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Abstract. To e�ciently implement the truncated-Newton (TN) optimization method for large-
scale, highly nonlinear functions in chemistry, an unconventional modi�ed Cholesky (UMC) factor-
ization is proposed to avoid large modi�cations to a problem-derived preconditioner, used in the
inner loop in approximating the TN search vector at each step. The main motivation is to re-
duce the computational time of the overall method: large changes in standard modi�ed Cholesky
factorizations are found to increase the number of total iterations, as well as computational time,
signi�cantly. Since the UMC may generate an inde�nite, rather than a positive de�nite, e�ective
preconditioner, we prove that directions of descent still result. Hence, convergence to a local mini-
mum can be shown, as in classic TN methods, for our UMC-based algorithm. Our incorporation of
the UMC also requires changes in the TN inner loop regarding the negative-curvature test (which
we replace by a descent direction test) and the choice of exit directions. Numerical experiments
demonstrate that the unconventional use of an inde�nite preconditioner works much better than
the minimizer without preconditioning or other minimizers available in the molecular mechanics and
dynamics package CHARMM. Good performance of the resulting TN method for large potential
energy problems is also shown with respect to the limited-memory BFGS method, tested both with
and without preconditioning.
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1. Introduction. Optimization of highly nonlinear objective functions is an im-
portant task in biomolecular simulations. In these chemical applications, the energy
of a large molecular system|such as a protein or a nucleic acid, often surrounded by
water molecules|must be minimized to �nd a favorable con�guration of the atoms
in space. Finding this geometry is a prerequisite to further studies with molecular
dynamics simulations or global optimization procedures, for example. An important
feature of the potential energy function is its ill conditioning; function evaluations are
also expensive, and the Hessian is typically dense. Moreover, a minimum-energy con-
�guration corresponds to a fairly accurate local optimum. Since thousands of atoms
are involved as independent variables and, often, the starting coordinates may be
far away from a local minimum, this optimization task is formidable and is attract-
ing an increasing number of numerical analysts in this quest, especially for global
optimization (see [17, 18], for example).

The practical requirements that chemists and biophysicists face are somewhat dif-
ferent from those of the typical numerical analyst who develops a new algorithm. The
computational chemists seek reliable algorithms that produce answers quickly, with as
little tinkering of parameters and options as possible. Thus, theoretical performance
is not as important as practical behavior, and CPU time is of the utmost importance.
A prominent example is the current preference in the biomolecular community for
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Ewald summation techniques (for periodic systems) over fast-multipole approaches
for evaluating the long-range forces in molecular simulations; the latter have smaller
complexity in theory (O(n), where n is the system size, rather than the O(n logn)
associated with Ewald), but the Ewald procedure is easy to program and very fast in
practice for a range of molecular sizes.

The present paper focuses on implementation details of a truncated-Newton (TN)
method that are important in practice for performance e�ciency in large-scale poten-
tial energy minimization problems. The algorithmic variations we discuss are moti-
vated by optimization theory but depart from standard notions (e.g., of a positive-
de�nite preconditioner) for the sake of e�ciency. Algorithmic stability and conver-
gence properties are still retained in theory as in the traditional approach, but per-
formance in practice is enhanced by the proposed modi�cations.

Our interest in such chemistry applications �rst led to the development of a
TN method adapted to potential-energy functions [25]. Our TN package, TNPACK
[23, 24], was then adapted [5] for the widely used molecular mechanics and dynamics
program CHARMM [1].

In TN methods, the classic Newton equation at step k,

H(Xk)P = �g(Xk);(1)

where g and H are the gradient and Hessian, respectively, of the objective function
E at Xk, is solved iteratively and approximately for the search vector P [4]. The
linear conjugate gradient (CG) method is a suitable choice for this solution process
for large-scale problems, and preconditioning is necessary to accelerate convergence.
A main ingredient of TNPACK is the use of an application-tailored preconditioner
Mk. This matrix is a sparse approximation to Hk � H(Xk), formulated at each outer
minimization step k. The preconditioner in chemical applications is constructed nat-
urally from the local chemical interactions: bond length, bond angle, and torsional
potentials [25]. These terms often contain the elements of largest magnitude and lead
to a sparse matrix structure which remains constant (in topology) throughout the
minimization process [5]. Since Mk may not be positive-de�nite, our initial imple-
mentation applied the modi�ed Cholesky (MC) factorization of Gill and Murray [7]
to solve the linear system Mkz = r at each step of PCG (preconditioned CG). Thus,

an e�ective positive-de�nite preconditioner,gMk, results.
Why is a TN scheme a competitive approach? First, analytic second-derivative

information is available in most molecular modeling packages and should be used to
improve minimization performance. That is, curvature information can guide the
search better toward low-energy regions. Second, the basic idea of not solving the
Newton equations exactly for the search vector when far away from a minimum re-
gion saves unnecessary work and accelerates the path toward a solution. Third, the
iterative TN scheme can be tailored to the application in many ways: handling of
the truncated inner loop, application of a preconditioner, incorporating desired accu-
racy, and so on. These implementation details are crucial to realized performance in
practice.

In our previous studies, we have discussed alternative minimization approaches
to TN [5, 23, 24, 25]. We showed that modi�ed Newton methods are computationally
too expensive to be feasible for large systems [23, 24, 25] since the large Hessian
of potential energy function is dense and highly inde�nite. Nonlinear CG methods
can take excessively long times to reach a solution [5]; this is not only because of
the known properties of these methods but also due to the expense of evaluating
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the objective function at each step, a cost that dominates the CPU time [15]. A
competitive approach to TN, however, is the limited-memory BFGS algorithm (LM-
BFGS) [11], which also uses curvature information to guide the search. A study by
Nash and Nocedal [15] comparing the performance of a discrete TN method1 to LM-
BFGS found both schemes to be e�ective for large-scale nonlinear problems. They
suggested that the former performs better for nearly quadratic functions and also
may perform poorly on problems associated with ill-conditioned Hessians. However,
as Nash and Nocedal point out, since TN almost always requires fewer iterations than
LM-BFGS, TN would be more competitive if the work performed in the inner loop
were reduced as much as possible. This is the subject of this article.

Our experiences to date in chemical applications for medium-size problems suggest
that the CPU time of the TN approach can be smaller than LM-BFGS since the total
number of function evaluations is reduced. Examples shown in the present work, for
larger problems as well, reinforce this. Surely, both methods can be e�cient tools
for large-scale optimization, and superiority of one scheme over another cannot be
claimed.

In this paper, we focus on an important aspect of the TN method that a�ects its
performance profoundly: the formulation and handling of the preconditioner in the
inner PCG loop that is used to approximate the search vector at each step of the
method. The use of a standard modi�ed Cholesky factorization applied to physically
constructed preconditioner leads to excessively large modi�cations, which in turn
means many function evaluations and thus a large total CPU time for the minimization
method. Pivoting strategies [6, 8] can reduce the size of the modi�cations but not
necessarily the problem condition number, and thus are not a clear solution. The
problem we address here is thus a general one, associated with other modi�ed Cholesky
factorization methods [3, 6, 7, 8, 26]: how to handle large modi�cations to matrices
that are far from positive de�nite. However, we address this problem only for the TN
minimization context, where the solution of such a linear system is not as important
as progress in the overall minimization method.

In chemistry problems, a large negative eigenvalue often corresponds to a transi-
tion or saddle point. We argue that in our special context (large-scale computational
chemical problems and TN), a standard MC factorization is inappropriate. Rather, it
is su�cient to require only that the preconditioner be nonsingular and often positive-
de�nite near a minimum point. This leads to development of our simple unconven-
tional modi�ed Cholesky (UMC) factorization.

We present details of the resulting TN algorithm along with many practical ex-
amples that illustrate how the use of an inde�nite preconditioner outperforms other
variants (e.g., no preconditioning, positive-de�nite preconditioning) in the TN frame-
work. We detail analysis that shows that the directions produced are still descent
directions, and thus the global convergence of the method (to a local minimum) can
be proven in the same way as for the \classic" TN scheme [4]. We also o�er compar-
isons with LM-BFGS that suggest the better performance of TN for large potential
energy problems.

The remainder of the paper is organized as follows. In the next section, we sum-
marize the structure of a general descent method and describe the new PCG inner
loop we develop for the TN method. In section 3 we present the UMC designed for our
applications. In section 4, we present numerical experiments that demonstrate the
overall performance of the modi�ed TNPACK minimizer, along with a comparison to

1 The discrete TN method computes Hessian and vector products by �nite di�erences of gradients.
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LM-BFGS and other minimizers available in CHARMM (a nonlinear CG and a New-
ton method). Conclusions are summarized in section 5. For completeness, analyses
for the PCG inner loop of TN are presented in Appendix A, and the full algorithm of
the TN method is described in Appendix B. The modi�ed package is also described
in [28].

2. Descent methods and the truncated Newton approach. We assume
that a real-valued function E(X) is twice continuously di�erentiable in an open set D
of the n-dimensional vector space Rn. Descent methods for �nding a local minimum
of E from a given starting point generate a sequence fXkg in the form

Xk+1 = Xk + �kP
k;(2)

where the search direction P k satis�es

g(Xk)TP k < 0:(3)

(The superscript T denotes a vector or matrix transpose.) Equation (3) de�nes the
descent direction P k which yields function reduction. The steplength �k in (2) is
chosen to guarantee su�cient decrease, e.g., such that [12]

E(Xk + �kP
k) � E(Xk) + ��kg(X

k)TP k(4)

and

jg(Xk + �kP
k)TP kj � �jg(Xk)TP kj;(5)

where � and � are given constants satisfying 0 < � < � < 1.
Condition (5) is referred to as the strong Wolfe condition. A steplength �k satis-

fying (5) must satisfy the usual Wolfe condition:

g(Xk + �kP
k)TP k � �g(Xk)TP k:

According to the line search algorithm of Mor�e and Thuente [12] (used in TNPACK),
such a steplength �k is guaranteed to be found in a �nite number of iterations. Hence,
according to the basic theory of descent methods [10], a descent method de�ned in
the form (2) guarantees that

lim
k!1

g(Xk) = 0:

The challenge in developing an e�cient descent method is balancing the cost of con-
structing of a descent direction P k with performance realized in practice.

To reduce the work cost of the classic modi�ed Newton method and develop a
globally convergent descent algorithm, Dembo and Steihaug proposed a clever vari-
ation known as the truncated-Newton method [4]. Since then, several variants have
been developed and applied in various contexts; see, e.g., [13, 14, 15, 23, 25, 29]. The
linear PCG framework is the most convenient generator of descent directions in the
inner TN loop due to its e�ciency and economic storage requirements for solving
large positive-de�nite linear systems. Since the PCG method may fail at some step
when the matrix Hk is inde�nite, a termination strategy is required to guarantee that
the resulting search directions are still descent directions. In addition, the PCG inner
loop of the TN method can be made more e�ective by employing a truncation test.
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We present our PCG inner loop of the TN scheme in Algorithm 1. The changes
with respect to a \standard" PCG inner loop include allowing an inde�nite precon-
ditioner, the UMC factorization (discussed in the next section), and a new descent
direction test.

Algorithm 1 (PCG inner loop k of TN for solving Hkp = �gk with a
given preconditioner Mk).

Let pj represent the jth PCG iterate, dj the direction vector, and rj the residual
vector satisfying rj = �gk � Hkpj . Let ITPCG denote the maximum number of
allowable PCG iterations at each inner loop.

Set p1 = 0, r1 = �gk, and d1 = z1, where z1 solves a system related to Mkz1 =
�gk by UMC.

For j = 1; 2; 3; : : :,

1. [Singularity test]
If either jrTj zj j � � or jdTj Hkdj j � � (e.g., � = 10�10);

exit PCG loop with search direction P k = pj (for j = 1, set P k = �gk).
2. Compute �j = rTj zj=d

T
j Hkdj and pj+1 = pj + �jdj :

3. [Descent direction test] (replaces negative curvature test)
If gTk pj+1 � gTk pj + �;
exit PCG loop with P k = pj (for j = 1, set P k = �gk).

4. Compute rj+1 = rj � �jHkdj :
5. [Truncation test]

If krj+1k � minfcr=k ; kgkkg�kgkk; or j + 1 > ITPCG;
exit PCG loop with P k = pj+1:
(By default, cr = 0:5 and ITPCG = 40).

6. Compute �j = rTj+1zj+1 = r
T
j zj ; and dj+1 = zj+1 + �jdj ,

where zj+1 solves a system related to Mkzj+1 = rj+1 by UMC.

Since the e�ective preconditionergMk generated by our UMC (see the next section)
and the Hessian matrix Hk may be inde�nite, it may happen that rTj zj or d

T
j Hkdj is

exactly zero for some j.(So far, we have not encountered this in practice). Hence, to
ensure that the PCG recursive formulas are well de�ned, the singularity test has been
added in step 1 above.

Our descent direction test (step 3) is equivalent in theory to the following negative
curvature test [4]: if dTj Hkdj < �dTj dj , halt the PCG loop with exit search direction

P k = �gk if j = 1 or pj if j > 1. We prove this equivalence in Theorem 3 of Appendix
A.

In practice, however, due to computer rounding errors, the negative curvature test
may not guarantee that the inner product gTk pj decreases monotonically as theory
predicts (see Theorem 2 in Appendix A). See also Box 1 for numerical examples.
The descent direction test in step 3 halts the PCG iterative process as soon as the
situation gTk pj+1 > gTk pj (or jgTk pj+1j < jgTk pj j) is encountered. We have observed
better performance in practice for large-scale problems with this modi�cation.

In the standard implementation of the negative curvature test in TN [4], P k can be
set to pj or dj for j > 1, both directions of descent. We have now removed the option in
step 3 of using the auxiliary directions dj as exit search vectors. We show in Theorem 1
of Appendix A that dj may be an ascent direction when the e�ective preconditioner
is inde�nite. Even in the standard implementation (i.e., positive-de�nite e�ective
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Box 1: Examples for the negative curvature test

in �nite precision arithmetic.

We consider the negative curvature test implemented in TN as originally described
[4] for minimizing the alanine dipeptide potential function (22 atoms, 66 Cartesian
variables). For simplicity, we do not use a preconditioner (i.e., Mk is the identity
matrix); results thus re
ect the case of using a positive-de�nite preconditioner.
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The left �gure shows that some dj are ascent directions even if dTj Hkdj > 0. This

is possible because the basic relation fgTk rjg = 0 (see (13) in Appendix A) may
deteriorate due to computer rounding errors. Namely, the inner product gTk rj may
become positive, and thus dj may be an ascent direction because gTk dj = gTk rj +
�j�1g

T
k dj�1.

The right �gure shows that the inner product gTk pj does not necessarily decrease
monotonically due to computer rounding errors. This can be understood since if
dj is an ascent direction for some j but not a direction of negative curvature (i.e.,
dTj Hkdj > 0), then we have �j > 0 and gTk dj > 0, so that gTk pj+1 = gTk pj +�jg

T
k dj �

gTk pj or g
T
k pj+1 > 0. Hence, the negative curvature test may not guarantee a descent

direction or even a \good" descent direction in some sense, as theory predicts for TN
in �nite precision arithmetic (see Theorem 2 in Appendix A).

preconditioner), we argue that pj is a better choice than dj according to Theorem 4
of Appendix A.

Although not used here, we leave the option of using the negative curvature test
(with the dj choice removed) in the general TNPACK package; see the full algorithm
in Appendix B.

3. The UMC method. We discuss our motivation for developing the UMC in
section 3.1 and describe the factorization in section 3.2.

3.1. Motivation. Recall that our major goal is to reduce the computational ef-
fort in the inner loop of the TN method. Therefore, we choose a preconditioner that is
sparse (sparsity less than 5% for medium-size molecules) and rapid to compute. The
factorization of the linear system involving M is handled e�ciently within the frame-
work of the Yale Sparse Matrix Package (YSMP) [19, 20]. YSMP routines use special
pointer arrays to record data positions and manipulate only the nonzero elements. Ef-
�ciency is further enhanced by reorderingM at the onset of the minimization method
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Table 1

The CPU time distribution (%) among TNPACK components

E; g, & H M Solve Hd Other
Protein evals. evals. Mz = r evals. tasks

BPTI 21 0.14 6.8 69 3.06
Lysozyme 22 0.08 2.5 74 1.42

to minimize �ll-in. This works because the structure of the preconditioner, or the
connectivity structure of our molecular system, remains constant. This reordering is
optional.

The main advantage of this sparsity-based factorization is e�ciency. As we show
in Table 1, the CPU percentage involved in solvingMz = r within YSMP is less than
7% and 3% of the total TN cost of minimization for the proteins bovine pancreatic
trypsin inhibitor, BPTI (568 atoms, 1704 Cartesian variables) and lysozyme (2030
atoms, 6090 variables), respectively. Since the Hessian H is dense and we evaluated
the Hessian and vector products Hd in PCG directly (i.e., not by �nite di�erences of
gradients [23]), this part consumes the majority of the CPU time: about 70%. The
�nite-di�erencing approximation of Hd may be more competitive for large systems.
In addition, function and derivative evaluations consume about 20% of the total CPU
time.

A disadvantage of our approach is the absence of pivoting strategies based on
numerical values of the matrix elements. Pivoting would increase the computational
time but possibly lead to a lower condition number for the modi�cation fM of M , and
a smaller error bound kEk1 in the MC process. Here E = fM �M is a nonnegative
diagonal matrix. Our experiences suggest that pivoting strategies in the context of
a standard MC are far less e�ective than our UMC in the TN context. Namely, our
numerical experiments demonstrate that the Gill-Murray-Wright MC (GMW MC)
with pivoting [8] can reduce the error bound kEk1 but far less signi�cantly the

condition number of fM (see Box 2). This is a consequence of our highly inde�nite
preconditioner near regions far away from a local minimum.

Our experiments studied three other MC algorithms: the partial Cholesky (PC)
factorization described by Forsgren, Gill & Murray [6], the Schnabel and Eskow (SE)
MC [26], and the Cheng and Higham (CH) MC [3] (see Box 2). As the authors
state, all methods can produce unacceptably large perturbations in special cases. In
our application, these large perturbations typically lead to poor performance when
the objective matrix M is highly inde�nite; a very large condition number or a very
large error bound kEk1 (much larger than the magnitude of the negative minimum
eigenvalue �min(M) of M) can result.

To see this analytically, recall that the GMW MC process modi�es a symmetric
n � n matrix M into a positive-de�nite matrix fM and factors it as fM = M + E =
LDLT , where L;D, and E are, respectively, unit lower-triangular, diagonal, and
diagonal n� n matrices. The elements ej = dj � dj of E are de�ned by

dj = mjj �
j�1X
k=1

ljkcjk and dj = max

�
jdj j; �; �

2

�2

�
;(6)

where cij = lijdj , � = maxj+1�i�n jcij j, and positive numbers � and � are introduced
to ensure the numerical stability (e.g., � = 10�9 and � = �=

p
n2 � 1, where � is the
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Box 2: Examples of Large modi�cations in MC methods

We experimented with four MC methods inMatlab for the symmetric 42�42 matrix
M constructed from the second partial derivatives of the butane potential energy
terms coming from bond length, bond angle, and torsional potentials [16]. M is
inde�nite with three negative eigenvalues: �5:718;�74:703; and �218:475, and the
condition number is 1:553� 103.
These four MCmethods are due to Gill, Murray, andWright (GMW) [8]; Schnabel and
Eskow (SE) [26]; Forsgren, Gill, and Murray [6], a partial Cholesky (PC) factorization;
and Cheng and Higham (CH) [3]. The Matlab M-�les for GMW, SE, and CH were
provided by Wright, Eskow, and Cheng, respectively. We used their default tolerance
�. In addition, we wrote corresponding �les for GMW without pivoting and for PC
according to [7] and [6]. Note that the error matrix E in PC and CH may not be
diagonal.

Modi�ed Cholesky fM fM Error
factorization condition number minimum eigenvalue kEk1

GMW 8:42� 106 1:70� 10�3 1:38� 104

GMW, no pivoting 1:78� 107 2:80� 10�2 5:13� 105

PC 6:79� 106 1:30� 10�3 4:59� 102

SE 3:09� 101 3:62� 102 2:33� 103

CH 7:28� 109 1:22� 10�6 7:86� 102

For reference, our UMC gives as a function of the control parameter � the following
results.

� of UMC fM condition number fM minimum eigenvalue kEk1
40 546.157 �874:032 40.0
120 198.716 �98:475 120.0
200 491.541 �18:475 200.0
240 423.753 21.524 240.0
280 148.903 61.524 280.0

largest magnitude of an element of M . From (6) we see that an element ej of E has
the following expression

ej = dj � dj =

8><
>:

� � dj when � � maxfjdj j; �2�2 g;
�2

�2 � dj when �2

�2 � maxfjdj j; �g;
jdj j � �dj when jdj j � maxf �2�2 ; �g:

(7)

For a negative dj , ej may thus be 2jdj j or �2

�2 + jdj j. If dj is a large negative number or
�2

�2 a large positive number, kEk1 may be much larger than the value of j�min(M)j.
The second author has studied performance of the GMW [8] versus the SE MC

[26] for di�cult computational chemistry problems in the context of TN [22]. That
study showed that no factorization is clearly superior to another. We have retained
the former in TNPACK since it is simple to implement in the context of YSMP. The
CH MC [3] is another possibility worth examining in our context since it is easily
implemented in existing software. Still, Box 2 suggests that all MC algorithms may
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Table 2

Performance of TNPACK based on the GMW MC with pivoting (GMWP) and without pivoting
(GMW) and our UMC with � = 10

Butane (42 variables)
MC Final E Final kgk Outer (Inner) Iter. E & g Evals CPU Time

GMWP 4.7531 3:57� 10�10 35 (1329) 44 6.3 sec.
GMW 3.9039 2:07� 10�8 52 (78) 93 0.28
UMC 3.9039 1:12� 10�8 21 (62) 26 0.17

Alanine dipeptide (66 variables)
GMWP �15:245 1:45� 10�8 31 (5641) 39 78
GMW �15:245 1:85� 10�11 6387 (7108) 15801 44
UMC �15:245 3:65� 10�9 27 (186) 39 1.3

exhibit poor performance for a highly inde�nite matrix M .
In our TN applications, while we �nd that pivoting strategies can improve the

performance of MC and even reduce the total number of outer (Newton) iterations,
the total number of inner (PCG) iterations may increase signi�cantly. This may result
from the large modi�cation made to M . Consequently, the CPU time of TN is large
even when pivoting is used in standard MC schemes. See Table 2 for examples on two
small molecular systems. Note that pivoting strategies (for example, Bunch-Kaufman
[2] and that used in [3]) require at least O(n) comparisons as well as substantial data
movement.

The objective of allowing an inde�nite preconditioner in the context of TN is to
produce an e�cient preconditioner for the inner loop, that is, one that leads to the
smallest number of PCG iterations. The original inde�nite Mk is a good approxi-
mation to Hk, so we do not want to make excessively large (and perhaps arti�cial)
perturbations, as often required by standard MC methods we have experimented with.
Since the PCG with an inde�nite preconditioner can still generate directions of de-
scent (Theorem 2 of Appendix A), using the UMC to solve the linear system involving
Mk in the context of YSMP is one feasible e�cient strategy.

In formulating the UMC, we were also guided by the observation that the Hessian
matrix itself in our applications is often positive-de�nite near a solution (minimum
energy). This suggested to us to construct preconditioners that also exhibit this
trend. This can be accomplished by adding a constant matrix �I to Mk, where �
is a problem-size independent small positive number found by experimentation (e.g.,
� = 10).

Intuitively, the UMC can be interpreted as follows. When � > j�min(Mk)j, Mk+
�I is positive-de�nite and has the standard (stable) LDLT factorization. To ensure a
numerically stable factorization when Mk + �I is inde�nite, we modify it further by
adding a diagonal matrix as in GMW, so as to impose an upper bound on the factors
L and D. The di�erence in our treatment from the standard GMW MC is that our
diagonal candidates can be negative (the third situation in eq. (9) below), and thus the
resulting UMC matrix may still be inde�nite. Certainly, other procedures for solving
linear systems involving inde�nite matrices exist, but the simple UMC strategy above
is most easily incorporated into our current software and is found to work well.

3.2. The UMC factorization. Our UMC e�ectively applies a standard LDLT

factorization for matrix M + �I for a given nonnegative number � . The simple ap-
proach of adding a multiple of the identity matrix to the inde�nite matrix has been
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discussed in Dennis and Schnabel [10]; however, the scalar � is chosen to make fM
safely positive de�nite on the basis of a diagonal dominance estimate and thus can be
much larger than necessary. Our approach e�ectively sets � to be a small nonnegative
number like 10 (through numerical experiments) that ensures that Mk+�I is positive
de�nite at the �nal steps of the TN minimization process. At other steps, Mk + �I
may be inde�nite, but the modi�cation to the original M is relatively small, and this
produces faster convergence overall.

Since M + �I may not be positive de�nite, a similar strategy to the standard
GMW strategy [7] (i.e., the use of two bound parameters � and � in (8) and the
dependence of the entries dj of the factor D on the elements of M as shown in
(9)) is employed in UMC to guarantee numerical stability. The following scheme
describes our numerically stable process for factoring a symmetric matrix M with
small perturbations, with the resultant matrix not necessarily positive de�nite.

In the jth step of the UMC factorization, suppose that the �rst j � 1 columns
have been computed, and satisfy

jdkj > �; and jlik j
p
jdkj � �; i > k;(8)

for k = 1; 2; : : : ; j�1. Here � is a small positive number used to avoid numerical di�-
culties when jdkj is too small, and � is a positive number satisfying �2 = �=

p
n(n� 1),

where � is the largest magnitude of an element of M .
We de�ne

dj = mjj �
j�1X
k=1

ljkcjk and � = max
j+1�i�n

jcij j;

where cij = lijdj is computed by using

cij = mij �
j�1X
k=1

ljkcik; i = j + 1; : : : ; n:

We then set edj = dj + � , and de�ne

dj =

8><
>:

maxf edj ; �2�2 g when edj > �;

� when j edj j � �;

minf edj ;� �2

�2 g when edj < ��;
(9)

where � and � are given in (8). Note that the above dj is negative when the third
possibility in (9) occurs, resulting in an inde�nite matrix.

This de�nition of dj implies by induction that the relation (8) holds for all k =
1; 2; : : : ; n, and hence the factorization is numerically stable.

The e�ective fM produced by our UMC satis�es

fM = LDLT =M +E;

where E is a diagonal matrix. In particular, fM becomes positive de�nite with E = �I
if � > j�min(M)j; otherwise, the jth element ej of E can be expressed in the form

ej = dj � dj =

8>>>><
>>>>:

� when jdj + � j > maxf�; �2�2 g;
� � dj when � � maxfjdj + � j; �2�2 g;
�2

�2 � dj when �2

�2 � dj + � > �;

� �2

�2 � dj when � � > dj + � > � �2

�2 ;

(10)
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for j = 1; 2; : : : ; n. By arguments similar to those used in [7], it can be shown that

jej j � �2

�2
+ jdj j+ � + �;

along with jdj j < 
 + (n� 1)�2 and � � � + (n� 1)�2, where


 = max
1�i�n

jmiij and � = max
1�j�n

max
j+1�i�n

jmij j:

Therefore, a worst-case bound of kEk1 is obtained:

kEk1 �
�
�

�
+ (n� 1)�

�2
+ 
 + (n� 1)�2 + � + �(11)

for a � satisfying � � j�min(M)j.
If we denote the above upper bound of kEk1 as a function �(�), it can be shown

that �(�) has a minimum at �2 = �=
p
n(n� 1), an a priori choice of � in our UMC

method.
The upper bound of kEk1 in (11) is similar to that for GMW [7]. Hence, like the

GMW factorization, our UMC can lead to large perturbations when � � j�min(M)j.
In our numerical experiments, we rarely observe this; instead, we often have kEk1 = �
even when � � j�min(M)j (see Figure 4, for example). Note that a large � satisfying
� > j�min(M)j reduces UMC to the standard Cholesky factorization.

To avoid perturbing a positive-de�nite matrix, our algorithm can be divided into
two phases (in the spirit of the SE MC [26]). We �rst apply the standard LDLT

factorization to matrix M , stopping at the �rst occasion that a diagonal element dj
of D becomes negative or very small. We then switch to the second phase, where the
modi�ed matrix M + �I is applied.

The performance of our UMC on the 42 � 42 inde�nite matrix M is shown in
Box 2, following results of other factorizations. Clearly, as � increases, fM approaches
positive de�niteness. This is accompanied by a monotonic reduction of the condition
number of fM . The error bound kEk1 is equal to � .

4. Numerical results. We consider four molecular systems for our tests: bu-
tane, alanine dipeptide, BPTI, and lysozyme. Butane is a small, 14-atom hydrocar-
bon molecule with the chemical formula C4H10. Alanine dipeptide, a blocked alanine
residue, consists of 22 atoms. The 58-residue protein BPTI has 568 atoms and thus
1704 Cartesian variables. It is considered \small" by computational chemists. The
larger protein lysozyme has 130 residues, 2030 atoms, and 6090 variables.

All computations were performed in double precision in serial mode on an SGI
Power Challenge L computer with R10000 processors of speed 195 MHz at New York
University. Parameter �les were used from CHARMM version 19, but the TNPACK
code was implemented into CHARMM version 23 with default TNPACK parameters
of [23], unless otherwise stated. These parameters are also listed in the TN algorithm
of the appendix. No cuto�s were used for the nonbonded interactions of the potential
energy function, and a distance-dependent dielectric function was used. The vector
norm k � k in all tables and �gures is the standard Euclidean norm divided by

p
n,

where n is the number of independent variables of a potential energy function. The
inner loop of TN is followed as outlined in Algorithm 1, with � = 10 and ITPCG = 40
unless otherwise stated.



12 DEXUAN. XIE AND TAMAR. SCHLICK

0 100 200 300 400 500 600 700
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 Number of Iterations (k)

 G
ra

di
en

t N
or

m
 ||

 g
(X

k ) 
||

  τ = 0

 τ = 10

 no preconditioning

0 10 20 30 40 50 60
10

−10

10
−5

10
0

10
5

 Number of Iterations (k)

 G
ra

di
en

t N
or

m
 ||

 g
(X

k ) 
||

 TN with GMW MC TN with UMC

Fig. 1. TN based on PCG with an inde�nite
preconditioner performs much better than without
preconditioning (even when � = 0 in UMC) for
the minimization of the BPTI potential function.

Fig. 2. The gradient norms generated by TN
based on GMW MC vs. UMC for butane mini-
mization. Here circular markers indicate values
at the last few steps.
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Fig. 3. The minimum eigenvalue of fMkg
resulting from GMW MC vs. UMC for the mini-
mization of a butane molecular system. Circular

marks indicate that the modi�ed matrices ffMkg
are positive-de�nite. For k = 9, Mk is also posi-
tive de�nite for UMC.

Fig. 4. The error norms fkEkk1g (Ek =fMk �Mk) generated by GMW MC vs. UMC for
butane minimization. With � = 10 for our UMC,
kEkk1 = 10 for all k except the three points in-
dicated by circles.

4.1. No preconditioning vs. inde�nite preconditioning. Figure 1 shows
that our TN based on UMC uses far fewer outer iterations than the minimizer without
preconditioning for BPTI. We experimented with both � = 0 and also � = 10 for the
UMC. Since all fMkg were inde�nite throughout the TN process, the preconditionergMk used by TN was inde�nite.

Even better, the total CPU time is much smaller for the inde�nite preconditioner
version. Namely, the inde�nite preconditioner variant required only 8 minutes (for 92
TN iterations and a total of 2390 inner PCG iterations) to �nd a local minimizer. In
contrast, without preconditioning, 80 minutes were required for 687 TN iterations and
27347 CG iterations. This behavior is typical for the molecular systems examined.
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Table 3

Performance of TNPACK on BPTI based on PCG with an inde�nite preconditioner at di�er-
ent values of ITPCG, the maximum number of allowable PCG iterations at each inner loop. For
ITPCG = 300, the truncation test was used throughout the TN process

ITPCG Final Final TN outer Total PCG CPU time (min.)

energy kgk loops iterations Total PCG

2 �2780:47 5:9� 10�4 1402 2801 27.24 9.81

5 �2769:33 6:8� 10�5 233 1139 6.54 3.49

10 �2755:07 5:7� 10�5 92 778 3.65 2.31

20 �2756:40 3:2� 10�5 73 1114 4.32 3.24

40 �2769:25 2:1� 10�5 71 1456 5.13 4.07

120 �2769:25 1:4� 10�6 72 2221 7.32 6.25

200 �2775:14 1:0� 10�6 143 4640 15.26 13.13

250 �2775:14 1:3� 10�6 151 5937 18.86 16.62

300 �2775:14 3:8� 10�6 150 6049 18.96 16.74

4.2. Standard MC vs. our UMC. We next compare the performance of
TNPACK based on GMW without pivoting [7] and our UMC for butane minimiza-
tion. Pivoting in GMW was discussed in section 3.1; see Table 2. E�ciency argues for
sparsity-based factorization in our context. We further compare our UMC vs. GMW
in Figures 2, 3, and 4 for the minimization of the butane potential function.

Figure 2 shows that TN based on the UMC strategy performs favorably in

terms of Newton iterations. It also requires less CPU time (0.17 vs. 0.28

sec.; see Table 2). Further, it has a quadratic convergence rate at the

last few iterations, as shown by the circles in the figure.

Figures 3 and 4 plot the minimum eigenvalues of fMkg and the values

of fkEkk1g, respectively, where Ek = gMk � Mk. The UMC leads to much

smaller modifications of fMkg than the standard MC. Since the minimum eigenvalue

of Mk is less than 10 for k � 12 (circles in Figure 3), our effective

preconditioner gMk is positive definite for k � 12 with kEkk1 = 10.

4.3. The importance of the maximum limit on PCG iterations. Table 3

illustrates how TN performs with different values of ITPCG (see Algorithm 1)

for BPTI minimization. With ITPCG = 300 (last row), the truncation test

(step 5 of Algorithm 1) was satisfied throughout TN process. These results

can also be visualized in Figures 5 and 6, which show the CPU time and the

total number of TN iterations as functions of ITPCG, respectively. The

evolution of the gradient norm from TN minimization, corresponding to ITPCG =
40 (leading to the fewest outer iterations) and 300, as a function of the

number of TN iterations, is shown in Figure 7. Note the quadratic convergence

in the last few steps.

There are several interesting observations from the data of Table 3.

As Figure 5 shows, an optimal value for ITPCG can be associated with the

smallest CPU time. Here, about 4 minutes resulted from ITPCG = 10, much

less than about 19 minutes required when ITPCG = 300.
Figure 6, however, shows that a somewhat larger value of ITPCG (namely

40) leads to a minimal value of the total number of TN iterations, 71. In

contrast, the ITPCG value for optimal CPU time (namely 10) is associated

with 92 TN iterations. For reference, a small value, ITPCG = 2, gives
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1402 TN iterations, and a very large ITPCG gives 150.

In terms of the final energy value obtained for the different variants,

we clearly see that several local minima are reached by varying the minimization

procedure (six different energy values noted for the nine runs). This multiple-minima

problem is beyond the scope of this work. However, we suggest that a larger

ITPCG value might be preferred over a lower one (within a small optimal

range) in an attempt to reach lower energy values.

Figures 5 and 6 also show that the range of ITPCG for which TN performs

better than the minimizer based on the truncation test alone is fairly large,

here between 10 to 120. Based on this observation and the point above regarding

larger ITPCG for smaller final energy values, we set ITPCG = 40 for the

numerical experiments presented below.
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Table 4

Comparison of TNPACK with two other CHARMM minimizers and LM-BFGS

Butane (42 variables)

Minimizer Iterations Final E Final kgk E & g evals. CPU time

TN 21 (62)� 3.904 1:1� 10�8 26 0.17 sec.

LM-BFGS 93 3.904 7:7� 10�7 101 0.14

LM-BFGS (P) 133 4.753 9:4� 10�7 148 0.33

ABNR 368 3.904 9:8� 10�8 368 0.32

CONJ 127 3.904 9:1� 10�7 307 0.17

Alanine dipeptide (66 variables)

TN 29 (210) �15:25 7:67� 10�11 44 1.12 sec.

LM-BFGS 711 �15:25 1:4� 10�6 740 1.39

LM-BFGS (P) 367 �15:25 1:3� 10�6 378 1.97

ABNR 16466 �15:25 9:9� 10�8 16467 7.47

CONJ 882 �15:25 9:83� 10�7 2507 2.34

BPTI (1704 variables)

TN 65 (1335) �2773:70 4:2� 10�6 240 5.21 min.

LM-BFGS 4486 �2792:96 6:3� 10�5 4622 12.61

LM-BFGS (P) 3929 �2792:92 5:9� 10�5 3946 64.2

ABNR 8329 �2792:96 8:9� 10�6 8330 25.17

CONJ 12469 �2792:93 9:9� 10�6 32661 97.8

Lysozyme (6090 variables)

TN 79 (1841) �4631:38 3:7� 10�6 244 1.54 hrs.

LM-BFGS 5546 �4617:21 1:4� 10�4 5711 4.26

LM-BFGS (P) 3331 �4620:27 1:6� 10�4 3374 12.92

ABNR 7637 �4605:94 9:9� 10�6 7638 6.11

CONJ 9231 �4628:36 9:9� 10�5 24064 19.63

* The number in parentheses is the total number of PCG iterations.
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Fig. 10. A comparison of gradient norms
generated by TNPACK, ABNR, CONJ, and LM-
BFGS for alanine dipeptide minimization.

Fig. 11. A comparison of gradient norms
generated by TNPACK, ABNR, CONJ, and LM-
BFGS for BPTI minimization.

4.4. Comparison to other minimization schemes. We now compare, in

Table 4, the minimization performance of TNPACK with two other CHARMM minimizers,

ABNR (an adopted basis Newton-Raphson method) and CONJ (a nonlinear conjugate

gradient method), as well as with LM-BFGS, with u = 5 stored updates [11].

For LM-BFGS we test no-preconditioning as well as preconditioning options.

The preconditioning strategy used for LM-BFGS was described by Schlick [21].

Briefly, the initial search vector in each sequence of LM-BFGS updates is

set as the solution pk to the system

Mkpk = �gk;(12)

where Mk is defined as before, so that Mk replaces the initial approximation

to the Hessian. To solve (12) in LM-BFGS we use the standard GMW MC. We

expect preconditioning in LM-BFGS to reduce the number of function evaluations

significantly, but this must be balanced with the added cost involved in

evaluating and factoring the preconditioner.

In all computations, we used the default parameters in CHARMM for the

minimizers. No cutoffs for the nonbonded terms were used to avoid formation

of artificial minima that result when the nonbonded terms are turned off

at some distance, even when this is done smoothly. We also used the same

convergence test (i.e., inequality (B3d) in the Appendix B with �g = 10�6)
for TNPACK, ABNR, CONJ, and LM-BFGS. Both TNPACK and ABNR can reach much

lower gradient norms than CONJ.

For butane and alanine dipeptide, all minimizers (except for one case:

LM-BFGS with preconditioning for butane2) find the same minimum value, while

for BPTI and lysozyme different minima are obtained. This is a consequence

of different paths taken toward a local minimum in each case. The results

in Table 4 show that TNPACK requires less CPU time than the other methods

2 For butane, the global minimum corresponds to an open chain con�guration (\trans-staggered"),
with the central dihedral angle ', de�ning the relative orientation of the four carbons, adopting the
value �180�; the higher-energy minimum corresponds to a more compact con�guration, with ' about
�65�.
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and reaches very low gradient norms. The results for LM-BFGS show how preconditioning

tends to reduce the total number of iterations but to increase the CPU time.

For the proteins, the CPU time of TNPACK is less than that of the best LM-BFGS

variant by a factor of 2 to 3.

In Figure 8 we illustrate the evolution of the gradient norm for BPTI

and lysozyme molecular systems for TNPACK, along with their energy decreases

in Figure 9.

In Figures. 10 and 11, we compare the gradient norm evolution for TNPACK,

ABNR, CONJ, and LM-BFGS (no preconditioning) for the dipeptide and BPTI.

For TNPACK, the ``iteration'' value in the abscissa corresponds to the accumulated

number of PCG iterations.

The relative importance of updating and preconditioning in LM-BFGS was

discussed in [21] by testing preconditioning with various numbers of stored

updates (i.e., u = 0; 1; 2; 3; 4; 5). It was found that the relative importance

of these factors in generating performance improvement depends on the initial

guess for the minimum---preconditioning is more important when the initial

guess is better. Our experiments here with different numbers of updates

for the LM-BFGS version without preconditioning revealed that u = 4 or

5 is optimal in terms of CPU time (data not shown); when preconditioning

is used, the optimal u tends to be lower (e.g., u = 2 or 3).

5. Conclusions. We have suggested the use of an indefinite rather than

a positive-definite preconditioner in the TN optimization method applied

to large-scale, highly nonlinear functions with problem-formulated preconditioners.

With the UMC applied to solve a linear system involving the preconditioner,

we guarantee that the resulting search vectors are directions of descent.

Thus, convergence to a local minimum can be derived as in classic TN methods.

An indefinite preconditioner makes sense in our applications for efficiency

considerations. Namely, the sparse preconditioner generated from the local

chemical interactions [25] can have large negative eigenvalues, and other

MC schemes [3, 7, 8, 26] (when used with PCG for solving such preconditioned

linear systems) tend to exhibit poor numerical behavior when very large

modifications are permitted. This leads to many PCG iterations and large

CPU times for the overall minimization method. We overcome this difficulty

by proposing the UMC to prescribe matrix modifications �I in a numerically

stable manner. The parameter � is chosen heuristically, so as to lead to

positive-definite preconditions near a minimum. This bound appears insensitive

to the problem size, and in our application we use � = 10. Undoubtedly,

there are other ways to factor a symmetric matrix M in this way.

The numerical experiments reported here highlight that the unconventional

use of an indefinite preconditioner works better than the minimizer without

preconditioning, as well as other minimizers available in CHARMM (ABNR and

CONJ). A competitive method tested is also LM-BFGS, where we examined both

with and without preconditioning. Although preconditioning reduces the

total number of iterations in LM-BFGS, it increases the CPU time because

of the added cost of the linear system. Results show that TNPACK requires

less CPU time than the other methods tested for large potential energy problems.

Very recently we have updated the program routines of TNPACK/CHARMM to significantly

reduce memory requirements by using a specified sparsity pattern for the

preconditioner and finite-differences for Hessian/vector multiplication.
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These developments, including applications to problems with up to 35,000

variables, will be reported separately.

These algorithmic suggestions may open new opportunities for other large-scale

optimization problems in which partial second-derivative information might

be exploited in the TN framework. Particularly interesting is the possibility

of using TNPACK as a local minimizer in the context of a stochastic global

optimization method. The different local minima reached for the proteins

in this work suggest that even a simple global aspect added to the local

minimizer can be of practical importance.

Acknowledgments. We are indebted to the referees and the reviewing

editor for valuable comments.

Appendix A. Analyses for the PCG inner loop of TN

We consider the PCG algorithm of Algorithm 1 for solving Newton equation

Hkp = �gk with a preconditioner Mk, where both Hk and Mk are nonsingular

but not necessarily positive definite. We assume that there exists a positive

integer l such that dTj Hkdj 6= 0 and rTj M
�1
k rj 6= 0 for j = 1; 2; : : : ; l, and

thus the PCG iterates fpjglj=1 are well defined. As for the standard case

(i.e., Mk is positive definite) [9], it follows that the PCG residual vectors

frjglj=1 (rj � �gk �Hkpj) satisfy in exact arithmetic

rTi M
�1
k rj = 0 for 1 � i < j � l:(13)

Theorem .1 (motivation for not using dj as exit search direction).
Let Mk be nonsingular and the initial guess p1 = 0. Then, if gTkM

�1
k rj = 0 for

1 < j � l, all vectors dj for 1 � j � l satisfy

gTk dj = �rTj M�1
k rj :(14)

Proof. Since r1 = �gk, from (13) it follows that

gTkM
�1
k rj+1 = �rT1 M�1

k rj+1 = 0 for 1 � j � l � 1:

Thus, for all j = 1; 2; : : : ; l � 1,

gTk dj+1 = gTk (M
�1
k rj+1 + �jdj)

= gTkM
�1
k rj+1 + �jg

T
k dj

= �jg
T
k dj :

Noting that �j = rTj+1M
�1
k rj+1=r

T
j M

�1
k rj ; r1 = �gk, and d1 = �M�1

k gk, we

obtain

gTk dj+1 = �j�j�1 � � ��1gTk d1
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= �r
T
j+1M

�1
k rj+1

rT1 M
�1
k r1

gTkM
�1
k gk

= �rTj+1M�1
k rj+1:

From Theorem 1 it follows that dj may be an ascent direction for the

case of an indefinite Mk.

Theorem .2 (motivation for using an indefinite preconditioner in
TN). Let Mk be nonsingular, and the initial guess p1 = 0. Then, if dTj Hkdj > 0

and rTj M
�1
k rj 6= 0 for j = 1; 2; : : : ; l, all pj with 2 � j � l + 1 are descent directions

and satisfy

gTk pl+1 < � � � < gTk pj < gTk pj�1 < � � � < gTk p2 < 0:(15)

Proof. Using �j = rTj M
�1
k rj=d

T
j Hkdj and (14), we have

gTk pj+1 = gTk pj + �jg
T
k dj = gTk pj �

(rTj M
�1
k rj)

2

dTj Hkdj
:(16)

Relation (16) together with dTj Hkdj > 0 and (rTj M
�1
k rj)

2 > 0 give gTk pj+1 <

gTk pj for j = 1; 2; : : : ; l. In particular, gTk p2 < gTk p1 = 0 as p1 = 0. Therefore,

it follows that all pj with 2 � j � l + 1 satisfy (15).

From Theorem 2 it follows that the PCG directions of Algorithm 1 with

an indefinite preconditioner Mk are directions of descent.

Theorem .3 (equivalence of the descent direction and negative cur-
vature tests). Let Mk be nonsingular and rTj M

�1
k rj 6= 0. Then gTk pj+1 > gTk pj if

and only if dTj Hkdj < 0.

Proof. From (14) and �j = rTj M
�1
k rj=d

T
j Hkdj, we have

�jg
T
k dj = �(rTj M�1

k rj)
2=dTj Hkdj :

Thus, if the denominator dTj Hkdj < 0, then the left-hand side �jg
T
k dj >

0, implying that

gTk pj+1 = gTk pj + �jg
T
k dj > gTk pj :

On the other hand, if gTk pj+1 > gTk pj, then

�(rTj M�1
k rj)

2=dTj Hkdj = �jg
T
k dj = gTk pj+1 � gTk pj > 0;

which implies that dTj Hkdj < 0.

From Theorem 3 it follows that the descent direction test of Algorithm 1

is equivalent to the negative curvature test.
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Theorem .4 (another motivation for using pj rather than dj as exit
search direction). Let both Hk and Mk be positive de�nite. Then there exists an

index j0 > 0 such that for all i � 2

gTk pi < gTk dj < 0 whenever j > j0:(17)

Proof. When both Hk and Mk are positive definite, from PCG theory we

know that rTj M
�1
k rj approaches zero as j increases. Subsequently, there

exists j0 > 0 such that rTj M
�1
k rj < jgTk p2j whenever j > j0. Together with

(14) and (15), we have gTk p2 < 0, and

gTk dj = �rTj M�1
k rj > gTk p2 > gTk pi for all i > 2:

The steplength � can have a larger range of feasibility to satisfy

E(Xk + �P k) < E(Xk)

with a larger value of jgTk P kj, where gTk P
k is negative. Thus, the objective

function value may be reduced more on a larger range of �. In this sense,

Theorem 4 suggests that pj is a ``better'' search direction than dj because

choosing the search direction P k = pj for j � 2 can lead to further reduction

than using P k = dj for a sufficiently large j. Similarly, Theorem 2 suggests

that a PCG iterate pj is better than pi when j > i.

Appendix B. The TN algorithm

The TN algorithm based on the PCG method consists of an outer and an

inner loop. We present these two loops in turn, listing the parameter values

used in the numerical examples reported in this paper (unless specified

otherwise in text). The new algorithmic components introduced in this paper

are marked by asterisks. We denote the objective function to be minimized

by E; the gradient vector and Hessian matrix of E by g and H, respectively;

and the preconditioner for PCG by M. We omit the subscript k from g, H,

and M for clarity.

Outer Loop of the TN Method

1. Initialization

� Set k = 0 and evaluate E(X0) and g(X0) for a given initial guess

X0.

� If jjg(X0)jj < 10�8max(1; jjX0jj), exit algorithm, where jj�jj is the

standard Euclidean norm divided by
p
n.

2. Preparation for UMC

� Evaluate the preconditioner M at X0 by assembling only the local

potential energy terms (bond length, bond angle and dihedral angle

components).

� Determine the sparsity pattern of M. The upper triangle of M is

stored in a compressed row format, and the pattern is specified by

two integer arrays that serve as row and column pointers [23].

� Compute the symbolic factorization LDLT of M, that is, the sparsity

structure of the factor L.
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� Evaluate the Hessian matrix H at X0.

3. Inner loop

Compute a search vector P k by solving the Newton equation

HP = �g approximately using PCG with preconditioner M
based on the UMC method (see below).

4�. Line search

� Compute a steplength � by safeguarded cubic and quadratic interpolation

[12] (see also [27] for a minor modification that avoids a too small

acceptable steplength �) so that the update Xk+1 = Xk+�P k satisfies

E(Xk+1) � E(Xk) + ��g(Xk)TP k and jg(Xk+1)TP kj � �jg(Xk)TP kj;

where � = 10�4 and � = 0:9.
5. Convergence tests

� Check the following inequalities:

E(Xk+1)�E(Xk) < �f (1 + jE(Xk+1)j) ; (B1a)

jjXk+1 �Xkjj < p�f (1 + jjXk+1jj)=100 ; (B1b)

jjg(Xk+1)jj < �
1=3
f (1 + jE(Xk+1)j) ; (B1c)

jjg(Xk+1)jj < �g(1 + jE(Xk+1)j) ; (B1d)

where �f = 10�10 and �g = 10�8.
If conditions (B1a), (B1b), (B1c), or (B1d) are satisfied, exit algorithm.

6. Preparation for the next Newton step

� Compute the preconditioner M at Xk+1 by using the pattern determined

originally.

� Evaluate the Hessian matrix H at Xk+1.

� Set k ! k + 1, and go to step 3.

Inner Loop of the TN Method (Step 3 of Outer Loop)

The sequence fpjg below represents the PCG vectors used to construct

P k in step 3 of Outer loop.

1. Initialization

� Set j = 1, p1 = 0, and r1 = �g.
� Set the parameters �k = minfcr=k ; kgkg and ITPCG for the truncation

test in step 5. We use cr = 0:5 and ITPCG = 40.

2�. The UMC factorization

� Perform the UMC of M so that the resulting effective preconditioner

is fM = LDLT with a chosen parameter � (we use � = 10). The

factor L is stored in the same sparse row format used for M.
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� Solve for zj in fMzj = rj by using the triangular systems

Lx = rj and LT zj = D�1x:

� Set dj = zj.

3�. Singularity test

Compute the matrix-vector product qj = H dj.
If either jrTj zj j � � or jdTj qj j � � (e.g., � = 10�10);

exit PCG loop with P k = pj (for j = 1, set P k = �gk).
4�. Implement one of the following two tests

4a. [The descent direction test]
Update the quantities

�j = rTj zj = d
T
j qj and pj+1 = pj + �jdj : (B2)

If gT pj+1 � gT pj + �;
exit inner loop with P k = pj (for j = 1, set P k = �g).

4b. [The standard negative curvature test]
if dTj qj � �(dTj dj);

exit inner loop with P k = pj (for j = 1, set P k = �g);
else update �j and pj+1 as in (B2).

5�. Truncation test

� Compute rj+1 = rj � �jqj :
� If krj+1k � �kkgk or j + 1 > ITPCG;
exit inner loop with search direction P k = pj+1:

6�. Continuation of PCG

� Solve for zj+1 as in step 2 in fMzj+1 = rj+1:
� Update the quantities

�j = rTj+1zj+1 = r
T
j zj and dj+1 = zj+1 + �jdj : (B3)

� Set j  j + 1, and go to step 3
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