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force splitting via extrapolation with Langevin dynamics in LN
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We present an efficient new method termedfor propagating biomolecular dynamics according to
the Langevin equation that arose fortuitously upon analysis of the range of harmonic validity of our
normal-mode schemeIN. LN combines force linearization with force splitting techniques and
disposes ofLIN's computationally intensive minimizatiofanharmonic correctioncomponent.
Unlike the competitive multiple-timesteppin@Ts) schemes today—formulated to be symplectic
and time-reversible-N merges the slow and fast forces via extrapolation rather than “impulses;”
the Langevin heat bath prevents systematic energy drifts. This combination succeeds in achieving
more significant speedups than theses methods which are limited by resonance artifacts to an
outer timestep less than some integer multiple of half the period of the fastest rtartomd 4-5

fs for biomolecules We show thatN achieves very good agreement with small-timestep solutions
of the Langevin equation in terms of thermodynani@sergy means and variangegeometry, and
dynamics(spectral densitiggor two proteins in vacuum and a large water system. Significantly, the
frequency of updating the slow forces extends to 48 fs or more, resulting in speedup factors
exceeding 10. The implementationof in any program that employs force-splitting computations

is straightforward, with only partial second-derivative information required, as well as sparse
Hessian/vector multiplication routines. The linearization parino€tould even be replaced by direct
evaluation of the fast components. The applicationnofo biomolecular dynamics is well suited for
configurational sampling, thermodynamic, and structural questionsl9€3 American Institute of
Physics[S0021-960808)50220-9

I. INTRODUCTION far as thermodynamics and sampling are concerned, but be-
_ _ o . cause of the numerical stability of the integrator.

The increasing availability and speed of high-end work-  Stability is limited by the molecular high-frequency vi-
stations has made molecular dynamics simulations a poweprational modes, or bond stretching. The fastest peRod
ful desktop resource. Although not yet considered a full partrelevant to biomolecules is around 10 (&ssociated with a
ner to experiment for studying molecular configuration andyavelength of absorption around 3400 chfor O—H and
function, the numerically generated sequence of moleculag_H stretching, for exampje Resolving these fast motions
configurations—obeying Newtonian physics—offers insightsygequately dictates timesteps of 0.5 fs or [62£20). Recent
into molecular flexibility and thermodynamic processes. Beyasearch has shown that these short periods also limit the
sides the uncertainty in force fields, this subordinate status QTmesteps that can be used successfully in separating frame-
molecular dynamics to instrumentation can be attributed Quorks to update thelow forces (i.e., outer timestep This
the relatively shor(e.g., nanosecondrajectory lengths that  j;iation is removed from the method we describe here,

can b(_a s_|m_ulated due to both computer hardware and Soqﬂlith an analysis of the underlying theory presented in paper
ware limitations. 2

. . . . . L
In biomolecular simulations, computational cost is domi-

. : Integration schemes for biomolecular dynamics exploit
nated by the frequent evaluation of the potential energy func; ; . . :
X ) : . - the spatial locality and linear complexity of the fastest com-
tion and its gradient. Typically, one million steps are re-

quired to simulate a nanosecond, with each step entailin onents of the force, in contrast to the slow and long-range

several seconds of computing for a large system. With sim- teractions, Wh'c_h growin numpgr as the square of th? num-
plifications of the simulation protocdk.g., reduction of the ber of qtoms. As |n-other scientific apphcatlons.of multilevel
nonbonded interactions considexethe cost per step can be ©F multiscale techr_nquegsthe tempo7ral and spatial scales of
reduced to a fraction of a second, but a nanosecond simul&e model are efficiently connectéd’ see Ref. 8 for a recent
tion of a 20,000-atom system on a 300-teraflop machine stilféview. Small timestepgA7) are used to resolve the fastest
requires several daysUnfortunately, the steps cannot be Vibrational modes, but only the inexpensive local interac-

lengthened arbitrarily, not so much due to loss of accuracy adons are updated at each small step; the costly long-range
forces are updated at appropriately chosen longej (ime

intervals.
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proachesLIN resolves the fast motion by linearization of the Il. MULTISCALE METHODS

equations of motiorfand obtains the residual motion by im- i ) )
plicit integration. MTs schemes update the fast and slow Iraditional models for molecular dynamics are guided
motions at different frequencies. Results to date have showfy the classical equations of motion

that LIN permits compa.ratively long timestep$5 fs) and X=V, V=—M"YVEX)+ VEq g X) + VEgou( X)),
reproduces well small-timestep behavidsut the computa- 1

tional expense of each stégue to minimizationyields only ) - )
modest overall efficiency gains compared to small-timestep/néreX andV are the collective position and velocity vec-

methods. Recent experiments show that the popuies tors, respectivelyl,\/l is t_he diagor_1al mass matrix, and_ the dot
methods r-Respa and Verlet-I only permit outer timesteps O;:upe_rscnpts denote dlfferentlat_lc_)n with res_pect to time. The
5 fs or less for biomolecules based on accuracy criteria angradient vector YE) of the empirical potential energy func-
yield a speedup factor of around® comparison to explicit 10N E is separated abovior future referenceinto fast,
simulations at timesteps of 0.5)f¥*this threshold for the medium (or middie, and slow components. For biomol-

outer timestep in these schemes has recently been explain%&ugesé th;]s three-part SEI'H';gd IS n;alde according ttc)) tr(]jed
by artificial (i.e., integrator-inducedresonancé1% occur-  °onded, short-range nonbonded, and long-range nonbonde

ring at multiples of half the period of the fastest bond Vibra_E:eractlggst(geta}lledtbelov)t TP:_e ?sst?]matﬁd ttl_mnesterzt&,
tions. A “resonance” is a numerical artifact of the integrator =~ "™m’ an esignate, respectively, the shortéshermos}

appearing at special timesteps related to the periods inhere?_ﬁi(g'i‘ 0.5 fz’ Imed|um Ean mteg_er n:.UIt'FIe OIAT:. Al
in the motion; large energy fluctuations or instability are seen "1 7), and larges{outermogt discretization stepsizean

at those timestepS. See Ref. 13 for analysis of resonance on!M€9er multiple ofAty, . At=k;Atm=k;k,A 7)- The middle
a Morse oscillator for the symplectic implicit-midpoint timestep ranges from 1 to 3 fs in our implementation and can

scheme and Ref. 14 for a discussion of nonlinear resonancpee thought of as an adjustable value. The ratieAt/Ar

for a family of symplectic methods for molecular dynamics. r:ellialtli(\fe I'?c:c':esr;r;islaiir:)en ;fteheedggng:a:]?rzzzngg SXSCT:"meS
A definition for a “large timestep” method has been ' ep

. ; . symplecticMTS schemes resonance limitsto less than 10
suggestetf as a scheme which overcomes this half-perio : .
; . o ..~ . "when A7=0.5fs, with asymptotic speedups aroundsee
barrier.LIN is one such method, but it is not as competitive in

terms ofcpu time as areuTs schemes. A mollified impulse section IV D).
method is also being develog@dto extend the timestep A. Verlet and impulse multiple timestep methods

slightly beyond 5 fs. The efficientn approach, described The standardsingle-timestepintegrator introduced by

here for the f_|rst tme W'th_t_he force splitting component, Verlet!® completes the updating sweep for positions and ve-
overcomes this barrier significantly. locities by the following triplet:
In section Il, we briefly describe existing multiscale Velocity Verlet.algorithm

methods for Newtonian and Langevin dynamics, including
Verlet, impulsemMTs, BBK, andLIN. These descriptions lay
the groundwork for our resonance discussion and.thee-
sults included here. In section Il we presentand discuss
advantages and limitations of the former schemes as motiva- X=X ATV, 2
tion for the new method. See Ref. 17 for a summaryngé Ar
predecessors and a historical perspective of this algorithmic V" *1=y"*12_\-1__yE(X"*1).
work. 2

In section IV, we present the results 0f simulations This second-order method preserves geometric proper-
for several systems and discuss two key issiBsperfor-  ties (such as time reversibility and phase-space volume
mance of LN—measured by agreement with traditional present in the exact solution of these equations for conserva-
small-timestep methods in terms of thermodynamic, structive Hamiltonian system¥ This symplecticness likely ac-
tural, and dynamic properties—as a function of the timestegounts for the favorable energy preservation along computed
triplet used;(2) efficiency, measured by overall computa- trajectories. However, for acceptable resolution of the fastest
tional speedup, compared with traditional methods. As aseomponent, the Verlet timestep should be in the raR(#0
sessed imTs works, efficiency and reliability are measured to P/10, or A7 from 0.5 to 1.0 fs, much less than the linear
in comparison to explicit simulations using a 0.5 fs timestepstability limit®1* of P/ .

At
Vn+l/2:vn_M _17VE(XH),

connections to experiment are made where posdible., The MTs methods introduced two decades #fd be-
spectral density functions and radial distribution functionscame increasingly common for biomolecular simulations
for wate. with the introduction of variants that shared the time-reversal
We conclude by highlightingN’s ability to overcome symmetry of the Verlet scheme. Schulten and co-workers
severe resonance effects that limit symplestis methods; introduced “Verlet—I” and, independently, Tuckerman

a linear analysis follows in the companion pap&¥e show et al* derived the equivalent but more general mettiod
that LN can use an outer timestep such as 50 fs while stilRespa” by applying the Verlet methofksystem(2)] to the
giving excellent agreement to a trajectory using a muchrrotter factorization of the Liouville operator with compo-
smaller outer timestep; the computational savings can exceatknts corresponding to potential splittit®y.s;, Emid, Esiow-
an order of magnitude. A sweep over onét interval by a Verlet-basedTs method
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can thus be written as the following double-nested iteratiorB. Langevin dynamics and the linearization approach

process: of LN’s predecessor LIN
Impulse MTS algorithm Although used by us for numerical(stability)
At consideration§,”%?* a stochastic component has also been
VeV-—M~1 7VES|OW(X) added to models for biomolecular simulations to eliminate

explicit representation of water molecuf&s, enhance

for j=0, ko~ 1, sampling?®~28treat droplet surface effectd*°and represent
At,, hydration shell models in large systefis33In the simplest
V—V-M~1 - VEia(X) form of the phenomenological Langevin equatinthe
equations of motion in systerfi) are modified by friction
for i=0, k;—1, and random force terms to yield
A7 X(1)=V(t), MV(t)=—VE(X(t))— yMV(t)+R(t),
Ve—V-M 7VEfasl(X)v (48
wherey is the collision parameter. The random-force vector
Xe—X+A7V, (3)

R is a stationary Gaussian process with statistical properties
(mean and covariance matyigiven by

AT
M-
VeVEM g Ve, (RD)=0, (RORM)T)=29ksTMA(t—t), (4

end wherekg is the Boltzmann constant, T is the target tempera-
ture (italics superscripts’ are reserved for vector/matrix

At
M-l m .
VeV-M 2 VEmi(X), transposées and é is the usual Dirac symbol. The generali-

end zation of Verlet to Langevin dynamics is typically used in
LAt the following form described by Brooks, Bnger and Kar-
VeV=M = VEgou( X). plus (“ BBK” ):293

Note that the application of the slow force components BBK Algorithm

(VEgow results in animpulse The velocities are modified AT

by a term proportional td;k,A7—r times larger than the V”+1/2=V”+M_17(—VE(X”)—)’MVn‘*‘ R"),
changes made t& andV in the inner loop—only outside of

the inner loop(i.e., at the onset and at the end of a sweep ~ XM+1=xN4 A \y"*+12 (5)
coveringAt). This impulse yields undesirable resonance ef-
fects in simple oscillator systeni$;see also the related de-
tailed analysis of Ref. 13. In biomolecular systems, the first
such resonance can occur at abatt 5 fs—half the period N1 it
of the fastest oscillation. Although not explained by reso- —yYMVITEH R,
nance in these papers, large energy growth has been repor
beyond this threshold for impulsers simulations:®** Thus,  \n+1 p i the linear dependency allows solution ¥8r* in
like the single-timestep Verlet, impulseTs methods are closéd form.

limited by numerical considerations; even with a small inner LIN, the predecessor afv,%7 successfully crosses the

timestep, the outer timestep is limited by resonance. The,t neriod timestep barrier with timesteps of 15 fs while
precise limit on the outer timestep depends sensitively Ofyqqcing trajectories which agree closely with standard
implementational details of thets scheme(e.g., number of integrator$. Agreement has been assessed by thermody-

force classes, switching functions expressions, class-updaF%mic averages and geometric properties within 1% or 2%
frequency, and mojeThus, in contrast to the above reports, difference®

ot.her studies have used larger outer timesteps in cor_nbinatlon The first part ofLIN involves the solution of théinear-
with Blerendsen thermostats or fast Ewald interactions, fof,qq Langevin equation at some reference point
example.

We emphasize that non-impulsgs methods _h_ave been X=V, MV=-VE(X,)—H(X-X,)—yMV+R, (6)
earlier propose@?°~?*These are much less sensitive to reso-
nance but realize an energy drift due to their nonsymplectisvhere the matri>t is a sparse approximation to the Hessian
nature. Our extrapolation alternative to the impulse formulaof E at X, .° We have used the Hessian resulting from short
tion in LN does not suffer so severely from these artifacts(e.g., 4.5 A cutoffs’ or the second derivatives coming from
when coupled with the Langevin heat bath. Consequentiythe bond-length, bond-angle, dihedral-angle and the 1-4
we can increase the outer timestep significantly, while ensurelectrostatic components. Our experience has shown that the
ing a stable trajectory. Larger speedup factors are thesecond choice is much easier to implement in practioe
reaped by economizing on the slow-force computations, aexploit sparsity, though the first choice might be preferred if
the cost of the fast and medium forces remains essentially theost were not an issue since the interval over which the lin-
same. earization is retained can be lengthefled.

Vn+l:Vn+l/2+M*l%(_VE(anrl)

fthis formulation, the third equation above is implicit for
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The solution X,(t) of the linearized equations of tioned above forLIN (see note above on the theoretical ca-
motion—the “harmonic component”’—can be approximatedvea). For the explicit integration of systert6), we have
by one of the discretization schemes given in systéfm®r  explored two possibilities. The first used' as a reference
(8) below (described fonn). This numerical solution is an point, in combination with thesecond-order partitioned
efficient alternative to the costly analytic approach, by nor-Runge-Kutta method‘Lobatto Illa,b” ),*® which reduces to
mal mode analysis, over time intervals that are not too largethe velocity Verlet methodsystem(2)] when y=0. This
like 15 fs (see computational details in Refs. 6 and).17 yields the following iteration process f¢X"*1,v"*1} from
While in theory the numeric procedure can become unstablthe initial conditionsX®=X", Vo=V
if vibrational modes with negative eigenvaluegre encoun-

tered(corresponding to solutions exp{(y/\t), wherei, here Vitl2_ iy Ar M~ =VE(X,)—H(X,)(X = X,)
only, is the complex numbey—1), we have not encoun- 2

tered such proplems in pra}ctice for reason:_able choices of — yMVIF124 RIY,

andAr. In our first suggestion of this numeric approdahe . _ _

have also described a procedure for approximating the nega- X' "i=X'+A 7V 172 (7)

tive eigenvalues and the corresponding eigenvegtogs, by A
!_anc;os—based tec_:hnlqt)esprOJectlng the correspondlng Vitloyitlzg aT M~ —VE(X,)— F'(Xr)
imaginary frequencies, and then solving E&). by numerical 2

integration. Fortunately, we were not forced to resort to this
approach for bothiN andLN with careful parameter choices.

The second part ofiN relies on implicit integration to  In slight contrast to th&sk method of systent5), the third
compute the residual componeg(it), with a large timestep. equation above is explicit, but the first equation is linearly
Specifically,Z(t) can be determined by solving the new setimplicit for V' *%/2,
of equations whiclZ satisfies. These are determined by us-  The second subintegration scheme uses position Verlet
ing Z=X—X, and the origin ofX and X, as solutions of rather than velocity Verlet, and defines the inner iteration
systemg4) and(6), respectively. This leads to the equatibns process oiN by
for Z and its time derivativdV, as summarized in the Ap- A
pendix. Xit12_ i _TVi’

Through a combination of efficient algorithms for the 2
subintegration and minimization processes, we have 1 _1 ~ i1
achieved computational speedup for te outer step of 15 VITE=ViHATM T = VE(X) —H(X =X
fs, but the factor is modesStabout 1.5. Nonethelessin is a — yMVIt14 R, ®)
true long timestep methd4.

In the remainder of the paper we present the new method

X(xi+l_xr)_,vai+1/2+ Ri+1].

i+1_ yi+1/2, A_Tvi+1_

LN which combines the efficiency of impulsers methods 2
with the long timestep stability aofiN to successfully over- . . ] ]
come the half-period barrier oiTs methods. Note the Hessian/vector products in the first and third equa-

tions of system(7) and the second equation of systé@).
The random force is updated according to equatitin) at
IIl. THE LN METHOD every A7 substep, so there is no problem of thermal equilib-
. ) o ) o ) rium as for larger timesteﬂs.
The idea ofLN is to eliminateLIN’s implicit integration Thus, the skeletaln procedure is a dual timestep

component and, concomitantly, reduce the interval lengthicheme {Ar,At,}) which consists of two practical tasks:
over which the harmonic model is followed. This works be- . L~ .
a) constructing the HessiaH in system(6) every At,, in-

cause anharmonic corrections are very small for a( . o
linearization-updating frequency of 5 fs or 1€s<. Thus, LN terval, and(b) solving system®), whereR is given by equa-

approximates the linearized model for the equations of moEion (4D}, at the timesteph7 by procedures?) or (8). When

tion everyAt,, (e.g., 1-3 & interval, and explicitly inte- a force-splitting procedure is also appliedue, a valueAt

grates the linearized system using an inner timeatefsuch .>Atm. is used to update the slow forces less often than the
as 0.5 f$. This inner timestep parallels the timestep used tolmeanzed model. ~
update the fast motion imTs, and the linearization fre- Our experience has shown that a spatsesulting from
quency is analogous to the medium timestep used in a thred-5 A cutoffs evaluated every 5 fs gives very similar results
interval MTs scheme. The subintegration in of the linear- i comparison to explicit trajectories at 0.5°f4Ve also
ized model does not require new force evaluations, as imeported that a sparse including only bonded interactions
every step of standard molecular dynamics integration(i.e., bond-length, bond-angle and dihedral-ahgtan be
Since, in addition, the timestep of slow-force updates can beased together wit a 3 fstimestep for similar computational
lengthened significantly,N is computationally competitive. gains, as shown in Table I, which increase with system size.
LN begins with the linear approximation to the Langevin Detailed comparisons are shown in the next section.
equation at some reference positidn (e.g., the previous The length of the parametét,, is limited by two fac-
position, X", or a midpoint, X"*%?). System(6) is then tors: the time interval over which the linearized forces are
solved numerically, at a small “inner” timestefr, as men- adequate, and the fundamental timescale of the interactions
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TABLE I. Timings for LN without (top) and with (bottom) force splitting. The reference timestep BBk is A7=0.5fs and the sparsd of LN includes
bond-length, bond-angle, dihedral-angle and 1-4 electrostatic terms. For the top part of th&€yabl€;; , andTr4 denote, respectively, the time for one
gradient evaluation, sparse Hessian evaluation, and one sparse-Hessian/vector multiplication. The percentages that follow these quantities aepresent the
percentages required for that task during an entire trajectory. The sparsitysathe ratio of the number of nonzero entries in the upper triatdjlggonals

included to the total number of elements in the upper triar{@léN+ 1)/2 entries for alN X N matrix]. The intervalAt(=At,,) in the top part of the table

is 3 fs except for water where it is 1 fs. In the lower part, times are recorded during the 60 ps production simulations, and reflect force splitting overheads.
Thus, evaluating each component of the force is slightly more expensive than in the ideal case, reflected in the top portion of the table. Here we show the
evaluation times for the three parts of the forces: faatme terms associated whh, middle (within 6 A radiug and slow(outside tke 6 A spherical region

Then foreek and eachn variant, we show the percentage of totab time spent on each such componéie subscript in the % column refers to the
percentage foH evaluation: With force splitting the time spent on the slow components decreases, but the percentage of time spent on the fast and medium
forces increases. The values/f,, are as above, anfit=k,At,, wherek,=3, 24, and 48 for then variants. For the reference water simulation with 12 A
cutoffs, Ty in the upper portion includes the cost per step of constructing the nonbonded pair list; in the lower portion the correi@gg(gwinglue(G.ZS)

includes time for evaluating interactions within the 12 A cutoff regi2r78 g and time for constructing the nonbonded pair (&5 9; for LN 3, where the

list is updated every &t steps, the cost of the long-range forces is taken to bet23%/8)=3.22 s. All timings are taken from the simulations described

in the text, run in serial mode on a 195 MHz SGI R10000 Power Challenge computer.

A. LN 1 (without force splitting

Atoms/ H BBK LN LN
Variables sparsity Tye Th Thdq CPUAt cPUAt Speedup
Dipeptide 22/66 0.459 4.7e-022%) 1.2e-3(57%) 4.2e-5 (18%) 2.8e-3 2.1e-3 1.3
BPTI 904/2712 0.012 0.38(77%) 0.11 (18%) 0.002 (5%) 2.35 0.531 4.4
Lysozyme 2030/6090 0.005 1.981%) 0.45 (16%) 0.005 (3%) 12.6 2.53 5.0
Water 12393/37179 0.0003 53(89%) 0.07 (0.3% 0.12 (0.7% 106.9 53.6 2.0
Water [cutoff] 12393/37179 0.0003 3.001% 0.07 (2%) 0.12 (7%) 6.6 3.6 18

B. LN with force splitting
Toewe Th Tve,, Tve N 3 LN 24 LN 48 LN Speedup

slow

%fast 0/Omed %slow %fast 0/Omed %slow %fast 0/Omed %slow LN 3 LN 24 LN 48

BPTI 001 011 005 043 24, 33 43 38, 53 9  4Q; 55 5 74 117 126
Lysozyme 002 045 012 22 & 32 53 28, 60 12 3Q 64 6 93 172 186
Water 002 007 039 535 4 2 97 75 14 79 12, 23 65 54 326 480

Water[cutoffl 002 0.07 039 628 17, 22 61 32, 41 27 3f, 47 16 34 54 71

not included in the approximate linearization. In large sys- t,

tems, the long-range interactions—excluded from the Xr=X+TV,
linearization—have a fundamental timescale much longer

than the interval over which the linearized forces are ad-  H=H(X,),

equate. Thus they can be updated less frequently than the

approximate linearization. This observation suggests that the Fm=—VEmid(X;) = VEgs(X;),
LN idea can be naturally extended by continuing the splitting  -_¢ | ¢

process: The bonded interactions are treated by the approxi- moos

mate linearization, the local nonbonded interactions are for i=1,k;

treated by constant extrapolation over timesteps of length evaluateR
At,,, and the nonlocal interactions are treated by constant

extrapolation over much longer intervaldt (i.e., At X X+ A_TV
=k,At,, for some integek,>1). Thus, like the impulseITs 2

methods, the forc& E(X,) is evaluated once pekt step
but, unlike these schemasy applies this forcat each inner
timestep A7. This constant extrapolation over the outer

Ve (V+M AR FE—H[ X=X, ]+ R))/(1+ yAT),

timestep does not produce an impulse. The splitting of the X=X+ %V
nonbonded interaction into short and long-range parts can be
accomplished using a smooth switching functiddjscussed end
in section IV. end
Formally, theLN method with the above force splitting
for the triplet protocol A 7,At,,,At} is given as follows: IV. RESULTS
LN algorithm

We use forLN the sparse Hessian matrik assembled
X =x+ﬁv from all bonded interactiongbond lengths, bond and dihe-
' 2 dral angleg as well as the 1—4 electrostatic interactidns.,
Fom — VEgo(X,) those among a_tom pairs separated by three boﬁ'ﬂx_e inner _
s slow A timestep fonN is A7=0.5 fs, and the same value is used in
for j=1, k, the reference simulations 8Bk. The middle timestep inN
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is At,,=3 fs except for water, where it is 1 fs; this timestep TABLE II. Averages(mean and variangdor the blocked alanine residue
m ’ ’ . . . _ -1

can be considered an adjustable quantity when force splittingﬂ?ﬁf‘é g‘grjt iSAttrafgt?S”es producedsiay and v with y=20 ps

is used. When force splitting is not us¢als for the small ' il

model amino acid systemthis middle timestep is also the BBK LN

outer timestegAt,,=At, ky=1). In our force-splitting no-

a

tation below, thisN variant is designated as.i 1.” Ek i;? g:zg i;i gz;

In the presence of force splitting itN, we adopt the E 1.78 3.28 1.79 3.30
notationLN 2, LN 3, etc., to indicate the frequenck, for ™ 300.1 52.1 300.6 52.2
updating the slow forces relative tbt,,. Namely, at these ~ Ebona 6.73 2.07 6.71 2.06
integral multiples ofAt,,, the nonbonded pairwise interac- Eﬁ“@'e 2'31 i'gg i'gg i'gg
tions at separations>r are calculated, and the nonbonded Etv‘;'w 012 1.09 014 112
pair list is updated for local r<rg) interactions. In this Euoe —20.4 2.29 ~-20.4 2.32
work, we use the value,=6A. H is updated eacit,y, ¢ —107.0 30.3 —106.6 80.0
along with the local nonbonded interactions associated with ;” d 11;'553 4(?'(?34 1117 '553 4(?.334
atom pairs at separations<r,. Thus, for example, then 3 acc‘}fc 1233 328 1233 3.8
scheme updates the local nonbonded interactionsHaed- One,c 1108 4.12 110.8 4.10
ery At,, but interactions outside of the=6 A range every g,fff” 117.0 Lo 2.76 117.0 075 2.77

3At,,.
The local interactions need not be truncated abruptly atenergy is given in kcal/mol for the total, kinetic, potential, bond length,
ro; rather, we can use a potential switching functioover a bond angle, torsion angle, van der Waals, and electrostatic components.

b S )
buffer region of lengttb as follows: Temperature is given in degrees. .
9 9 °Angles (torsions and bond angleare measured in degrees.

9Bond lengths are given in A.

1, r<ro—b
={ 1+R?(2R—3), ro—b=r<r . . .
S(r) ( ) 0 o ©) correl routines ircHARMM. Computations were performed in
0, Fo<<fr serial mode on a 195 MHz SGI Power Challenge computer

whereR=(r — (r,—b))/b. The short and long-range forces at New York University.
Fshortand F o4 for each atom pair are then defined from the o Blocked alanine residue model
full force F by

Fshor= FS(1),

For the proteins, we used atomic-based cutoffs with
switching function usingg=3 A, and for the water droplet
we used group-based cutoffs with no switchifig., b=R
=0). We use the unit dielectric constant and incladlenon- were recorded every 60 fs.

bonded interactions for the modeled systems, except when The excellent agreement in averages and variances of the
stated otherwise energy componentfotal, kinetic, and potentialand time-

The second subintegration schefeguation(8)] is used averaged properties of the dihedral anglesnd ¢, as well as
in all LN simulations with a collision frequency of=20 or selected bond lengths and angles, can be seen from Table II.
5psL. Our motivation is to use as smalljaas possible to The results obtained with both methods are very close. This
weigh the stochastic terms minimallselative to the inertial is especially good for the stochastic Langevin simulatitns.

termg but at the same time guarantee numerical stability ofT he a”?“'ar variances from both simulations are about 30°
the method. Clearly, ify is too small,LN is unstable. We and 49_ fore andy, respectively. : .

found the midpoint version of equatidB) to tolerate better This good agreement of tm.K andLN trajectories can
lower vy; there are also theoretical justificatich§ince the also be seen from Figure 1, which compares the ensemble-

gradient and Hessian of the potential energy are computed Fnerated dlstr|butlons for a representative bond length
an intermediary pointX"*'2, for reporting purposes we Fc,-n), arepresentative bond angléy(c -c), and the two
compute the bond and bond-angle energies at ¥3ghoint dihedral angles. The matching of tlyeand ¢ distributions,
of the LN trajectory as well. The added cost is negligible. in particular, indicates that the overall motion is essentially
All simulations were run witlcHARMM® version 24b1, the same. This can also be observed from the time evolution
modified to include our integration modules, with the Of the distance between the dipeptide oxygen and hydrogen
CHARMM 22 all-atom parameter s&t(Our routines are cur- atoms that form a hydrogen bortdata not shown
rently being integrated intoHARMM version 25a3.The bath For reference, thepu times required to cover 3 ns are
temperature was set to=1300 K and, for fair comparison, 47 and 36 min forBBK and LN, respectively. This timing
the same starting position, velocity vector, and sequence ¢f0es not include any force splitting fo.
random numbers were used in the compargdand BBK
trajectories. The equilibrationby BBK) and production
lengths are described for each system examined. The corre- Results oftN without (LN 1) and with force splittingLN
lation function and spectral densities are computed by th8&, 6, 12, 24, 48, and 96/ersusBek are shown in Tables IlI

We first examine data fronn andBek Langevin simu-
lations aty=20 ps ! for a small blocked-alanine modé\-
Acetyl Alanyl N’-Methyl Amide), with 22 atoms® All at-
oms are represented explicitly. Data were collected over 3 ns
(following 160 ps of equilibratioy) and trajectory snapshots

Flong: F—Fshort

B. BPTI and lysozyme
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system was then heated from 0 to 300 K by 20 K increments
during 5 ps(5000 steps of 1 fisand equilibrated at 300 K for

a further 5 ps. The final coordinates from this procedure,
together with a random sample of velocities from a
Maxwell-Boltzmann distribution at 300 K, were used to
start the production runs. For lysozyme, we start from the
crystallographic daf8 (1LZ1 in the Brookhaven
databas&?. After the placement of hydrogen atoms, ap-
proximately 10,000 steps ofBNR minimization was per-
formed in cHARMM (gradient tolerance 1), followed by
1-? 1'4[An 1ét5rom;]'6 90 100 110 120 130 30 ps of equilibration by Langevin dynamics at 300 K.

C,-N 9 N-C-C_ As for the blocked amino acid above, we report en-
semble averages and variances for the total, kinetic, and po-
tential energy, as well as the energy compondiisnd,
angle, torsion, van der Waals, electrostatiod the kinetic
temperature. The last row shows the tatau time for LN
and the speedup ovesk (recall that thecpu time reflects
inclusion of all nonbonded interaction—no cutgffs

The data for both proteins show very good agreement in
the mean values reportdfirst column of each.N entry),
with an error not greater than 0.5% for the total energy mean
when LN is compared t@BKk values. For the other means
reported, errors are typically less than 1%, with up to 4%

-180 -120 -60 0 120 240 360

¥ [deg] @ [deg] differences exhibited by the van der Waals téd$o for PTI
and 2% for lysozymge
FIG. 1. Distributions for a representative bond lengt-8 (r); a repre- The LN variances(second column of eachn entry),

sentative bond angli—C—C, (6); and the two torsion angles, for BBk show larger differences when comparedtx variance val-
X** )Oag‘f‘SLN(t::Jr‘;reth'oc'ngdB :"Z”riget’r:‘sdi‘;'n‘;‘r’etri;e”ssteSim(‘:t"':;ionAst- Here yes but, in the worst cas@lectrostatics these errors are
=?3.0 f.s, andy=20 ps’l.pForce splitting is not used for thips smaI’I sys?em, large percentagewise because BEX variance is a _Sma”
SOAt=At,,. percentage of theBk mean(see percentage tables in Ref.
17). That is, when thesBk reference variance is used in
absolute(i.e., numerical terms (e.g., 16 kcal/mol for the
and IV for the protein®PTI (bovine pancreatic trypsin in- electrostatic energy aéPTl) the LN value can be relatively
hibitor) and human lysozyme, respectively. For the initiallarge (e.g., 21 kcal/mol for.N 96, reflecting a 33% error
BPTI structures, we use foBPTI those described in Barth when the two variances are directly compardebwever, the
et al,*® with four internal water molecules. The starting original BBk variance reflects only 0.82% fluctuations from
structure was taken from the Brookhaven Protein Datdhe BBK mean; this increases to only 1.08% in the wanst
Bank42 from the file pdb4pti.ent® After the positions of case. Similarly, for lysozyme, the electrostatic energy vari-
hydrogen atoms were generafédthe coordinates were ance inBBK is only 0.54% of thesBk mean and becomes
energy-minimized with 500 steps of the Adopted Basis0.65% of theBBK mean forLN 96 (a 22% deviation from the
Newton-Raphson method itHARMM,3’ subject to isotropic  numerical value of 27 kcal/mpl The LN variances of the
harmonic constraints on heavy atofisThe unconstrained total energy and potential energy increase monotonically

TABLE IIl. Langevin dynamics average@mean and variangefor BpTI over 60 ps witheek (A7=0.5fs) versusn (A7=0.5fs, At,,=3fs, andAt
=k,At,, wherek, ranges from 1 forn 1 to 96 forLn 96) at y=20 ps ™.

BBK LN 1 LN 3 LN 6 LN 12 LN 24 LN 48 LN 96
E? 1620.2 32.4 1626.8 32.9 1625.6 32.9 1625.0 33.0 1626.0 33.2 1625.0 33.4 1626.2 33.8 1625.8 34.1
= 809.0 22.3 8125 225 8119 224 812.1 22.4 812.4 22.4 8125 24.2 8126 22.4 812.6 225
B, 811.1 23.0 8145 23.3 813.7 23.3 812.9 23.6 813.7 23.9 812.6 24.2 813.7 24.9 813.3 254
Epond 322.4 14.6 322.1 14.6 322.1 146 322.2 14.6 322.3 14.6 322.6 14.7 3225 14.7 3223 147
Eangle 456.2 16.0 4547 16.0 454.4 15.9 453.8 15.9 453.8 15.9 457.3 15.9 4575 15.9 457.3 16.1
Eior 353.6 8.93 355.5 8.94 355.1 8.91 354.7 8.94 3545 8.94 352.2 9.05 3525 8.96 354.4 8.93

Eaw —1190 129 -1173 131 -117.2 131 -1175 131 -1175 131 -1151 132 —1145 133 -117.0 147
Eoec —1958.4 16.0 —1958.0 17.5 —1958.1 17.5 —1957.7 17.9 —1956.8 18.4 —1961.6 19.8 —1961.5 20.6 —1960.1 21.2
T 300.2 828 3015 833 3013 833 3014 832 3015 833 3015 834 3016 8.32 301.6 8.34
cpl 14.0 (1.0 3.5 (4.0 1.9 (7.4 1.5 (9.3 1.3 (10.9 1.2 (11.7) 1.11 (12.6 1.08 (13.0

2Energy[in kcal/mol] is given for the total, kinetic, potenti@With respect to the initial values 1664.96 corresponding to a local minimum near the initial
configuration, bond length, bond angle, torsion angle, van der Waals, and electrostatic components.
bTime is given in hours, with speedup shown in parentheses.
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TABLE IV. Langevin dynamics average@nean and variangefor lysozyme simulations over 60 ps witkBk (A7=0.5fs) andin (A7=0.5fs, At,,

=3fs, At variablg at y=20 ps™.

BBK LN LN 3 LN 6 LN 12 LN 24 LN 48 LN 96
E? 3605.2 46.4 3620.4 47.3 3617.1 47.9 3621.4 47.7 3620.7 48.2 3622.8 48.7 3623.3 49.0 3621.7 49.6
E, 1814.9 32.8 1822.6 33.0 1822.1 33.0 1823.2 33.0 1823.8 33.0 1824.1 33.0 1824.0 33.0 1823.8 32.9
E, 1790.3 33.6 17979 34.2 1795.0 34.7 1798.2 34.7 1796.9 354 1798.7 36.1 1799.4 36.8 1797.8 38.0
Epond 7146 215 7140 215 7141 215 7143 215 7139 214 7141 214 7142 214 7143 21.4
Eangle 1010.3 23.8 1007.1 23.8 1006.1 23.8 1006.7 23.8 1005.3 23.7 1006.6 23.7 1006.7 23.7 1007.5 23.8
Eior 719.4 127 723.7 129 723.6 13.0 7242 129 7246 129 723.8 13.0 724.3 13.0 7228 129

Eyaw —426.7 20.2 —423.3 206 —421.4 215 —4220 205 -—4191 205 —4227 20.6 —422.0 20.7 -—-420.4 203
Eeee —5080.2 27.2 —5078.9 27.8 —5082.5 29.1 —5079.6 285 —5083.4 28.8 —5078.7 29.9 —-5079.3 31.0 —5081.9 33.2
T 2999 54 3012 55 3011 54 301.3 54 3014 55 3014 54 3014 55 301.4
crd 72.4 (1.0 14.9 (4.9 7.8 (9.3 5.7 (12.9 4.7 (15.9 4.2 (172 3.9 (18.6 3.8 (19.)

aSee Table 11l legend. Here the potential energy is given with respect to the initial ¥&687.85 kcal/mol, corresponding to a local minimum near the initial

configuration.
bcpu time is shown in hours;N speedup is shown in parentheses.

with At, exhibiting up to 14% errofvan der Waals energy HereV(t) represents the discrete approximationvtat time

for BPTI in LN 96) in direct comparison to theek variance t, and the brackets denote ensemble averages. The transfor-
value, but typically much less. The van der Waals variancenation of this real-valued function into the frequency do-

for BPTI obtained byBek is 11% of the mean value; they main produces the spectral density function
96 error of 14% corresponds to a variance of 12% ofabie

mean. Thus, increasing the interval between slow-force up-

dates does not affect the trajectory means significantly but

yields somewhat larger variances in these quantiféeg., o

electrostatic energy Still, upon careful examination, the be- BPTI .

havior is satisfactory. AR
To examine configurational behavior in time for these 15t

proteins, we also show in Figures 2—4 the root mean square
(rms) fluctuations for various quantitiesa) total rms from

the starting structurgp) rms of the backbone Latoms(58

for BPTI, 130 for lysozymg and(c,d) rms fluctuations of the

¢ angles along the protein backbone. For both proteins, we
also performed @Bk simulation with 12 A cutoffs for com-
parison to theN trajectories a%,, and hence the outermost
timestep, increases.

First, with respect to the total rms fluctuations of the
proteins from the initialequilibrated structure, we note that
the BBK trajectory with cutoffs diverges from the other
curves after around 35 ps. Most of thre variants follow the
pattern ofeBk without cutoffs well, but the.N 96 version
shows poorer agreement than the others. This difference is
more notable fosPTI, but still the trend is not a diverging
pattern as is seen for the cutoff trajectory.

The rms plots of each Latom in the proteingFigure 3
again show good agreement between thevariants and 0.8l
BBK, as well as a substantial difference from the cutoff tra-
jectory. The same good agreement can also be seen in the 0.6
rms fluctuations of eacly (Figure 4 with LN 96 showing

e o o o BBK without cutoff

BBK with cutoff
—— LN 1,24,48

! E —— LN 96

o
o
I
I
I
[

20 40 60

RMS [Angstroms]
o

-—t b
M M o O

-t
T

poorer agreement. Th¢ data(not shown exhibit the same 0.4
trends. Recall that inN 96 the slow forces are only updated 0 2' . . .
every 288 fs! These results suggest that 24 or LN 48 “0 20 40 60

present more reasonable limits, especially since the : .
asymptotic speedup is nearly reaciede Table)l time [plCOSGCOﬂdS]

Dynamic analyses of the trajectories are performed VI&|G, 2. The root-mean-squargms) deviations from the initial(equili-
the cosine Fourier transforms of the velocity autocorrelatiorbrated structure ofspTi (top) and lysozyme(bottom) taken from 60 ps
functiorr? Cw(t), where Langevin simulations withy=20 ps':: sek without cutoffs (@@®), BBk

with a 12 A cutoff(—-), LN 1,24,48(—) andLN 96 (—). As before, At

Cuv=(V(1)TV(0))/(V(0)V(0)). (10 =0.5fs, At,,=3fs, andAt=k,At,, wherek, is the number followingn.
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FIG. 3. G, rums fluctuations forspTi and lysozyme over 60 ps Langevin
simulations. FoepTl, the top panel compares 1 andiN 12 results task,
without (eee) and with(—-) cutoffs (at 12 A), and the center panel shows
LN 24, 48 and 96 versusek. The lower box comparessk to LN for
lysozyme.

©

dt Cyy(t)cos wt, (11

Cuv(w)= Zf
0

wherew=2mcv (c=speed of light and v is the wave num-

ber.

The spectral density functions f@pTI and lysozyme
(Figure 9 are shown for two values of (5 and 20 ps?) as
obtained from trajectories @Bk, LN 1, LN 96, and Verlet
(v=0). The excellent agreement between allitkeandssk
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FIG. 4. Root-mean-square fluctuations of the backbone torsion anfgie
BPTI and lysozyme over 60 ps Langevin simulationsyat20 ps* as ob-
tained byssk, LN, andsek with a 12 A cutoff.

spectra is striking. We note spectral peaks corresponding tb6 ps ') agrees more closely with Verlet than the larger
O-H stretches around 3300 cfand C—H stretches around used (20 ps?). We also notice a rough agreement between

3000 cm %, The regions around 1400 crhand between 600

the y=0 and y=5 ps‘1 spectra. The Langevin modes ap-

and 1200 cm' are associated with various bending nodespear more smoothed out in comparison to the resolved New-

and also heavy-atom bond vibrations such as-@ and
C=0.

Interesting from these spectra is the dependencey,on

tonian frequency pattern, with splitting of some of the more
notable Verlet peaks.
Besides velocity autocorrelation functions corresponding

that is the dependence of dynamics on the governing modeéd all atoms, we also calculated these spectragfon from

rather than the scheme. The Verlet=0) spectra show a
sharper peak for the C—H stretch around 3000 tnas well

as sharper patterns for the peak area 1400'camd the re-
gion below it. The Langevin trajectory with the smallgr

hydrogen atoms onlydata not showp the difference be-

tween Langevin and Newtonian modes is smaller for both
The trends in Langevin modes have been investigated by

a number of authors as a function of the damping parameter
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i speedup approaches 13 &nTI and 19 for lysozyméTables

IIl and 1V). Performance improves here since savings in the
time-consuming slow force are realized, and the asymptotic
behavior stems from the increased importanceced time

for the fast and medium force compone(gse also Table)l

We discusscpu issues in more detail below.

C. Water droplet

Next we examine in Table V and Figure 6 results for a
water droplet of radius 31 Awith all nonbonded interactions
considereg This system sizé4131 molecules, 37,179 vari-
ables is large enough to envelop lysozyme. We use
CHARMM'’s quartic spherical boundary potential to maintain
the appropriate density of the system and eliminate boundary
effects on the primary region of interé§tA flexible, modi-
fied version of the TIP3P water potential is used, in which
a van der Waals term for the hydrogens prevents unusually
close contacts with other charged atoms. Here we compare

L 'l ]

1
0 05 1 15 2 25 3 35 4 Langevin trajectories with collision parametg50 ps L.
We found for this system that smaller valuesdf,, (1
or 2 fs) work better than 3 fs in terms of agreementgx.
FIG. 5. BpTi and lysozyme spectral densities derived from the cosine Fourierl hiS can be explained by the high degree of anharmonicity
transforms of the velocity autocorrelation function for all atoms freea  governing the water droplet system and the fast librational
and LN Langevin trajectories of length 6 ps for two choices of collision modes in water. Recall that our results for water used no

wave number (x1000) cm~1

frequency: y=5 and 20 ps'. Here A7=0.5fs, At,=3.0fs, andAt L .
=At,, for LN 1 andAt=96At,,=288 fs forLn 96. Spectral densities for the SWItChlng function and group-based cutoffs. Indeed, we no-

Verlet method ¢/=0) are also shown for referenée -). ticed increased sensitivity to the stability of the LN simula-
tions to the choice of short-range cutoffs. The good agree-
ment with the referenceBk trajectories can also be seen

(see Cas¥ for a review and references cited thepeiith  from Figure 6, which shows for the different protocols the

the goal of understanding the effect of solvent viscosity orerrors in various energy components relativessa. Results

biomolecular motion. Essentially, it is found that the low- are given for long-range forces updated eviesit,, for in-

frequency vibrational modes become overdamped in théegersk, ranging from 1 to 6. The bond energy component

Langevin treatment and that the decay of various correlatiomeveals the largest errors for this system, here at most 2%

functions is smoother for Langevin than Newtonian motionwith LN 3 and only 1% withLN 6. The best agreement with

components. the small-timestep method in terms of energies and variances
With regard to speedup, then 3 scheme gives a is obtained with.N 6 (At,,=1fs, At=6 fs) formulation. The
speedup factor of 8 foBPTI (2712 variables and 9 for speedup oiN 6 with At,,=1fs (10.2) is only slightly less
lysozyme(6090 variables Performance improves as system thanLN 3 with At,=2 fs (10.7), making the case for reduc-
size increases because of the larger fraction of long-rang@g At,, strong. Thus, the outer timesteplof dominates the
interactions. As the outermost timestep increases, cPuU performance for larger systems. This is because the

TABLE V. Langevin dynamics averagémean and variangdor the water droplet simulations over 0.4 ps with all nonbonded interactions incleded:
(At=0.5fs) versusN (A7=0.5fs,At,,=1 and 2 fs, and\t=At,,, 3At,,, and 6At,,) with the sparséd constructed for bond-length and bond-angle terms,
y=50ps™.

BBK LN LN LN 3 LN 6

At=0.5"s At=1fs At=2fs At=2fs At=1fs
E? —59094.6 7719 —591131 797.8 —58599.6 7329 —58602.3 734.8 —59111.2 795.3
= 11133.8 232.7 11128.4 251.0 11381.4 212.2 11384.3 211.7 11131.3 250.4
E, —70228.4 664.3 —70241.6.0 672.2 —69981.0 644.4 —69986.5 646.5 —70242.5.0 669.7
Epond 3838.0 86.8 3788.7 84.5 3900.6 75.2 3902.0 75.5 3786.3 84.4
Eangle 4105.1 74.4 4098.4 74.3 4099.3 75.0 4099.2 74.3 4098.6 73.8
Evaw 6900.1 222.0 6894.2 220.4 6877.6 215.0 6878.6 214.3 6893.8 218.2
Ecec  —85065.0 849.5 —85016.2 855.3 —84851.8 832.8 —84859.7 834.6 —85014.6 851.3
T 301.4 6.30 301.3 6.80 308.1 5.74 308.2 5.73 301.3 6.77
cpf 17.6 (1.0 8.81 (2.0 4.45 (4.0 1.64 (10.7 1.72 (10.2

8Energy is given in kcal/mol for: total, kinetic, potential, bond-length, bond-angle, torsion, van der Waals, and electrostatic terms.
bTemperature is given in degrees.
cpu time is shown in hours, with speedup 0f in parentheses.
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10 .
5 water [cutoff] i
0 L L
LN6 (At = 1fs) 0 100 200 300
m
LN1 (A tm = 1fs) Interval [fs] between long-range force updates
LN3 {ﬁ t = 2'[5} FIG. 7. LN speedup compared &BK simulations withA 7=0.5 fs. Shown
m are the ratios ofcpu times from 60 ps simulations faek and LN with
LN1 {-"'}' tm = Efﬁj At,,=3.0fs, forepTl and lysozyme andt,,=1 fs for water. In all cases,

At=k,At,, wherek, ranges from 1 to 96. The Langevinvalues(in ps™?)
FIG. 6. Error inLn energies for the water simulations relativesex. The ~ are 20 for the proteins and the water system with cutoffs, and 50 for the
LN error is shown for the different energy compone(gse Table V for water system without cutoffs. The data for the water system is based on our
different LN protocols propagated over 0.4 ps gt 50 ps* without any estimate of 73 days for a 60 ps simulation without cutoffs.
cutoffs enforced.

long-range and the newer short-range forces include contri-
short-range forces require a small percentage of the work fdoutions from the given atom pair. We continue to study this
the long-range components. issue.

While longBBK simulations of the water system without To examine the performance ofi with a more practical
cutoffs are not generally feasibleve estimate that a 60 ps water model, we also simulated the dynamics of the water
trajectory would require 73 dayswe have generated 60 ps system withAt,,=1 fs and 12 A nonbonded cutoffs for both
trajectories using.N. For example N with At=48 fs re- BBK andLN at y=20 ps . The smallery value is preferred
quired 36.7 h, a speedup of 48. Some timing results ard a better agreement of the spectral densities to Verlet is of
shown in Figure 7. From this figure we see that smaller outeconcern. For large values &, (e.g., 24 or 48 the non-
timestepsAt are used for water than for the proteins consid-bonded pair list associated with the 12 A cutoff is updated
ered above. The outer timestep is limited by processes in thevery k, LN steps, along with the recalculation of the non-
physical systeme.g., fast librations for watgrthis is re-  bonded forces. For smaller valuésuch ask,=1 or 3 the
flected in the need to update the pair list associated with thaonbonded cutoff pair list can be updated less frequently. In
force-splitting cutoff distance more frequently. We have hadhe latter situation, we update the nonbonded pair list every
preliminary success in extendingt by updating the force- 24 fs(i.e., every 8 outer steps ol 3). We found again that
splitting pair list more frequently than the long-range non-this updating limits the size df,. However, the computa-
bonded force evaluations. With this practice, however, theréional efficiency of LN is not compromised here, due to
is the danger of including interactionsmeitherthe long nor  asymptotic speedup considerations considered in the next
short-range treatments, or in bofimultaneously That is, section. Results are shown in Table VI: The agreement of
during the interval over which the long-range forces are kepBBK to LN is very good; significantly the speeduplof 48 is
constant, the separation of certain atom pairs may increasel.

(or decreasesulfficiently to change the status from short to To compare the structural properties of water trajectories
long-range(or vice versa In the first case, the interaction is produced byLN, we have run 5 ps simulations for a box
no longer considered in the short-range treatment and is nabntaining 216 TIP3P water molecules. We found the large
included in the long-range treatment until the next long-system with the quartic boundary potential inappropriate for
range force update. In the second situation, both the oldehis purpose due to an accumulation of excessive pressure in
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TABLE VI. Langevin dynamics averaggsnean and variangefor the water system over 5 ps with nonbonded interactions truncated at &8<ACA 7
=0.51s) versusN (A7=0.5fs, At,=1fs, andAt=Kk,At,, wherek,=1, 3, 12, 24, 48at y=20 ps *.

BBK LN 1 LN 3 LN 12 LN 24 LN 48

E? —67245.8 3122.6 —67187.9 31155 —67202.8 31355 -—67125.0 3160.5 -—-66976.4 3110.7 -—66952.6 3109.1

E, 11141.3 89.6 11239.7 92.5 11249.2 92.2 11276.8 95.3 112945 91.9 11284.8 91.7
E, —78387.1 3099.4 —78427.6 3085.3 -—78452.0 31145 -—78401.8 3132.6 —78270.9 30919 -—78237.5 3082.3

Ebond 3905.1 80.0 3876.0 75.8 3880.4 78.2 2872.3 76.6 3878.1 77.2 3868.7 73.9
Eangle 4809.3 276.1 4801.3 268.8 4807.0 275.3 4820.3 289.8 4813.7 263.3 4808.6 274.8
E,qw 8012.3 273.7 8009.5 277.2 8006.6 275.2 7995.1 273.4 8016.8 278.9 8007.1 282.4
Eelec —05113.8 3630.8 —95114.4 3606.4 —95146.0 3639.4 —95089.4 3679.0 -—94979.5 3618.3 —94921.9 3606.1

T 301.6 2.43 304.3 2.51 304.5 2.47 305.3 2.58 305.7 2.49 305.5 2.48
cPl 9.2 (1.0 5.0 (1.9 2.7 (3.9 1.7 (5.9 15 (6.1 1.3(7.)

8Energy[in kcal/mol| is given for the total, kinetic, potential, bond length, bond angle, van der Waals, and electrostatic components.
bTime is given in hours, with speedup shown in parentheses.

the system’s interior. The equilibrated structure was obtainegeak in the computed O-0O radial distribution functions was
from thecHARMM test file test/data/tip216.cttland used for  originally attributed to this water modé.

LN andBBK simulations. Radial distribution functions from

these simulations are compared in Figure 8. These distribu- ,

tions agree well with each other and with those reported irf- CPU time

other simulations that developed the TIP3P motielr good The two parts of Table | show theru timings of BBK
agreement with experiment; some flattening beyond the firsfersus.N without (part A) and with(part B) force splitting in

LN. In part A, for each system we show the sparsitytlofas
measured by the ratio of nonzero elements in the upper tri-

T angle(diagonals includerto the total number of elements in
3t g T the upper triangléN(N+1)/2 entries for arlNX N matrix].
0 e ¢ BBK The value ofTyg gives the costin seconds of evaluating
ol — LN 12,48 | the full gradient, and'y specifies the evaluation cost of the
sparse Hessial.fq indicates the cost of one multiplication
1t . ] of H by a vector. The cost of the linearization phase_wf
o - (covering the intervalAt,,) amounts tok sparse-Hessian/
. . . ) vector products. Following thepu values, thecpu percent-
02 3 4 5 6 7 age of that taske.g., gradient evaluatignwith respect to the
entire computational time is also given. In the last three col-
2 . . . . i umns, thecPu costs perAt interval (= At,, in part A) are
also given foreBk andLN, followed by the ratio of the two
1.5} 8oy 1 (speedup
As system size increasélysozyme has 2.5 times more
1t o ] atoms tharspPTI), the number of entries in the approximate
HessianH grows linearly, and so does the computational
0.5 . cost of integrating the linearized equations of motion
(ﬁ/vector products In principle, the cost of evaluating the
01 2 3 4 5 6 - Hessian should also increase linearly with the number of
entries, but the currertHARMM implementation of the 1-4
15 . ' . ' ' electrostatic terms does not exEIoit the increased sparsity.
Note that the sparsity of outl is less than 5% for sys-
Suy tems with more than 6000 atoms. One calculatiorHofe-
17 ] quires about one fourth thepu of the gradient calculation.
i This fact, combined with the cheapness of evaluating the
05| linearized forces—about 24% of the total time &wTI, 19%
for lysozyme, and only 1% for the large water system with-
out cutoffs(9% for water with a 12 A cutoff—explains why
0 . . . . . LN 1 offers overall speedups.
1 2 3 4 5 6 7 The smallcpu percentages for the sparse Hessian evalu-

FIG. 8. Water radial distribution functiorig(r)] for O—O, O—H, and H—H _atlon and the linearization itN 1 a]so imply that ,the major-
interactiongoo, on» andgyy) calculated from 5 ps simulations wiiek ity of the work comes from grad|e_nt CompUtaUQnS-_ Indeed,
(e®), andLn 12, 48 withAt,,=1.0fs, aty=20 ps™. the percentage afPu spent on gradient computation is about



J. Chem. Phys., Vol. 109, No. 5, 1 August 1998 E. Barth and T. Schlick 1629

80% for lysozyme and 99% for wat€®1% with cutoffg in AsymptoticLN speedup
LN 1. This suggests the benefit of force splitting_iy in the
spirit of MTs methods, for additional speedup. For the three- =kiTve/(Tve .t TRt KiTrq). (13

stagemTs method described in syste(8), the speedup fac-
tors depend on the ratio=At/A7 and the cost of the full
gradient VE) relative to the gradient of the fasV E;,s) and
the medium VE,,q) forces. Similarly inLN with force split-

Using the data from Table I, whekg =6, we can calculate
the asymptotic speedup foBPTI to be (6x0.38/(0.05
+0.11+6x0.002=13.3. The analogous calculation for

. . .. lysozyme gives 19.8 as the approximate asymptatic
ting, where the fast forces are treated by Ilneanzatlony Y 9 bp ymp

: Speedup. It can be seen from Tabléart B) and Figure 7
speedup depends on the CostiE relative to the COSEOf that LN rapidly approaches the asymptotic speedup as the

VEnmiq and the cost of evaluating the approximate Hesblan |ong-range force update frequendy,, increases.

and performing the sparse Hessian/vector products. Similarly, thecpu cost of the impulseiTs method[sys-
The costs of the fast and medium gradient parts, as welem (3)] is given by

as the linearization components, are given in part B of Table
I. Note that for the proteins, more than half of the work for TMS=Tye+ ka(Tye, +tKiTve,):

the fast components involvés evaluation. Using these val-
ues, we can estimate tleeu cost of LN relative toBBK and
the impulsemTs scheme, as follows. Thepu cost of oneAt Impulse MTS speedup
step ofLN is given by

and the speedup over Verl@r BBK) is

=koKi Tye/[Tyetka(Tye  +kiTyve, )]

TH=Toe+Ka(Tve, ,* Tat+KiTa),
i =K Tye/[Tye/ko+(Tye, T KiTve, )] (14)
whereTg is the cost of evaluating the sparse Hessian, and - ) )
Thq is the cost of a sparse Hessian vector product. The codp contrast toLn, the stability of the impulse method dis-

of BBK over the sameAt) interval isT®*=rTyg. TheLn  cussed above and in the companion papestricts the pa-

speedup OVEBBK is given by the ratio rametersk; andk, to values such tha;k,A7<5fs. Hence
the notion of asymptotic speedup does not apply in this case.
LN speedup: Kok, Toe /[ Tye+ka(Tye, +Tr+kiTrg)] Using theBpTi data from Table I, and the typicdlvalues
m k;=4 andk,=2 andAr=0.5 fs, themTs speedup oveBBK
=K1 Tve/[Tye/ko+(Tye, +t TatkiTra)l. is close to 6, possibly higher than realized in practice due to

omission of some overhead calculations.
(12) Assuming that the timestep treatmeXtt,,=k;A 7 is the
From equation(12) we see that as the long-range updatesame in both methods, we can approximatethespeedup
parameter k, grows, the LN speedup approaches the over mMTs by taking the ratio of the costs pert,, of each
asymptotic limit method

K\ [ Tyetky™(Teg,  +KiTve,)
(15

LN speedup ovemTsS~| -—— ,
peetip (kz Tret K3 (Tre,  + TAtKiThg)

wherek}™ andk}" correspond to the long-range force updateE. Comparison of LN to MTs at increasing At

frequencies in the respective schemes. In fact, we see from 1. < cess ofn in overcoming the half-period reso-

eq. (15 that the speedup is given by the product of the rationance due to its extrapolative technique can be seen from

(kz'/k™) and the ratio of the costs for treating the mediumijgyre 9 shown foepTi and lysozyme. The results for water
and fast forces in the two methods. Thus, the speedup adva(hot shown reveal the same trend. The impulges version

tage ofLN over MTs comes largely from the method's suc- for Langevin dynamics has been adapted and implemented in
cess in using a largésr,, and hence largekt value for the  cpyarmm for this purpose. The plots show the average bond
slow-force updating frequency. This computational advanenergy, and associated variance, as a function of the updating
tage is amplified by the second term in equati®b) when  frequency of the long-rangéslow) forces. We useAt,,

the linearization treatment offers cost savings over direct=1 fs in all cases, so the abscissa also corresponds to the
evaluation of the fast and medium force components. Thigime in units of femtoseconds. The total simulation times are
expression also suggests thats linearization approach can short (see captionsto reduce computation time. We note
be replaced by direct calculation of the fast forces when linthat the presence of stochasticity renders the impulse method
earization is not advantageous in terms of computationalmmune to the half-period barrier, but not at the peri@@
speed. fs) of the fastest motion, where large energetic fluctuations
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1000 . r T T T r namics are, in fact, relatively large. In our experience, many
differential-equation packages that use adaptive timesteps do
ol © I'_m,f""“"‘"'a"“* not permit the typical 1 fs timesteps used in molecular dy-

namics(only one tenth the fastest perigdiue to violation of
error tolerance parameters. Indeed, Deuflhetrdl. recently
showed that only timesteps less than 0.01 fs yield conver-
gence of the end-to-end distance of a butane mole¥ufsse
also Ref. 17.

The Verlet method has been generalized in a number of
ways for increased efficiency in biomolecular simulations.
Success has been achieved by adding constraintsHagE
(speedup of 2-¥°* and by usingvTs methods such as r-
Respa and Verlet-{speedup of about)8%!! In each such
case, the time discretization shares the structure-preserving
properties of Verlet, as well as the inherent numerical stabil-
ity issues which limit the timestep length.

With the introduction of stochasticity in Langevin dy-
BPTI namics, a number of numerical integration schemes become

available which are not applicable for long-time simulations
300 I ] in the time-reversible regime of Newtonian dynamics. The
exchange of Hamiltonian dynamics for stochastic dynamics
can guarantee better numerical behavior, but the resulting
o ) 1 $ ) T T T4 detailed dynamics are not the same.
Interval [fs] batween long-range force updates Here we have described thew method, which differs
o ) from those mentioned above in that forces are applied fre-
FIG. 9. |mpLi|SEMT57\1IS LN for Langevin simulations OEI?TI and lysozyme quently, but updated more or less rarely, based on the fun-
over 2 ps (y=20 ps *). Average bond energy and variance are shown for . .
the two methods: Verlet-lir-Respar impulsens) generalized for Lange- damental timescales involved; between updates, the forces
vin dynamics andn with extrapolation of the long-range nonbonded forces. are held constant. Such extrapolation methods appear quite
The abscissa gives the intervah fs) betW:e”d}JPd?teSHOf the '%”g'c;angde suitable for Langevin dynamics simulations in combination
;o;;zs,fgre;g;eg risl:';tde;f:é'oen\feﬁ;tj'gif& o el 2 chi‘fefso’r sl with small y, to stabilize the simulations but weigh the iner-
updated everpt,=1.0 fs. tial terms maximally. Moreover, this extrapolative approach
of LN does not suffer dramatically from the resonance limi-
tations of the impulse treatmerftsThis results in speedup
result. Our linear analysisshows expected artifacts at mul- factors over currentts schemes, and thus longer times can
tiples of half the period for a two-class force-splitting be followed for the same amount of computing time.
scheme. TheLN scheme uses the tripl€A 7,At,,At}, whereAr

No such average-energy increase due to resonance is oberresponds to the subintegration time of the linearized equa-
served forLN. We found that the energy increase effect fortions of motion,At,, is the frequency of updating the har-
impulsemTs can be significantly diminished by increasigg ~ monic approximation, andt is the interval between slow-
but our reasoning for minimal relative weight of the randomforce updates. In each inner timestep, sparse-Hessian/vector
forces argues against this approach. multiplications are required; at integral multiplessff,,, the
local Hessian is updated along with the fast and “medium”
forces (the latter defined here withia 6 A radiug; and,
everyAt=k,At,, interval, the long-range forces are recalcu-

Traditional time discretization schemes for molecularlated. We have usefi7=0.5 fs, At,,= 1 fs (for watep and 3
dynamics—Verlet and its variants—have been popular fofs for the proteins, andt=Kk,At,, wherek, extends from 1
30 years. This is due to their simplicity and reliability. The to 96. The nonbonded pair list is updated evAry but this
suitability of these methods for propagating molecular mo-might improve(see note in text Special care was needed in
tion is largely attributable to their preservation of abstractthe implementation of cutoffs and switching function param-
propertiegsymplecticness, phase-space volume, time reverseters. We have shown through detailed examinations of tra-
ibility ) present in the exact solution of the Newtonian equajectories for two proteins in vacuum and a water droplet
tions of motion. The disadvantage of these methods is thatystem thatN gives very good agreement to explicit Lange-
the length of timestep, and hence the efficiency of the overaNin trajectories performed at the inner timestdp. This
simulation, is limited by numerical stability of the method. agreement was assessed in terms of ensemble-generated av-

Furthermore, the notion of symplecticness becomerages and means for the energy components, geometric
more blurred as the timestep is increased, since all theoreticgliantities, and rms fluctuations from the initial structure, and
concepts(e.g., the closeness of the symplectic trajectory toof each backbone Land ¢ angle from its trajectory mean.
that of a nearby Hamiltonid® are true only in the limit of The correctness of the resultingt dynamic properties
very small timesteps. The timesteps used in molecular dywas demonstrated by the agreement of the spectral density

Lysozyme

:
——i

Epong [kcal/mol]
2

&
2

V. DISCUSSION AND CONCLUSION
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function of LN to that obtained for a small-timestep Langevin ply this sparse Hessian by a vector.drRARMM, the sparse
trajectory. Speedup factors depend on the problem(see Hessian multiplication routine is provided as part of
tableg, but factors exceeding 10 arise whienis 6 or greater the pDimMB diagonalization module. A combination afN
in our examples. with fast electrostatic treatments—multipoles or Ewald
A comparison to Newtonian dynamics demonstrated thasummations—is possible in the same way as fors
as vy is decreased, the smoothed Langevin spectra resembéehemes. However, as found wmTs schemes with fast
more closely the sharper Newtonian spectra. In particular$ummationsll,0 the efficiency of the integrator, relative to tra-
the agreement between the spectra aty=5 ps ! with that  ditional small-timesteps methods, decreases somewhat due to
of Verlet (y=0) is not bad. Thus, a value smaller than faster force routines.
20 ps ! may be preferred if such considerations are impor- It is also possible to substituten’s linearization ap-
tant. However, decreasing increases the probability that a proach with direct calculation of the fast forces. The linear-
trajectory will become unstable at some point because thigation is not crucial forN’s stability and efficiency; rather
stochastic terms may be too weak to restore equilibrium. Wé is the combination of stochasticity with extrapolation that
have encountered such a case §6£5 ps ! in LN 48 with ~ avoids notable resonances and offers speedup factors exceed-
At,,=3 fs (LN 96 was stable for this protogobut this could  ing 5; see also the companion papéihus, the cost benefit
occur more generally. In such occurrencesshould be in-  of this substitution(straightforward force-splitting instead of
creased or\t,, decreaseddoing either stabilized the com- linearization plus force splittingshould be determined on
putation above See paper fifor a discussion of the effect the basis of the cost distribution of the associated compo-
of y on LN’s stability. nents for the target systefaee Table |, part B and equation
The general issue of Langevin versus Newtonian dynam(15)]- Note that with our linearization treatment for the pro-
ics depends strongly on the applications in mind. For therfeins, more than half of the work in the fast components
modynamic and structural questions, the efficiency ofithe  involvesH evaluation.
method may be preferred, while for detailed dynamic ques- In essence, the stochastic extrapolative approaatnof
tions, symplectic integration of the Newtonian equationsinvites many variations and allows molecular dynamics prac-
may be important. Given the highly approximate nature oftitioners to balance desired accuracy, as measured by the
the governing molecular mechanics force fields and the enoresemblance to Newtonian dynamics, with computational ef-
mous spatial and temporal scales involved in biomoleculaficiency.
motion, theLN method may be well suited for thermody- Note added in proof:We have since implemented a
namic and sampling questions. Small-timestep dynamicdirect-force version of LN, and the results are similar to
simulations can always be performed in tandem once an irthose described here with the linearization. These results, as
teresting region of conformation space is identified. well as LN performance on solvated biomolecular systems,
Based on our analyses, we recomméne 24 or 48 as  will be reported separatelfSandu and Schligk
an upper bound. The asymptotic speedup is nearly reached
for these valuegFigure 7. Similarly, theAt,,=1fs used for ACKNOWLEDGMENTS
water is likely to be the recommended value for solvated ) _ )
biomolecules, although slightly larger values can be consid-  This work is dedicated to the memory of Edward R.
ered. Water's fast librational modes appear to force thid-riedman, who provided the essential computer visualization
smaller value forLn as well as formTs schemes. If this SUPPOrt, and much more, over many years of devoted service
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col may be pushed further, for example by using a smaller
radius tha 6 A for defining the medium forces, increasing APPENDIX: LIN DESCRIPTION
At,,, and also incorporating nonbonded cutoffs at a large

value(e.g., 15 A. . . (7) or (8) for the nextX,, Xﬂ*l, the residual component
The implementation ot in any program that already Z(t) and its time derivativaV(t) are obtained from

incorporates force splitting is straightforward. Besides de-
composing the forces, such programs must carefully turn off ~ Z(t)=W(t),
the slow forcedi.e., by means of a gradual switching func-

After the linearized equation®) are solved by system

tion such as that given in equati¢®)] and update the local MW(t)=— VE(Xp+Z(1)) — YMW(t) + VE(X,(t))
lr;ctxgg'onded pair list every time the slow forces are recalcu- R —X,). (A1)

In addition to this splittingN requires a routine to as- The initial conditions for systemAl) are Z(0)=0 and
semble the sparse Hessian approximation from the localN(0)=0.
terms (bond lengths, bond angles, dihedral angles, and To solve this system for the residual components,
nearby electrostati¢sand a subprogram to efficiently multi- applies the second-order midpoint scheme. Following alge-
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