that the other approaches are effective as laxiga3; /4. Now we combine
Midpoint Extrapolation with Constant Extrapolation in a three-class splitting to obtain |
the 1D linear model (2.6) the discretization

X[0,0] — X"
V[0,0] —\Vn
For j=0:k2-1

XIEl = 0.1 4 (klAr/Z)V[O'”

For i=0:kl-1
x[i+3.0] = X001 4 (Az/2) Vi)
VI = (VI = Ar (g X421 4 2o XTE 435X 00 1 R)) /(14 y A7)
xl+1i1 = x[i+3.3] 1 (A7 2)vi+L0]

End(i)

X[0.j+1] — XKL ]

V0. i+1] — y/IkLj]
End(j)

Xn+l — X[kl,k2]
Vn+l — V[kl,k2]

Here a triplet of stepsizegAt, At =ki A1, At =k, At} is used to integrate the three
components of the force. Fpr= 0, the inner iterations reduce to Position Verlet rather the
to Velocity Verlet.

For small inner timestepat — 0, the asymptotic approximation holds, as

A2
Pn=A —
LN L~I—)L

1 Atn/2
A — g/Atm/2 [ m ]’
e ] P

1

whereA, is described in (2.11) and (2.12). Then the propagator matrix associated with
asymptotic approximation is expy At/2) ALn, Where
e . 10
AN = Pllf?\l + i‘_j <Iz_; gle—i=1)y Atn/2 P|I_N> (AL _ eyAt/Z) {0 0}
Figure 4 shows the eigenvalues of this propagator for different outer timesteps for
chosen periods of; =2, T, = 10, andT; =50 (At, = 0.5 is used). For the smaller value
y =0.162 (left), the eigenvalues of the propagator are quite close to the theoretical va
exp(—y At/2) (showninthe dashed line). For the larger vatue 0.3 (right), one eigenvalue
does not decrease with larger outer timesteps. From here we conclude that smaller val
y might give better averages at large outer timesteps. The fact that the propagator eigeny
are above their theoretical values means that the LN trajectory will produce a slightly hic
energy than the theoretical one. Numerically, we observe a slight rise of the tempera
However, LN is stable for very large outer timesteps.

5. FURTHER EXPERIMENTS

We now experiment with two nonlinear problems: a water tetramer, and the solve
protein bovine pancreatic trypsin inhibitor (BPTI). The purpose of the first model is
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FIG. 4. Eigenvalue magnitudes for the 1D linear model for a three-class Langevin extrapolative splitting \
y =0.162 (left) andy = 0.3 (right), At,, = 0.5, T; =2, T, = 10, andT; = 50.

show that the Midpoint Extrapolation hybrid is successful, in the context of a stocha
framework, in removing the first resonant peak of the Impulse method and achieving b
accuracy than Constant Extrapolation for outer timesteps less than half the fastest pe
The purpose of the second example is to demonstrate an effective three-class stochas
trapolation strategy for biomolecules that combines Midpoint Extrapolation for the medi
forces with Constant Extrapolation for the slow forces.

5.1. A Water Tetramer

This test problem is borrowed from Schlick et al. [25], who simulated a flexible wa
droplet based on standard water potentials. The intermolecular and intramolecular f
correspond to the slowly varying and rapidly varying components, respectively. The in
molecular potential consists of van der Waals and electrostatic terms:

—-A B
Einter(X) = Z (r—e + m) + Z <QkQI) .
ij

oxygen pairgi<j) i atom pairstk<l) ki

The variable denotes an interatomic distance. The parameters are get&255 (kcal/
mol) A%, B=6294x 10® (kcal/mol)A12, Qp=-1494 (kcal/mold)2, and Qu=
7.47 (kcal/mol&)Y/2 (for oxygen and hydrogen atoms).
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The intramolecular potential considers bond-length and bond-angle terms for e
molecule:

Ena() = Y (S.L 3" (b3 — b?)* + S:(cos6) — cog6; ))2> :

molecules k=1,2

Hereb=1A is the equilibrium O—H bond length antl=arccog—1/3) = 109471 is
the equilibrium H-O-H bond angle. The paramet&rsS, have the value§, =94 kcal/
(molA%), andS, = 42 kcal/mol.

The initial coordinates and velocities were chosen as described in [25]. A minim
energy configuration was found with the truncated Newton package TNPACK [26—
followed by an equilibration of the structure at 300 K via a Langevin simulation. From
spectral analysis of the velocity autocorrelation function (as given by a Verlet simulati
we measured that the two fastest frequencies in the system have the associated p
T~ 10.8 fs andT,~ 21.8 fs.

The numerical experiments were performed with an inner stepsiza ef 0.25 fs and
different outer stepsizes for a total time interval of 30 ps. For each run the average
standard deviation of the total energy were recorded. Similar behavior was noted fc
inner timestep of 1 fs. The Verlet linear stability condition (2.9) for the intermolecul
forces restricts the outer stepsizext6.6 fs. The random force is set at each inner iteratio
to satisfy the properties given in Eq. (2.5) as {s the mass of ator)

For i=1:N
dev=/(2ykem;T)/(A7)
RX =dev- normal)
RY = dev- normal)
RZ = dev- normal)

End

Each call to the function normal() returns a different sample from a normal distribut
(with mean 0 and standard deviation 1); for each of khatoms in the system the three
Cartesian components of the random force are obtained by rescaling this distribution t
desired standard deviation.

The results for Langevin Impulse with=20 ps shown in Fig. 5 reveal a resonant
spike at an outer timestep value~eb.4 fs; for larger timesteps an energy increase due
linear instability is seen. For Constant Extrapolation, the method is linearly unstable, wi
explains the slow growth of the mean energyMsncreases. However, no resonant spike
are present and the energy errors increase only slowly with increasing outer timestep.
that the value of suggested by (3.7)—using linearly predicies—is about 150 ps'. At
this value the energy stability would be much better.

The performance of the Langevin Extrapolation/Correction and Midpoint Extrapolat
methods shows good energy preservation for small outer timesteps followed by ma
instability at largerAt. At At~5.4 fs, a small resonance occurs. Better behavior th:
Constant Extrapolation for small outer timesteps can be explained by the second ord
consistency (inAt) of these hybrids. The EE/CC and Leap Extrapolation methods of
no benefits over these variants, as previously concluded: the former gives results simil
those of Impulse splitting, though the first resonant spike at around 5.4 fs is smaller,
the latter yields marked instabilities beyond 4 fs [data not shown].
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FIG.5. Watertetramer energy means and deviations over 30-ps Langevin dynami@€ ps?, as a function
of the outer timestep for a fixed inner timestep of 0.25 fs.

These experiments thus show that hybrid methods like Midpoint Extrapolation
Extrapolation/Correction can mask the first resonant spike of Impulse in a stochastic fr
work, but only Constant Extrapolation yields stability at larger outer timesteps.

5.2. Solvated Bovine Pancreatic Trypsin Inhibitor (BPTI)

We model the BPTI protein (892 atoms) in CHARMM [29, 30] version 25, solvated in |
crystallographic and 4401 bulk water molecules (14,275 atoms total). The solvated sy
was prepared by overlaying the protein atoms on an equilibrated bulk water system (c
prism of side 70&) and then extracting all solvent molecules that included oxygen atol
within 1.8 A of any heavy protein atom. This system was minimized by steepest dest
followed by CHARMM’s ABNR minimizer. The final solvated system is a rectangul:
prism of dimension 6& 47 x 47A3, modeled with periodic boundary conditions at a cutof
distance of 1A. These interactions are truncated using group-based van der Waals potel
shift and electrostatic force-switch functions. The minimized system was heated to 3(
in three successive 10-ps stages using Langevin dynamics/with0, 10, and 3 ps'; a
similar procedure for setting the random force as described in the previous section is
in CHARMM. The heated system was equilibrated for 20 ps of Newtonian dynamics bef
production runs began.

The splitting procedure uses three classes and follows Ref. [15]. Namely, bc
length, bond-angle, and dihedral-angle terms are considered fast interactions and resol



98 SANDU AND SCHLICK

x 10 x 10"
1 1}
1
0 O !

! f ] | |
= = | &
= l i
E I iEy .
= | =
8 ' 3 '
X x W
) e,

o 2 T
L2 L] ]
@ L] -
= = i
L Lil :
1 :!_ !
e
4 4 |
LM
Newtonian Impulse| Langevin Impulse
E - . 5. . . - . .
0 5 111 K] 10 20 &0 40 50
Duter Timestep [fs] Duter Timestep [fs]

FIG. 6. BPTI energy means and deviations over 5-ps Newtonian dynamics (left), and Langevin dynan
y =20 ps? (right), as functions of the outer timestep for a fixed inner timestep of 0.5 fs and medium timeste
1fs.

At =0.5fs; local nonbonded forces (WithinﬁQ) are considered medium interactions an
resolved atAt, =1 or 2 fs; and all other forces are classified as slow. The medium forc
are separated from the slow forces via a smooth force switching function with buffer
region; a larger buffer region worsens results. We found that this three-class partitiol
worked much better than a two-class scheme. A spectral analysis of this test problem
below) indicates that the fastest periods in the system are around 10 fs (associated with
stretches), 11 fs (C—H stretches), 19 fs (water H-O-H bends), 24 fs, and above (va
bending nodes and heavy atom bond vibrations, such as C-C=a6).C

For comparing resonance behavior between impulse and extrapolative variants, the
tem was integrated for 5 ps with a medium timestdg = 1 fs and various outer timesteps
for both Newtonian and Langeviry (= 20 ps!) dynamics (Fig. 6). This smaller value of
Aty was used because Newtonian Impulse does not work welltjth= 2 fs and Langevin
Impulse was also worse at this setting.

Figure 6 shows how resonance appears for Newtonian Impulse~ab fs, as predicted
by linear theory; for larger outer timesteps, generic instability occurs, as expected.
Langevin/Impulse, we see that the first resonant spike at 5 fs is delayed: the integrati
stable for timesteps up to 6 fs, and a strong resonance signal emerges near 10 fs fc
y. Thus, stochasticity succeeds in strongly alleviating the 5-fs resonance for this com
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TABLE |
LN Performance on Solvated BPTl,v =20 ps!, AT =0.5fs, At,, = 2 fs, At Varied

At (T) (T —(THHY? (E) ((E—(E)»)Y? Speedup
Ref. 298.5 2.0 (0.67%) —34054.8 121.5 (0.36%) 1
2 300.6 2.1 (0.70%) —34079.4 145.2 (0.43%) 2.3
10 302.2 2.1 (0.69%) ~33929.0 130.3 (0.38%) 4.3
20 303.7 2.2 (0.72%) —33687.7 152.7 (0.45%) 6.6
50 302.1 2.1 (0.70%) —33722.8 160.6 (0.48%) 9.8
100 301.9 1.9 (0.63%) —33654.7 145.8 (0.43%) 11.7
200 301.7 2.2 (0.73%) —33450.7 142.2 (0.43%) 13.1

Note.The temperature and energy and their variances are shown, along with the speedup measured rel
the explicit Langevin trajectory in CHARMM ahkz.

system though it did not for the water tetramer for the samé&he difference in ratios
between the extreme timescales (characterizeid oy, ) for each system is a likely expla-
nation. Namely, for the solvated protein, this ratio is smaller (slower modes are present
hence the instability amplitude is relatively small. The removal of the 5-fs resonance by
Langevin approach was also shown in [15]. For large outer timesteps, Langevin/Impul
unstable, with marked resonances at multiples of 10 fs. The LN results, in contrast, are
good for large outer timesteps: energy averages and variances are correct for all valt
At displayed.

In fact, we found thant,, can be increased to 2 fs and to 200 fs without excessively
increasing the thermodynamic errors as measured with respect to a single-timestep Lan
trajectory atAt = 0.5 fs. Results obtained with these settings are reported in Table | (
also [15]) and in the remaining figures.

Figure 7, which presents the errors of the LN trajectory averages relative to the refer
trajectory for the various energy components and the temperature, shows that all rel
errors remain below 3% fott up to 200 fs.

Dynamic properties as a function pfare next examined. The spectral analyses of t
trajectories shown in Fig. 8 for twp values used data from the first 2 ps of the trajectory :
the outer timestep okt =192 fs sampled every 2 fs. (Very similar results are obtained f
all outer timesteps examined, up to 200 fs.) The procedure involves computing the velc
autocorrelation time series for each atom in the system and then Fourier transforming
to obtain a power spectrum for each atom; these spectra are then averaged over the |
atoms and over the water atoms separately for a global characterization of the motio
more detail, the sampled 2-ps trajectory yields velocity time sévies . v} } for each atom
j in the system and each Cartesian coordinate (the subscript is the snapshot time ir
We subtract the average quantity to yield

. . 1
v|J<—v|J—va|J, I=1,...,n,
ni=

and produce the normalized velocity autocorrelation series covering the 2-ps interval

n i
al — 2i=n/2 U V- pi1

=1,...,n/2
b . p=1...,
Z|n=n/z vll U|J
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FIG. 7. BPTIrelative errors of LN A7 =0.5 fs, At,, =2 fs, At varied from 2 to 200 fs) with respect to the
reference Langevin trajectory at the single-timestep valudor y =20 ps®.

This time series is then Fourier transformed to the frequency domain to obtain the (indi
ual) power spectra

n/2
AL=>"ald®  w=1...n/2
p=1

These spectra are averaged over the protein and water atoms sepaigiglsind Nya
below denote the total number of protein and water atoms, respectively):

A= AL/ Npor. A =3 AL /Nya,  @=1,....n/2

jeprot jewat

Not only do we see from Fig. 8 that the LN spectra for the large-timestep trajectory are bz
distinguishable from the spectra obtained from the reference, 0.5-fs Langevin trajectory
observe that the Newtonian modes are smoothed by the stochastic treatment, as exp
and that the smaller value pfused here leads to a better agreement between Newtonian
Langevin spectra. This effect gfis illuminated by Fig. 9, which compares the Newtoniar
to Langevin (LN) spectra at twp values. Thus, ouy =5 and 20 ps! values, sufficient
for numerical stability, do not blur the internal signals grossly.

As for computational speedup, LN produces a factor of 13 for the largest outer time:
(Table I). This is close to the asymptotic upper limit for the present system, since
computational work involved in the slow forces is already less than about 10% and, inst
the evaluation of medium forces has become the dominant computational burden. A fu
splitting of the medium forces, resulting in a generalization of LN to more than three clas
might be useful to increase the speedup. Additional experiments for a different appro
namely introducing the slow forces via linear extrapolation, show that this does not w
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well for outer timesteps larger than 25 fs. Our recent applications of LN to a larger solve
protein and a solvated DNA dodecamer show similar performance; speedup depent
the system size, protocol used, and on the geometry of the domain used to envelo
macromolecule in the periodic-boundary-conditions protocol.

6. CONCLUSIONS

The numerical analyses and experiments reported here support the following conclu:
(see also Table II).

1. Theintroduction of long-range forces by impulses results in severe resonances. T
resonances lead to inaccurate trajectories, limitthe outer timestep in Impulse-MTS mett
and hence restrict the achievable computational gain of these variants with respect to si
timestep methods. The amplitudes and widths of these resonant spikes increase wif
outer timestep. Linear analysis usefully predicts the first resonant timestep to be hal
fastest period; beyond this threshold, more complicated resonance patterns can devel
seen from the 3D case). The 1D predicted values serve as good candidates for res
timesteps in nonlinear biomolecular systems (near multiples of half the fastest period,
5,10, 15fs,..).

2. The incorporation of long-range forces by Constant Extrapolation leads to gen
instabilities (energy drift in practice) and resonances at odd multiples of half the fas
period, but the amplitudes of these disturbances do not grow with the outer timestep
the linear 3D problem, as well as for general systems, the effects of generic instability s
to be stronger than the effects of resonance.

3. Splitting variants such as Extrapolation/Correction, Extended Extrapolation/Cor
tion Cycle, Leap Extrapolation, and Midpoint Extrapolation do not appear to have mi
practical utility in their own right over Impulse and Constant Extrapolation because tt
can produce a complex array of resonances at larger outer timesteps. However, the va
Midpoint Extrapolation and Extrapolation/Correction yield better accuracy than Consit
Extrapolation on atimescale less than half the fastest period. They are thus good candi
for treatment of the medium forces in biomolecules, and this is exploited in the three-c
LN scheme.

4. The results obtained for Newtonian dynamics generally extend to Langevin dynan
but a sufficiently strong coupling to the heat bath can stabilize the numerical solu
and dampen resonances. For the Impulse version, the rapidly increasing amplitude
resonances makes it very difficult to eliminate these disturbances; Constant Extrapol
is most amenable to this masking, with generic instabilities also eliminated. On the bas

TABLE Il
Resonance Summary for Splitting Variants

Method 1D resonance 1D stability Nonlinear behavior (Langevin)
Impulse mT,/2 Stable Resonant
Const. Extrap. 2m+1)T,/2 Mildly unstable Mildly unstable, nonresonant
Midpt. Extrap. @2m+1)T,/2 Increasingly unstable Good fat < T;/2
E/C 2m+1T,/2 Increasingly unstable Good fant < T, /2
EE/CC Irregular Increasingly unstable Resonant
Leap Extrap. None Stable Very unstable
Leap E/C mT,/4 Stable Good font < T, /4

Note. T is the fast periodAt is the outer timestep, and is an integer.
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linear theory, we suggest guidelines for choosing minimal coupling to the heat bath (opti
y) for the stochastic/extrapolative combination; for nonlinear systems, empirical tests
necessary and suggest the values 5-50 [i5].

5. While results of the 1D linear model problem provide useful resonance predictic
multidimensional linear models provide a stricter test of method feasibility. The limitati
of the 1D linear model was emphasized through the Leap Extrapolation variant consid
here, for which the optimistic results for the 1D linear model were misleading.

6. The stability of the MTS method depends on the protocol used and the probl
For biomolecules, a three-class splitting works better than two classes, and systems
disparate timescales are more amenable for force-splitting integrators.

7. If long-timestep stability and computational speed are important factors, and e
Hamiltonian dynamics is not required (i.e., rather, thermodynamic and conformatic
sampling is the goal), an effective protocol for biomolecules is a three-class Lang
MTS scheme which uses Midpoint Extrapolation for the medium forces and Cons
Extrapolation for the slow forces, like LN [15]. Results here showed the effectivenes:
this approach for a solvated protein model: errors in energy components and temper
are less than 3% (with respect to single-timestep Langevin trajectories) for timesteps |
200 fs; the speedup exceeds 10; and spectral Langevin modes approximate the New!
modes for the coupling parametetin the range of 5-20 ps.

More work is needed to overcome resonance limitations in a Newtonian framework.
interesting avenue to examine rigorously is the use of a constrained formulation for
bond stretches in combination with the MTS protocol. Though the gap in the vibratic
frequency between the heavy-atom bond stretches and the light-atom bending moc
not large [20], resonance disturbances can likely be pushed further if rigid water mo
are used. This strategy might also be used in the LN framework to increase the maxit
feasiblemedium timestefrom 2 fs; this modification should not degrade the resolutic
quality of the medium forces but might improve the asymptotic speedup of the resul
MTS protocol, since this value is dominated by the cost of the medium forces [15].

Given the formidable sampling problem, it appears that a pragmatic balance betv
accuracy and long-time stability is warranted in biomolecular simulations so as to bridge
gap between theoretical and experimental biophysics; the extrapolative stochastic app
of LN analyzed here is one such compromise. See also the Sdtligk review in this
volume for further perspective [31].

APPENDIX A: LINEAR RESONANCE FOR IMPULSE SPLITTING

Tofurther analyze the resonances observed, déretg At, A1) = arccos(l- At2r1/2)
and temporarily drop the arguments Bf, and G for simplicity. Then (3.1) can be
successively expressed as

A|V(Al', )»1, )»2, k)

Pv(Avv (AT, 11)*Py
K

cogh) sin@) | ~_4
Pv (G{—sin(e) cos(e)}G ) Piv

[ cogkd) sinkd)
v

-1
—sin(ké) cos(ke)}e Pv-
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After some algebraic manipulations, we obtain

det(Ay) = 1,

kAT}\.Z (Al)

vV )»1(1 — AT2K1/4)

At a resonant timestep, a pair of complex conjugate eigenvalues (lying on the unit cir
becomes a real pair; hence, the condition for resonance (the same as the conditic
instability) is

tracg Ayy) = 2cogkod) — sin(kd).

[tracg Ay)| > 2.

There are two casesinwhich this occurs. For analysigs 3etAt,)/(2v/A1(1 — At201/4))
(a quantity independent d&j.

Case ltrace(Ay) < —2. This is equivalent to

ki k k
1+ cogkd) — ka sin(ke) =2co§(;> — 2ka sin<;> 003(70) <0

or

ko 1

In particular, tagké /2) — +oo when
ko T
—~(2m+1-8)—, m=0,12,...
5 v @m+1-p)7

(with B denoting a positive, small number). Sinte- »*" A, from (2.10) we can rewrite
the above as

kAT

eff
w1

2m+1— 2 TEf
%+2ﬁ( ”):(2m+1—ﬁ)§.

Thus instabilities appear for outer timesteps near odd multiples of the fast (effective)
period; sinces > 0 the peaks will be centered to the left of the effective half periodk; as
increases, the right hand side of (A.2) decreases, so instabilities will appear fordarger
hence the widths of the “resonant spikes” increase Withr Impulse Verlet.

To approximate the amplitude of the spikes in Case 1, note that at a resonant times
kO ~ (2m+1— B)mr = cogmh) ~ —1, sin(mf) ~ B,
which implies
tracd Ay) =2 cogkd) — ka sin(kd) ~ —2 — kap.
The maximal eigenvalue is

t Ay) — /1 Av)2—4 2B2
C race Ay) \/zracd V) %—1—k¥— ka,B—i—kzaf ~ 1 kap.




RESONANCE IN FORCE-SPLITTING INTEGRATORS 105

where the last approximation is valid for largeSince the nonresonant valuerok 1, the
amplitudes of the resonant spikes behave like

Ir| — 1~ kaf.
Since« is independent ok and 8 increases only slightly with increasing the spike

amplitudes increase almost linearly wkh

Case2tracg Ay) > 2. After some algebraic manipulations, this condition is equivale
to

0> tan<k29> > —ka, (A.3)
implying that

2~ B, <ﬂ<2,

or equivalently
kAt ~ (m— B)TF".

For smallk, (A.3) is satisfied only by small values 8f while for largek the right hand side
of (A.3) decreases angican take larger values. This too implies that the widths of reson:e
spikes increase witk. This instability appears for outer timesteps near integer multiples
the effective fast period (but slightly less tharTgf).

To approximate the spike amplitudes for Case 2, note that near a resonance we ha
k6 ~ (2m — B)mr = cogkd) ~ 1, sin(kd) ~ —pBm.

An argument similar to that used above provides a linear estimate for the increasing ¢
height withk for largek,

Ir| — 1~ kaBm.

APPENDIX B: LINEAR RESONANCE FOR CONSTANT EXTRAPOLATION

Linear instability, or resonance, appears also with Constant Extrapolation. Since for r
values of the outer timestep the spectrumAgE consists of a pair of complex conjugate
eigenvalues (in general not on the unit circle [15, 11]). When the outer timestep is clos
odd multiples of the fast half period the eigenvalues approach the real axis and event
become a real pair.

To illustrate, we first bring (3.6) to a simpler form by usifig- 0 (At, A1) = arccos(1—
At?r1/2) and performing a change of basis. For simplicity, we temporarily omit tl
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arguments of the matricé&s andE.

G(AT,A)™" Ace(AT, A1, 42, k) G(AT, A1)

_ [ cogko) sin(ke)] N ki [ cogjo) sin(jo)

. . ) ]GlEG
—sin(k®) cogko) —sin(jo) cogjo)

j=0
_ [ cogké) sin(k@)] sinkd/2) [ cos(%516) Sin(k;ile) e-leg

—sin(kd) cogke) sin/2) | —sin(¥50) cog(*310)

We now introduce the quantities

Aty

b d- AT?01)(AThy)
2 9

- (L= a2y

= cotal 0 =tan ko
5= (z)’ V= (?)‘

The trace and the determinant of the propagétgr can then be written as

(@a+ bt —2)y?+ (@t —byy +2

tracg Ace) = 1592 (B.1)
_(l-a-bHy?+ @ —-by+1
det(Ace) = 15 y2 . (B.2)
The discriminant of the characteristic equation Ak is then
2
trace Acp)? — 4 - det(Acg) = (a1¥? + a2y + ), (B.3)

(1+y?)?

where

a1 = (@+bg)? >0,

o2

o3

2at(a+b) — 8(a¢ + b) — 2b(a + bé),
(a€ +b)? + 8(a+ bg) — 16.

Resonance occurs for values ¥ffor which the quadratic function in (B.3) is posi-
tive; since the dominant coefficient is positive, the function is positive when —oco or

Y — 400, or when

This is equivalent to

ko T
— =& (2 1)—.
5 (m+)2

Teff
kAT ~ (2m + 1)%.

Note that, since both plus and minus infinity give resonance, the spikes will be cent
around odd multiples of the effective half period.
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For kAt ~mTef we havey ~ 0 and resonance appears if and onlydf> 0. But for
At < TF one hagag +b)? = O(A1?), a= O(AT?), bE = —Az/A1 + O(AT), andaz <0
follows.

To analyze the amplitudes of the resonant spikes for Constant Extrapolation, we de

. trace Ace) + +/trace Acg)? — 4 det Acp)
12 = .
: 2

Near resonanceg; — oo, implying
r — —1, r,— —1+a+ bé,

with both limits independent & This explains the remarkable fact that the spike amplitude
are independent of k for extrapolation methotlse smallest (in absolute value) eigenvalu
has a “peak” at-1, which is in excellent agreement with the numerical results of Barth a
Schlick [15, 11]. The largest (in absolute value) eigenvalue has peaks at

AT 1— At 6
ro]=14+ ———+ AtAy cotan — |.
2 \/,\1(1— AT /4) 2

For the limit caseAtr — 0 we have

Az - cotan( 2) = Az - cotan “TAT 2 2
T- — | =AT - N K —,
2 2 oS

A2
rl~1+2—.
Iral + )\1

and hence

The (nonresonant) peak value of the spectral radiusgfcan be estimated roughly as

raf +Ir A
Iral |2|%1+72

p(Ace) ~ > o

This confirms the empirical relations of Barth and Schlick [15, 11] for the magnitude of |
instability.

The nonresonance value fok T = mT£" can be readily obtained by noticing thiat= 0in
this case. Hence deitg) = 1, tracg Acg) = 2, andr; =r, = 1. This resultis also confirmed
by numerical experiments.

As for the asymptotic interpretation, for small inner timestaps— 0, any discretization
using Constant Extrapolation approximately solves the system

X
v

_ \Y;
T A X — ApXO

for 0<t <kAt with X(0) = X°, V(0) = V°. This system has the analytic solution

0

VO

X(kA7T)

__pQ
V(kAT) = ACE(kA‘C, A1, A2)
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with
1_,_& C—-%2 _Lg
AZe(KAT, Aq, hg) = Gri)e-3
-Vii(1+#2)s C
1
where

S=sin(v/A1kAT),  C= cog\/A1kAT). (B.4)

For determining the eigenvalues, we calculate

trace Adg) = < )C - =

A

det(ALe) =1+ 721 -C)
trace{ Anp)” — 4 det( Ag) = 4s 'rﬁ(\/—kAT>{x2 4<l+ )C oa ﬁ<\/_2kAT>}

From here we see that the spectrum is real (which implies resonance) for

AkA
tar(?) ~ O’

i.e., for outer timesteps approximately equal to odd multiples of the fast half period,

kAt~ (@2m+1)—=02m+ 1)

f

For these values of the outer timesteé}§: has two real eigenvalues, namell and
—1— 2x,/X1. These eigenvalues do not dependkar, as noticed previously.

APPENDIX C: LINEAR RESONANCE FOR MIDPOINT EXTRAPOLATION

A derivation similar to the Constant Extrapolation case is possible; here we only pre:
the asymptotic approximation. For small inner timestaps— 0, one Midpoint Extrapo-
lation step approximates the solution of the system

X

_ Vv
V|~ | A X = A XE

for0<t <kAt with X(0) = X% V(0) =V?°, XE = X%+ (kA7/2)V°. This system has the
analytic solution
X(kAT) 0

_ A2
V(kAf) - AME(kA‘Cv )"17 )"2)
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with

1+2)C-% Ls-Kika_cC
AGe(KAT, A1, X)) = ( Al) o ( : ,

—VAi(1+42)s C— K3t Jes

where we use® andC as defined in (B.4). For determining the eigenvalues, we calcul:

)\.2 kAT )\2
tracq A2 2 C—-——-———5,
o Ale) = ( +A1> A1 2 Jn
KAT Ao
det(A2_) =1 1-C)— ——5,
t( Ave) + ( ) 2 Jn

trace( Ay )2 — 4det( A}, )

JAKAT Ao KPAT?A3 JAKAT
= 4sirf g1y te KOATRE) g (VRkar
( 2 xg T 1e, )0 2

s (o 3o |

For outer timesteps near odd multiples of the fast half period

kArm(2m+1—ﬁ)jr=(2m+1—ﬁ)T21,
1

whereg is a small nonnegative number, it holds that

»,/)leA‘L' ﬂﬂ'
cotan —— | ~ —,
r< 2 2

and the spectrum is real. The two eigenvalues are (to first org@ril + kAt /A1 87 /2
and—1 — 2xo/A1 — KAT(1 — Ao/A1)/A1B7/2; this implies that the instability grows lin-
early with increasing outer timestep.

APPENDIX D: SYMPLECTIC HYBRID IMPULSE/EXTRAPOLATION METHODS

Consider the system

\%

X
M B [—M1VES<X>— M1VEF(X)}’

whereEs(X), EF(X) denote the potential energies associated with the slow and the
forces, respectively.
Split the system into its slow and fast components

X . 0 V
M N LM*V&(XJ * LM*V&(XJ

and apply Velocity Verlet to each of the above subsystems, in Strang order wittkéteps
andr, respectively. This means that one také&s\a /2 step for the slow subsystekisteps
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with the stepsizeAt for the fast subsystem, and finally anottkext /2 step for the slow
subsystem. The resulting method is Impulse Verlet.

We now add and subtract an “extrapolation potenti(X), which can be thought of as
a computationally cheap approximationEg(X) [13]. This gives the splitting

X 0 v
[v] - [—M1VES(X)+ M1VA(X)] + [—M1VEF(X) ~MWVAX) |

Both the slow and the fast subsystems are Hamiltonian, with their respective Hamilto
functions

Hs= Eg(X) — A(X), He =2VTMV + Eg(X) + A(X).

Approximating the original system by a half-step integration of the slow part, followed
a full step integration of the fast part, and again a half-step integration of the slow part
composition of symplectic flows; hence it is symplectic. Moreover, this approximates
original flow to second order because of the symmetry of the composition.

The simplest choice is a linear extrapolation potential, which gives rise to a cons
extrapolation force, wher&(X) =T X, VA(X) = €.

APPENDIX E: LINEAR RESONANCE FOR EXTRAPOLATION/CORRECTION

Let

AT KA in(k
9=arccos<l— ! 1), L=— TAZ Sintkd) .
2 2 (- A /a)

Using the notation introduced above and definmignplicitly,

f=— KATA v . kpy
- Az g 1Hve 14y®

we have

(@+ bt —2)y? + (@& —b+kpy +2
1+y? ’

(1—-a—b&)y?+ @ —b+kpy +1

1+ y?2 '

tracq AE/CV) = tracgAcg) + ¢ =

det(Ag,cv) = det(Acp) + ¢ =

The discriminant of the characteristic equation faf,cv is then

2

trace Ace)? — 4- det( Ace) = Gf—wz)z(&lwz T Go¥ + @), (E1)
a1 = (@a+bg)?>0
ap = 2at(a+b) — 8(a& + b) — 2b(a + bs) + 2kp(a+ bs — 2)

(at 4+ b)? + 8(a + bg) — 16+ k?p? + 2kp(ag — b).

D>
w
I
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An argument similar to that used for Constant Extrapolation produces the reson:
condition

Teff
kAT ~ (2m + 1)% )

Again the spikes are centered around odd multiples of the effective half period.

For kAt ~mTef we havey ~ 0 and resonance appears if and onlg4f>"0. Unlike
Constant Extrapolation, this situation is possible for large valuds @he resonance at
kAt ~mTef is then part of either them — 1/2) T resonant spike or them + 1/2) T ¢ff
one.

To estimate the amplitude of the resonant Extrapolation/Correction spikes, we rer
that the analysis is complicated by tkalependency of the coefficients of the quadrati
function in (E.1), unlike in Constant Extrapolation. A rough estimate can be obtainec
follows. Letky, ko, ... be an increasing sequencekds for which the corresponding’s
are uniformly boundediy | < M, whereM is large but finite. It can be shown that the
peaks of the resonant spike for a lalgeare approximatelk; p/M in height; in other
words, we expect an almost linear increase in the amplitude of the spikes. This is sir
to Impulse Verlet and in sharp contrast to Constant Extrapolation (where the spike he
are constant).

Consider novk values satisfying

It can be easily shown that for these outer si&pg:v has a pair of complex conjugate (non-
resonant) eigenvalues, of modulus increasingHkigg4; this result is confirmed by the nu-
merical tests. For the asymptotic interpretationdet cos\/A1KAT), S= sin(s/A1KAT).

In analogy to the asymptotic behavior of Constant Extrapolation, we obtain

AR cv(KAT, A1, h2) = (I + Eg/cev (AT, A2, K) AZe(KAT, A1, A2) — Eg/cv (AT, A2, K)
A A 1
(1+ ﬁ)c k2 Ls
KA kATA2 K
kavy Kot (Jx_l+ %)s C- Krkzg
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