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1. INTRODUCTION

In 1992, Schlick and Fogelson [1992a, 1992b] described a FORTRAN package of sub-
programs for unconstrained minimization problems in ACM TOMS (Vol. 18, pp.
46{111) known as TNPACK. In 1994, TNPACK was adapted by Derreumaux et al.
[1994] for the widely-used molecular mechanics and dynamics program CHARMM,
and shown to be an e�cient tool for the minimization of molecular potential func-
tions in comparison to other available minimizers. Recently, we have examined
practical issues of e�ciency and implemented modi�cations to the TNPACK ver-
sion of CHARMM to improve reliability and enhance convergence for large-scale
complex nonlinear problems [Xie and Schlick 1999a; 1999b].
This note summarizes the modi�cations made in TNPACK and provides details

regarding program usage. The basic changes involve the following program seg-
ments: (1) negative curvature test, (2) modi�ed Cholesky (MC) factorization, and
(3) line search algorithm. These modi�cations have been analyzed theoretically and
numerically in recent works [Xie and Schlick 1999a; 1999b].
In Section 2 we introduce the algorithm and describe the modi�ed negative cur-

vature test and a strong negative curvature test. In Section 3 we describe our MC
method, termed \UMC" for unconventional MC, as implemented in TNPACK. In
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Section 4, we present the more lenient stopping rule for the line search and a modi�-
cation of the associated trial value. The reader should consult Schlick and Fogelson
[1992a, 1992b] for general user instructions. Section 5 here only summarizes us-
age details related to our modi�cations. Appendix A presents the full algorithm
of TNPACK, and appendix B includes some numerical examples that show the
performance of the updated program. We welcome users to contact us for further
information (dexuan@cims.nyu.edu and schlick@nyu.edu).

2. TERMINATION RULES FOR PCG

The truncated Newton (TN) method [Dembo and Steihaug 1983] solves the un-
constrained minimization problem E(X�) = minX2D E(X); where E(X) is
a twice continuously di�erentiable real-valued function in an open set D of the n-
dimensional vector space Rn. TN uses a nested sequence of iterations. A sequence
of \outer" solution vectors fXkg can be expressed in the form

Xk+1 = Xk + �kP
k; k = 0; 1; 2; : : : ;

where P k is a descent direction, �k is the steplength, and X0 is an initial guess.
The inner loop involves obtaining P k by a \truncated" preconditioned conjugate
gradient (PCG) loop; each �k is then generated by using a line search scheme ([Mor�e
and Thuente 1994], for example). The search vector P k is obtained from the PCG
approximate solution of the Newton equations

H(Xk)P = �g(Xk); (1)

where g(Xk) and H(Xk) are the gradient and Hessian, respectively, of the objective
function E at Xk (often denoted as gk and Hk for clarity). Important in practice
are details regarding the e�cient solution approximation of system (1), including
handing inde�niteness and avoiding too many iterations when the quadratic model
is poor.
Let pj and dj be the jth iterate and direction vectors of PCG, respectively. Since

the Hessian matrix Hk may be inde�nite, a negative curvature test is required
to guarantee a descent direction for TN. The original package used the following
Test 1A, proposed in Dembo and Steihaug [1983].

Test 1A (Negative curvature test). If dTj Hkdj < �dTj dj , where � is a given

small positive number (e.g., � = 10�10), and dj is a vector generated in PCG (see
algorithm in appendix A), exit with search direction P k = pj or dj (for j = 1, set
P k = �gk).
Since our analysis in Xie and Schlick [1999a] showed that dj is a poorer choice

than pj as an exit search direction, this option has been removed, leading to the
following modi�ed Test 1A0.

Test 1A0 (Modi�ed Negative curvature test). If dTj Hkdj < �dTj dj , where � is a

given small positive number (e.g., � = 10�10), exit with search direction P k = pj
(for j = 1, set P k = �gk).
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In Xie and Schlick [1999a], we proved that if dTj Hkdj > 0 for j = 1; 2; : : : ; l, then
all pj with 2 � j � l + 1 are descent directions and satisfy

gTk pl+1 < � � � < gTk pj < gTk pj�1 < � � � < gTk p2 < 0: (2)

In practice, however, (2) does not necessarily hold due to computer rounding er-
rors. Hence, to guarantee a good descent direction in �nite precision arithmetic,
we also add the following Test 2A, called the \strong negative curvature test", as
an alternative [Xie and Schlick 1999a].

Test 2A (Strong negative curvature test). If gTk pj+1 > gTk pj , exit with search
direction P k = pj (for j = 1, set P k = �gk).
Theoretically, Test 2A is equivalent to Test 1A0, but in practice may lead to dif-

ferent performance. This is because Test 1A0 may not guarantee a descent direction
or a \good" descent direction in the sense of (2) in �nite precision arithmetic while
Test 2A can do so. Numerical results and analyses [Xie and Schlick 1999a] show
that Test 2A can improve the performance of TNPACK in comparison to Test 1A0.
We let the user choose the test in an option list of input parameters to TNPACK,
and leave Test 2A as the default.
The above tests halt the inner loop in case of negative curvature or non-monotonic

improvements in the search vectors. In addition, TN methods also exit the inner
loop when the residual of (1), in which Hk may be replaced by a related matrix,
is su�ciently small. Test 1B below serves this purpose. It is the same as in the
previous version.

Test 1B (Truncation test). Let rj be the residual vector satisfying rj = �gk �
Hkpj . If krjk � minfcr=k; kgkkg, where cr is a given positive number (e.g., cr =
0:5), and k � k is the standard Euclidean norm divided by

p
n, exit with search

direction P k = pj .

The inner PCG loop is also halted when the number of iterations at each inner
loop exceeds ITPCG, a maximum number of allowable PCG iterations for each inner
loop. Our previously recommended value for ITPCG was n, but we found that a
smaller value, such as 40, works better when n� 40 [Xie and Schlick 1999a].

3. AN UNCONVENTIONAL MODIFIED CHOLESKY (UMC) FACTORIZATION

In TNPACK, a symmetric sparse approximation to the Hessian, namely the precon-
ditioner Mk, is used to accelerate convergence of the inner CG loop. This matrix is
not necessarily positive de�nite when chosen according to a physical subdivision of
energy components, as in molecular applications [Schlick 1993]. Thus, a sparse mod-
i�ed Cholesky (MC) factorization based on the Yale Sparse Matrix Package [Gill
and Murray 1974; Eisenstat et al. 1981; Eisenstat et al. 1982; Schlick and Fogelson
1992a] is used to construct a modi�ed preconditioner gMk, where gMk = Mk + Ek,
and Ek is a nonnegative diagonal matrix.
Our numerical experience with biomolecular-structure optimization showed [Xie

and Schlick 1999a] that various MC schemes [Cheng and Higham 1998; Gill and
Murray 1974; Gill et al. 1981; Schnabel and Eskow 1990] can produce very large
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modi�cations to Mk that can slow down the overall convergence of the method. To
overcome this di�culty, we proposed the UMC [Xie and Schlick 1999a] summarized
below.
Let L be a unit lower-triangular matrix andD and E diagonal matrices. We write

these matrices as: L = (lij)n�n,D = diag(d1; d2; � � � ; dn), andE = diag(e1; e2; � � � ; en).
For a given symmetric matrix M = (mij)n�n and a given parameter � , UMC gen-

erates a factorization LDLT = fM = M + E with diagonals dj (j = 1; 2; : : : ; n) of
D de�ned by

dj =

8><>:
maxf edj ; �2=�2g when edj > �;

� when j edj j � �;

minf edj ;��2=�2g when edj < ��;
where edj = mjj �

Pj�1
k=1 ljkcjk + �; cij = lijdj ; � = maxj+1�i�n jcij j; � = max("; �");

� is the largest magnitude of an element of M , " is a small positive number (we set
" = 10�6), and �2 = �=

p
n(n� 1), an a priori choice of � in our UMC.

Essentially, UMC produces in a numerically-stable procedure an LDLT factor-
ization for a matrix M that may be inde�nite. Still, the PCG-generated vectors in
our context are guaranteed to be directions of descent. Moreover, a user-prescribed
parameter � is set so that near a minimum the preconditioner resulting from UMC
is positive de�nite. If � > j�min(M)j, where �min(M) is the minimum eigenvalue of

M , then fM is positive de�nite with an error matrix E = fM �M = �I ; otherwise,
by similar arguments to those used in Gill and Murray [1974], a worst-case bound
of kEk1 can be derived [Xie and Schlick 1999a].

Note that UMC can produce an inde�nite preconditioner fM when � < j�min(M)j.
With the use of singularity and negative curvature tests as shown in Appendix A,
the recursive formulas of PCG are well de�ned for a non-singular preconditioner.
Furthermore, the PCG-generated search vectors fP kg of TN are directions of de-

scent (expression (2) above) even when the preconditioner gMk is inde�nite. We
found this overall procedure to work much better than that which allows exces-
sively large modi�cations in MC [Xie and Schlick 1999a].
The choice of � a�ects overall performance of the minimization. Our experience

over many problems and system sizes suggests that � = 10 is a reasonable value
[Xie and Schlick 1999a]. This is the default value in TNPACK, but users can set �
to other values suitable for their problems.

4. LINE SEARCH MODIFICATIONS

A line search scheme is an iterative algorithm for solving the one-dimensional min-
imization problem min

�>0
f(�); where

f(�) = E(Xk + �P k); � > 0:

The line search stopping rule in
uences the overall e�ciency of the minimization
method. TNPACK uses the line search algorithm of [Mor�e and Thuente 1994],
which relies on the following stopping rule.
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Criterion 1 (Stopping rule for line search). Terminate the line search
when the steplength �k > 0 satis�es

E(Xk + �kP
k) � E(Xk) + ��kg(X

k)TP k; (3)

and

jg(Xk + �kP
k)TP kj � �jg(Xk)TP kj; (4)

where � and � are given constants satisfying 0 < � < � < 1.

Our more lenient stopping rule [Xie and Schlick 1999b] in TNPACK is the fol-
lowing.

Criterion 2 (More lenient stopping rule for line search). Terminate
the line search when the steplength �k > 0 satis�es either (3) and

g(Xk + �kP
k)TP k � �g(Xk)TP k; (5)

or, alternatively, conditions (3) and

g(Xk + �kP
k)TP k � (2� �)g(Xk)TP k; (6)

where � and � are given constants satisfying 0 < � < � < 1.

Condition (5) is a component of (4), which works only for a strictly convex
function f . Condition (6) is introduced to produce a su�ciently large steplength
when the function f is not strictly convex; for details, see Xie and Schlick [1999b].
Using the more lenient second criterion above can reduce the number of line

search iterations per outer loop step in special cases. It also forces su�cient function
decrease according to (3) and guarantees a su�ciently large steplength. Hence, we
found it useful in practice for overall e�ciency of a minimization procedure for large-
scale multivariate functions whose function evaluations are expensive. Moreover, in
theory, the global convergence for a descent method using Criterion 2 can be proven
in the same way as for Criterion 1 [Dennis and Schnabel 1983]. However, in most
of cases, condition (6) may not be encountered, so that performance is overall very
similar to the �rst criterion [Xie and Schlick 1999b]. Thus, we leave Criterion 1 as
the default choice in TNPACK and let the user select Criterion 2 if desired.
In addition, we have added a safeguard to the rule determining �k at each line

search iteration. Instead of de�ning the line search iterate

�(j+1) = �c;

where �c is the minimum point of the cubic interpolant [Mor�e and Thuente 1994],
we use:

�(j+1) = max(�l + �(�t � �l); �c);

where � is a small positive number such as 0.001, and �l and �t are the two
endpoints of the interval generated by the line search algorithm [Mor�e and Thuente
1994]. This modi�cation avoids ending the line search with a �c value that is very
small, a case we have encountered in practice. See Xie and Schlick [1999b] for
further details.
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Table I. The Four New User-Speci�ed Parameters

Parameters Function

OPLIST(15) speci�es the choice of PCG termination tests
in the case of negative curvature:
1: use Test 1A0

2: use Test 2A
The default value is 1

OPLIST(16) speci�es the choice of line search stopping rules
1: use Criterion 1
2: use Criterion 2
The default value is 1

OPLIST(17) speci�es the choice of the MC methods
1: use the standard MC
2: use UMC
The default value is 1

PLIST(8) speci�es the parameter � of UMC.
The default value is 10.0

5. SOME USAGE CHANGES ON TNPACK

The usage details for the new version of TNPACK are the same as described in
Schlick and Fogelson [1992a] except for small changes involving the two work arrays
OPLIST and PLIST.
The arrays OPLIST and PLIST (of dimension 20) are required in TNPACK to

specify options and parameters for minimization. Only 14 entries of OPLIST and
7 of PLIST have been used in the original TNPACK, respectively; see Schlick and
Fogelson [1992a]. In particular, entry OPLIST(12) speci�es the choice of exit direc-
tions in the case of negative curvature for PCG, with �ve options provided in the
original program. Since the PCG direction dj de�nes a poor search direction for TN
and the preconditioner Mk may be inde�nite, we only use the option OPLIST(12)
= 1 (i.e., Test 1A0) now; the other four options have been deleted. As a result, the
user's input value for OPLIST(12) does not matter.
We also introduced four new user-speci�ed parameters, OPLIST(15), OPLIST(16),

OPLIST(17), and PLIST(8) to specify the PCG termination test, the line search
stopping rule, the modi�ed Cholesky factorization, and UMC threshold parameters,
respectively (see Table I).
Like other parameters, sample values are produced in subroutine SETLIS, and

they can be modi�ed in the driver interface between the SETLIS and TNMIN calls.

APPENDIX

A. THE TRUNCATED NEWTON ALGORITHM

The new algorithmic components are marked by asterisks. These include the line
search scheme, UMC factorization, and negative curvature test (steps (2){(4) of the
inner loop). Default parameter settings are indicated. The indices k and i are used
respectively to denote outer loop and inner loop iterates.
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Outer Loop of the Truncated Newton Method

(1) Initialization
|Set k = 0 and evaluate E(X0) and g(X0) corresponding to initial guess X0,
where E is the objective function to be minimized,

|If jjg(X0)jj < 10�8max(1; jjX0jj), where jj � jj is the standard Euclidean norm
divided by

p
n, exit algorithm; otherwise, continue to step 2.

(2) Preparation for UMC
|Evaluate the preconditioning matrix Mk.
|Determine the sparsity pattern of Mk. The upper triangle of Mk is stored in
a compressed row format, and the pattern is speci�ed by two integer arrays
that serve as row and column pointers [Schlick and Fogelson 1992a].

|Compute the symbolic factorization LDLT of Mk, that is, the sparsity struc-
ture of the factor L.

|Evaluate the Hessian matrix Hk.

(3) Inner Loop

Compute search vector P k by the linear preconditioned conjugate
gradient method for solving the Newton equations HkP = �g(Xk)
approximately based on the UMC factorization of Mk (see below).

(4)� Line search
|Compute a steplength � by safeguarded cubic and quadratic interpolation
[Mor�e and Thuente 1994; Xie and Schlick 1999b] so that Xk+1 = Xk + �P k

satis�es either (A1) and (A2a) or (A1) and (A2b), where:

E(Xk+1) � E(Xk) + ��g(Xk)TP k ; (A1)

g(Xk+1)TP k � �g(Xk)TP k ; (A2a)

g(Xk+1)TP k � (2� �)g(Xk)TP k (A2b)

with � = 10�4 and � = 0:9.

(5) Convergence tests
|Check the following inequalities:

E(Xk+1)�E(Xk) < �f (1 + jE(Xk+1)j) ; (A3a)

jjXk+1 �Xkjj < p�f (1 + jjXk+1jj)=100 ; (A3b)

jjg(Xk+1)jj < �
1=3
f (1 + jE(Xk+1)j) ; (A3c)

jjg(Xk+1)jj < �g(1 + jE(Xk+1)j) ; (A3d)

where �f = 10�10 and �g = 10�8.
|If conditions fA3a,A3b,A3cg or (A3d) are satis�ed, exit algorithm.

(6) Preparation for the next Newton step
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|Compute the new preconditionerMk+1 by using the pattern determined orig-
inally.

|Evaluate the new Hessian matrix Hk+1.
|Set k  k + 1 and go to step 3.

Inner Loop k of the Truncated Newton Method (Step 3 above)

The sequence fpig below represents the PCG vectors used to construct P k in
step 3 of Outer loop. We omit the Newton subscript k from g, H , and M and the
superscript k from P for clarity. In step (4)�, either Test 2A or Test 1A0 can be
used.

(1) Initialization
|Set i = 1, p1 = 0, and r1 = �g.
|Set the parameter �k controlling the accuracy of the computed search vector:
�k = minfcr=k ; kgkg; where cr � 1 (we use cr = 0:5).

|Set the parameter ITPCG as the maximum number of allowable PCG itera-
tions for each inner loop (default ITPCG = 40).

(2)� The unconventional modi�ed Cholesky (UMC) factorization
|Perform the numerical factorization of M by UMC with a chosen parameter
� (default � = 10). The resulting modi�cation fM of M is used as the
preconditioner of PCG, and is stored in the same sparse row format used for
M .

|Solve for zi in fMzi = ri:
|Set di = zi.

(3)� Singularity test
|Compute the matrix/vector product qi = H di.
|If jrTi zij � �(rTi ri) or jdTi qij � � (e.g.; � = 10�15);
exit PCG loop with P = pi (for i = 1, set P = �g).

(4)� Negative curvature test: implement one of the following two tests.
|Test 1A0:

If dTi qi � �(dTi di) (e.g.; � = 10�10);
exit inner loop with P = pi (for i = 1, set P = �g);
else update �i and pi+1 as in (A4), and continue to step 5.

|Test 2A: Update the quantities

�i = rTi zi = d
T
i qi; and pi+1 = pi + �idi: (A4)

If gT pi+1 � gT pi � �;
exit inner loop with P = pi (for i = 1, set P = �g);
else continue to step 5.

(5) Truncation test
|Compute ri+1 = ri � �iqi:
|If kri+1k � �kkgk or i+ 1 > ITPCG,

exit inner loop with search direction P = pi+1;
else continue to step 6.

(6) Continuation of PCG

|Solve for zi+1 in fMzi+1 = ri+1:
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|Update the quantities

�i = rTi+1zi+1 = r
T
i zi; and di+1 = zi+1 + �idi

|Set i i+ 1, and go to step 3.

B. IMPLEMENTATION EXAMPLES

Three implementation examples are included with the TNPACK software to il-
lustrate the performance to users. The objective functions are familiar optimization
test problems from Algorithm 566 by Mor�e, Garbow, and Hillstrom [1981a, 1981b].
The second-derivative routines for the 18 test functions of Alg. 566 can be ob-
tained from the supplementary Hessian package, HESFCN, developed by Averbukh,
Figueroa, and Schlick [1992, 1994]. We used all default starting points speci�ed in
Alg. 566 for the 18 test functions. The preconditioner for PCG was chosen as the
diagonal of the Hessian matrix Hk for all problems.
Included among the 18 test functions are the extended Rosenbrock function with

an even integer n

f(X) =
X

j=1;3;5;:::;n�1

�
(1� xj)

2 + 100(xj+1 � x2j )
2
	
;

and the trigonometric function

f(X) =

nX
j=1

 
n�

nX
i=1

cosxi + j(1� cosxj)� sinxj

!2

:

Detailed descriptions of TNPACK for these two functions have given in Schlick and
Fogelson [1992b]. We include them as two separate implementation examples with
the TNPACK code to let users easily test TNPACK options. We used the following
starting points X0 for the Rosenbrock and trigonometric functions

X0 = (�1:2�cos 1; 1+cos1;�1:2�cos3; 1+cos3; : : : ;�1:2�cos(n�1); 1+cos(n�1))
and

X0 = (1=n+ 0:2 cos 1; 1=n+ 0:2 cos 2; 1=n+ 0:2 cos 3; : : : ; 1=n+ 0:2 cosn);

respectively. Note that they are di�erent from the default starting points given
in Alg. 566 for these two functions. To test non-diagonal preconditioners and the
reordering option of TNPACK, we de�ned the following preconditioner Mk for the
trigonometric function: elements mii are set to the ith diagonal element of Hk

for 1 � i � n; o�-diagonals m1;n�1 = mn�1;1 = 0:1; m1;n = mn;1 = �0:1; and
other elements are zero. We set � = 0:5 for the trigonometric function for better
performance while the default value of � was used for Rosenbrock function.
We also include below numerical examples for large-scale molecular potential

functions. We consider two molecular systems: alanine dipeptide (22 atoms) and
the protein BPTI (568 atoms). The widely-used molecular mechanics and dynam-
ics program CHARMM [Brooks et al. 1983] (version 24b1) was used to compute
the potential energy functions and their derivatives; parameter �les for the energy
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Table II. TNPACK Performance for Rosenbrock and Trigonometric Functions
Rosenbrock function (n = 1000)

TNPACK Final Energy Final kgk TN (PCG) Itns. E Evals. CPU Time

Modi�ed 4:3512� 10�18 2:82� 10�9 28 (500) 45 0.208 sec.
Original 7:3024� 10�24 2:52� 10�12 50 (744) 117 0.302

Trigonometric function (n = 1000)
Modi�ed 1:1215� 10�13 9:43� 10�9 21 (73) 23 8.045 sec.
Original 1:3833� 10�17 1:06� 10�10 27 (74) 41 8.488

Table III. TNPACK Performance for the 18 Test Functions of Algorithm 566

Prob TNPACK Final Energy Final kgk TN (PCG) Itns. E Evals.

1 Modi�ed 1.7884�10�19 3.35�10�9 16 (41) 19
Original 2.8711�10�32 6.67�10�16 17 (40) 23

2 Modi�ed 3.2182�10�14 1.22�10�9 271 (948) 295
Original 2.4268�10�1 3.05�10�7 1274 (6781) 2963

3 Modi�ed 1.1279�10�8 6.74�10�9 2 (3) 3
Original 1.1279�10�8 5.60�10�11 2 (4) 3

4 Modi�ed 7.6372�10�6 1.28�10�5 36 (53) 52
Original 2.9769�10�7 1.28�10�7 107 (182) 167

5 Modi�ed 5.6077�10�13 1.85�10�8 14 (29) 20
Original 1.0454�10�18 3.43�10�10 16 (34) 20

6 Modi�ed 3.2357�10�22 8.04�10�11 9 (14) 10
Original 1.9639�10�18 6.27�10�9 9 (14) 10

7 Modi�ed 4.7140�10�1 1.19�10�9 9 (16) 10
Original 4.7140�10�1 7.52�10�15 9 (19) 10

8 Modi�ed 1.5179�10�5 3.49�10�8 45 (101) 56
Original 1.5179�10�5 3.43�10�9 52 (96) 64

9 Modi�ed 3.200�10�6 4.46�10�8 9 (17) 13
Original 3.1981�10�6 1.85�10�10 35 (95) 44

10 Modi�ed 1.9722�10�31 6.28�10�10 4 (5) 14
Original 5.4210�10�20 7.09�10�10 4 (5) 10

11 Modi�ed 8.5822�104 8.96�10�3 10 (27) 11
Original 8.5822�104 7.22�10�3 10 (27) 11

12 Modi�ed 7.9990�10�11 1.40�10�7 29 (53) 39
Original Line search failed at 3rd TN after 30 line search iterations

13 Modi�ed 2.5737�10�3 1.10�10�12 9 (24) 11
Original 2.5737�10�3 7.79�10�9 8 (21) 11

14 Modi�ed 1.3433�10�20 9.08�10�11 28 (49) 34
Original 1.4800�10�25 2.97�10�13 33 (57) 43

15 Modi�ed 1.4061�10�12 3.34�10�9 22 (80) 23
Original 7.3082�10�13 3.13�10�9 21 (75) 22

16 Modi�ed 2.0461�10�21 5.97�10�11 9 (14) 11
Original 7.9394�10�24 2.37�10�12 9 (16) 12

17 Modi�ed 1.5576�10�19 1.11�10�9 94 (341) 100
Original 4.3014�10�23 1.43�10�10 52 (175) 64

18 Modi�ed 3.3521�10�25 1.33�10�12 7 (11) 9
Original 2.9041�10�17 9.18�10�9 6 (9) 11
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Table IV. Performance of TNPACK for Alanine Dipeptide (66 Variables) Minimization Using
the Standard Modi�ed Cholesky Factorization (MC) versus Our UMC with � = 10

Final E Final kgk TN (PCG) Itns. E Evals CPU Time

MC �15:245 3:27� 10�10 2386 (2738) 5939 9.07 sec.
UMC �15:245 1:31� 10�10 30 (227) 45 0.92

Table V. Comparison of TNPACK with Other Two CHARMM Minimizers and LM-BFGS for
BPTI (1704 Variables)

Minimizer Itns. (PCG Itns.) Final E Final kgk E Evals CPU Time

TNPACK 78 (1604) �2776:58 1:14� 10�6 227 5.75 min.
LM-BFGS 4486 �2792:96 6:3� 10�5 4622 12.61
ABNR 8329 �2792:96 8:9� 10�6 8330 25.17
CONJ 12469 �2792:93 9:9� 10�6 32661 97.8

Table VI. Performance of TNPACK for BPTI Using Criterion 1 (C1) vs. Criterion 2 (C2) in the
Line Search

Criterion Final E Final kgk TN (PCG) Itns. E Evals. CPU Time

C1 �2762:5 3:72� 10�6 176 (1387) 537 6.99 min.
C2 �2749:2 7:14� 10�6 85 (1029) 250 4.35

functions were used from CHARMM version 19. All nonbonded interactions of
the potential energy function were considered, and a distance-dependent dielectric
function was used. An e�ective preconditioner Mk is constructed naturally from
the local chemical interactions: bond length, bond angle, and torsional potentials
[Schlick and Overton 1987]. More numerical results and discussions can be found in
Xie and Schlick [1999a, 1999b], where a CHARMM version of TNPACK was used,
and some changes have been made for TNPACK for better performance.

All computations were performed in double precision in serial mode on an SGI
Power Challenge L computer with R10000 processors of speed 195 MHZ at New
York University. The vector norm k � k in tables is the standard Euclidean norm
divided by

p
n.

Tables 5 and III display minimization performance of the updated TNPACK
using the new options for these test functions, and reports for reference results with
the previous TNPACK version using default options. Note that the default values
of n in Alg. 566 are small. For example, n = 3 for trigonometric function (Problems
13 in Table III) and n = 2 for the Rosenbrock function (Problem 14) of Alg. 566.
Hence, the CPU times for running TNPACK for the 18 functions of Alg. 566 on
the R10000 processor were very small (fraction of a second).

From these two tables we see that the new options perform overall slightly better
for all test functions, except for function 17, Wood function. Signi�cant improve-
ments are noted for the second function (Biggs function) and the 12th function
(Gulf research and development function). For the second function, a zero value
for the minimum is expected, but the older TNPACK version found a larger value.
The older TNPACK version failed for function 12 due to rounding errors in the
third truncated Newton iterate (after 30 line search iterations) using Criterion 1.
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Table VII. A Summary of TNPACK Results

Reference Test Problems (n) Main Findings

Schlick and (1) Rosenbrock's function (1,000) Various TNPACK options and
Fogelson [1992b] (2) Trigonometric function (1,000) their in
uence on performance

(3) Potential energy function are illustrated.
of deoxycytidine (87)
(4) Energy function from models
of platelet aggregation (640)

Zou et al. [1993] (1) Oceanography problems (7330) Truncated Newton methods are com-
(2) Meteorology problems (14,763) petitive with L-BFGS, especially for

large-scale meteorological problems.

Derreumaux Potential energy functions of TNPACK performs signi�cantly better
et al. [1994] (1) Alanine Dipeptide (36) than ABNR when Hessian/vector

(2) N-Methyl-Acetamide (36) products are approximated
(3) Deca-Alanine (198) by a �nite-di�erence expression
(4) Mellitin (765) of gradients. Curvature information
(5) Rubredoxin (1,413) is important for directing

(6) Avian (1,104) minimization progress, and the
(7) A dimer of Insulin (2,892) use of local structure accelerates
(8) BPTI (1,740) convergence of PCG. Very low �nal
(9) Lysozyme (3,897) gradient norms can be obtained.

Xie and Potential energy functions of The UMC and other modi�cations
Schlick [1999a] (1) Butane (42) improve the performance of

(2) Alanine Dipeptide (66) TNPACK for large-scale molecular
(3) BPTI (1,704) systems.
(4) Lysozyme (6,090)

Table 5 compares the performance of TNPACK based on the standard MC [Gill
and Murray 1974] to our UMC for alanine dipeptide minimization. Since the pre-
conditioner Mk was inde�nite while far away from a local minimum, the standard
MC generated an excessively large modi�cation to Mk such that the modi�ed ma-
trix fMk was a very poor approximation of the Hessian matrix Hk and had a very
large condition number. Consequently, TNPACK with the standard MC led to
poor performance in comparison to the TNPACK with UMC. We also found that
TNPACK with the standard MC did not work for large-scale molecular minimiza-
tion problems such as BPTI.
Table 5 compares the performance of TNPACK for BPTI minimizations with two

other CHARMM minimizers, ABNR (an adopted-basis Newton-Raphson method)
and CONJ (a nonlinear conjugate gradient method), as well as LM-BFGS with
u = 5 stored updates [Liu and Nocedal 1989]. For simplicity, we used the default
parameters in CHARMM for ABNR, CONJ and TNPACK. The results in Table 5
show that TNPACK requires less CPU time than the other methods and reaches
very low gradient norms. LM-BFGS is the next minimizer in e�ciency, but the
CPU time of TNPACK is less than that of LM-BFGS by a factor of two or more.
To show that a signi�cant improvement can be observed when Criterion 2 (C2)

of the line search is used, we consider TNPACK for BPTI potential function min-
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imization. Given that the function has many local minima, and di�erent starting
position vectors may lead to di�erent minima, we constructed a starting-position
vector as below:

X0;! = X0 +�;

where X0 is the original starting position vector (from an experimental structure),
and � is a random vector, each component of which is chosen from a uniform distri-
bution between 0 and 1. An initial seed value of one is chosen for the pseudorandom
number generator.
Table 5 shows that C2 requires less CPU time to �nd a minimum than C1.
Finally, Table 5 gives a summary of TNPACK results that appeared in the fol-

lowing four papers: [Schlick and Fogelson 1992b; Zou et al. 1993; Derreumaux et al.
1994; Xie and Schlick 1999a].
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