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Overcoming stability limitations in biomolecular dynamics. I. Combining
force splitting via extrapolation with Langevin dynamics in LN

Eric Bartha) and Tamar Schlickb)

Department of Chemistry and Courant Institute of Mathematical Sciences, New York University
and Howard Hughes Medical Institute, 251 Mercer Street, New York, New York 10012

~Received 22 July 1997; accepted 17 February 1998!

We present an efficient new method termedLN for propagating biomolecular dynamics according to
the Langevin equation that arose fortuitously upon analysis of the range of harmonic validity of our
normal-mode schemeLIN. LN combines force linearization with force splitting techniques and
disposes ofLIN’s computationally intensive minimization~anharmonic correction! component.
Unlike the competitive multiple-timestepping~MTS! schemes today—formulated to be symplectic
and time-reversible—LN merges the slow and fast forces via extrapolation rather than ‘‘impulses;’’
the Langevin heat bath prevents systematic energy drifts. This combination succeeds in achieving
more significant speedups than theseMTS methods which are limited by resonance artifacts to an
outer timestep less than some integer multiple of half the period of the fastest motion~around 4–5
fs for biomolecules!. We show thatLN achieves very good agreement with small-timestep solutions
of the Langevin equation in terms of thermodynamics~energy means and variances!, geometry, and
dynamics~spectral densities! for two proteins in vacuum and a large water system. Significantly, the
frequency of updating the slow forces extends to 48 fs or more, resulting in speedup factors
exceeding 10. The implementation ofLN in any program that employs force-splitting computations
is straightforward, with only partial second-derivative information required, as well as sparse
Hessian/vector multiplication routines. The linearization part ofLN could even be replaced by direct
evaluation of the fast components. The application ofLN to biomolecular dynamics is well suited for
configurational sampling, thermodynamic, and structural questions. ©1998 American Institute of
Physics.@S0021-9606~98!50220-6#
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I. INTRODUCTION

The increasing availability and speed of high-end wo
stations has made molecular dynamics simulations a po
ful desktop resource. Although not yet considered a full pa
ner to experiment for studying molecular configuration a
function, the numerically generated sequence of molec
configurations—obeying Newtonian physics—offers insig
into molecular flexibility and thermodynamic processes. B
sides the uncertainty in force fields, this subordinate statu
molecular dynamics to instrumentation can be attributed
the relatively short~e.g., nanosecond! trajectory lengths tha
can be simulated due to both computer hardware and s
ware limitations.

In biomolecular simulations, computational cost is dom
nated by the frequent evaluation of the potential energy fu
tion and its gradient. Typically, one million steps are r
quired to simulate a nanosecond, with each step enta
several seconds of computing for a large system. With s
plifications of the simulation protocol~e.g., reduction of the
nonbonded interactions considered!, the cost per step can b
reduced to a fraction of a second, but a nanosecond sim
tion of a 20,000-atom system on a 300-teraflop machine
requires several days.1 Unfortunately, the steps cannot b
lengthened arbitrarily, not so much due to loss of accurac
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far as thermodynamics and sampling are concerned, but
cause of the numerical stability of the integrator.

Stability is limited by the molecular high-frequency v
brational modes, or bond stretching. The fastest periodP
relevant to biomolecules is around 10 fs~associated with a
wavelength of absorption around 3400 cm21 for O–H and
N–H stretching, for example!. Resolving these fast motion
adequately dictates timesteps of 0.5 fs or less (P/20). Recent
research has shown that these short periods also limit
timesteps that can be used successfully in separating fra
works to update theslow forces ~i.e., outer timestep!. This
limitation is removed from the method we describe he
with an analysis of the underlying theory presented in pa
II.2

Integration schemes for biomolecular dynamics exp
the spatial locality and linear complexity of the fastest co
ponents of the force, in contrast to the slow and long-ran
interactions, which grow in number as the square of the nu
ber of atoms. As in other scientific applications of multilev
or multiscale techniques,3 the temporal and spatial scales
the model are efficiently connected;4–7 see Ref. 8 for a recen
review. Small timesteps~Dt! are used to resolve the faste
vibrational modes, but only the inexpensive local intera
tions are updated at each small step; the costly long-ra
forces are updated at appropriately chosen longer (Dt) time
intervals.

The Langevin-Implicit/Normal mode scheme~LIN! and
multiple timestep~MTS! methods are two such multiscale a
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proaches.LIN resolves the fast motion by linearization of th
equations of motion~and obtains the residual motion by im
plicit integration!. MTS schemes update the fast and slo
motions at different frequencies. Results to date have sh
that LIN permits comparatively long timesteps~15 fs! and
reproduces well small-timestep behavior,9 but the computa-
tional expense of each step~due to minimization! yields only
modest overall efficiency gains compared to small-times
methods. Recent experiments show that the popularMTS

methods r-Respa and Verlet-I only permit outer timesteps
5 fs or less for biomolecules based on accuracy criteria
yield a speedup factor of around 5~in comparison to explicit
simulations at timesteps of 0.5 fs!;10,11 this threshold for the
outer timestep in these schemes has recently been expla
by artificial ~i.e., integrator-induced! resonance12–15 occur-
ring at multiples of half the period of the fastest bond vib
tions. A ‘‘resonance’’ is a numerical artifact of the integrat
appearing at special timesteps related to the periods inhe
in the motion; large energy fluctuations or instability are se
at those timesteps.13 See Ref. 13 for analysis of resonance
a Morse oscillator for the symplectic implicit-midpoin
scheme and Ref. 14 for a discussion of nonlinear resona
for a family of symplectic methods for molecular dynamic

A definition for a ‘‘large timestep’’ method has bee
suggested16 as a scheme which overcomes this half-per
barrier.LIN is one such method, but it is not as competitive
terms ofCPU time as areMTS schemes. A mollified impulse
method is also being developed16 to extend the timestep
slightly beyond 5 fs. The efficientLN approach, described
here for the first time with the force splitting componen
overcomes this barrier significantly.

In section II, we briefly describe existing multisca
methods for Newtonian and Langevin dynamics, includ
Verlet, impulseMTS, BBK, and LIN. These descriptions lay
the groundwork for our resonance discussion and theLN re-
sults included here. In section III we presentLN and discuss
advantages and limitations of the former schemes as mo
tion for the new method. See Ref. 17 for a summary ofLN’s
predecessors and a historical perspective of this algorith
work.

In section IV, we present the results ofLN simulations
for several systems and discuss two key issues:~1! perfor-
mance of LN—measured by agreement with tradition
small-timestep methods in terms of thermodynamic, str
tural, and dynamic properties—as a function of the times
triplet used;~2! efficiency, measured by overall comput
tional speedup, compared with traditional methods. As
sessed inMTS works, efficiency and reliability are measure
in comparison to explicit simulations using a 0.5 fs timest
connections to experiment are made where possible~e.g.,
spectral density functions and radial distribution functio
for water!.

We conclude by highlightingLN’s ability to overcome
severe resonance effects that limit symplecticMTS methods;
a linear analysis follows in the companion paper.2 We show
that LN can use an outer timestep such as 50 fs while
giving excellent agreement to a trajectory using a mu
smaller outer timestep; the computational savings can exc
an order of magnitude.
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II. MULTISCALE METHODS

Traditional models for molecular dynamics are guid
by the classical equations of motion

Ẋ5V, V̇52M21~¹Efast~X!1¹Emid~X!1¹Eslow~X!!,
~1!

whereX andV are the collective position and velocity vec
tors, respectively,M is the diagonal mass matrix, and the d
superscripts denote differentiation with respect to time. T
gradient vector (¹E) of the empirical potential energy func
tion E is separated above~for future reference! into fast,
medium ~or middle!, and slow components. For biomo
ecules, this three-part splitting is made according to
bonded, short-range nonbonded, and long-range nonbo
interactions~detailed below!. The associated timestepsDt,
Dtm , andDt designate, respectively, the shortest~innermost!
~e.g., 0.5 fs!, medium ~an integer multiple ofDt : Dtm

5k1Dt!, and largest~outermost! discretization stepsizes~an
integer multiple ofDtm : Dt5k2Dtm5k1k2Dt!. The middle
timestep ranges from 1 to 3 fs in our implementation and
be thought of as an adjustable value. The ratior 5Dt/Dt
5k1k2 influences the speedup of force-splitting schem
relative to a simulation at the constant, small timestepDt. In
symplecticMTS schemes resonance limitsr to less than 10
when Dt50.5 fs, with asymptotic speedups around 5~see
section IV D!.

A. Verlet and impulse multiple timestep methods

The standard~single-timestep! integrator introduced by
Verlet18 completes the updating sweep for positions and
locities by the following triplet:

Velocity Verlet algorithm

Vn11/25Vn2M21
Dt

2
¹E~Xn!,

Xn115Xn1DtVn11/2, ~2!

Vn115Vn11/22M21
Dt

2
¹E~Xn11!.

This second-order method preserves geometric pro
ties ~such as time reversibility and phase-space volum!
present in the exact solution of these equations for conse
tive Hamiltonian systems.19 This symplecticness likely ac
counts for the favorable energy preservation along compu
trajectories. However, for acceptable resolution of the fas
component, the Verlet timestep should be in the rangeP/20
to P/10, or Dt from 0.5 to 1.0 fs, much less than the line
stability limit8,14 of P/p.

The MTS methods introduced two decades ago20,21 be-
came increasingly common for biomolecular simulatio
with the introduction of variants that shared the time-rever
symmetry of the Verlet scheme. Schulten and co-worke5

introduced ‘‘Verlet–I’’ and, independently, Tuckerma
et al.4 derived the equivalent but more general method‘‘r-
Respa’’ by applying the Verlet method@system~2!# to the
Trotter factorization of the Liouville operator with compo
nents corresponding to potential splitting~Efast, Emid , Eslow!.
A sweep over oneDt interval by a Verlet-basedMTS method



io

nt

f
e
ef
-
rs

o
or

e
Th
o

da
ts
ti
fo

n
o

ct
la
ct
tl

su
he
, a
t

en
te

tor
ties

ra-
x
li-
in

r

e
ile
ard
dy-
2%

an
ort

–4
t the

if
lin-
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can thus be written as the following double-nested iterat
process:

Impulse MTS algorithm

V←V2M21
Dt

2
¹Eslow~X!

for j 50, k221,

V←V2M21
Dtm

2
¹Emid~X!

for i 50, k121,

V←V2M21
Dt

2
¹Efast~X!,

X←X1DtV, ~3!

V←V2M21
Dt

2
¹Efast~X!,

end

V←V2M21 Dtm

2
¹Emid(X),

end

V←V2M21
Dt

2
¹Eslow~X!.

Note that the application of the slow force compone
(¹Eslow) results in animpulse: The velocities are modified
by a term proportional tok1k2Dt—r times larger than the
changes made toX andV in the inner loop—only outside o
the inner loop~i.e., at the onset and at the end of a swe
coveringDt!. This impulse yields undesirable resonance
fects in simple oscillator systems;12 see also the related de
tailed analysis of Ref. 13. In biomolecular systems, the fi
such resonance can occur at aboutDt55 fs—half the period
of the fastest oscillation. Although not explained by res
nance in these papers, large energy growth has been rep
beyond this threshold for impulseMTS simulations.10,11Thus,
like the single-timestep Verlet, impulseMTS methods are
limited by numerical considerations; even with a small inn
timestep, the outer timestep is limited by resonance.
precise limit on the outer timestep depends sensitively
implementational details of theMTS scheme~e.g., number of
force classes, switching functions expressions, class-up
frequency, and more!. Thus, in contrast to the above repor
other studies have used larger outer timesteps in combina
with Berendsen thermostats or fast Ewald interactions,
example.

We emphasize that non-impulseMTS methods have bee
earlier proposed.5,20–23These are much less sensitive to res
nance but realize an energy drift due to their nonsymple
nature. Our extrapolation alternative to the impulse formu
tion in LN does not suffer so severely from these artifa
when coupled with the Langevin heat bath. Consequen
we can increase the outer timestep significantly, while en
ing a stable trajectory. Larger speedup factors are t
reaped by economizing on the slow-force computations
the cost of the fast and medium forces remains essentially
same.
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B. Langevin dynamics and the linearization approach
of LN’s predecessor LIN

Although used by us for numerical~stability!
considerations,6,7,9,24 a stochastic component has also be
added to models for biomolecular simulations to elimina
explicit representation of water molecules,25 enhance
sampling,26–28treat droplet surface effects,29,30and represent
hydration shell models in large systems.31–33 In the simplest
form of the phenomenological Langevin equation,34 the
equations of motion in system~1! are modified by friction
and random force terms to yield

Ẋ~ t !5V~ t !, M V̇~ t !52¹E~X~ t !!2gMV~ t !1R~ t !,
~4a!

whereg is the collision parameter. The random-force vec
R is a stationary Gaussian process with statistical proper
~mean and covariance matrix! given by

^R~ t !&50, ^R~ t !R~ t8!T&52gkBTMd~ t2t8!, ~4b!

wherekB is the Boltzmann constant, T is the target tempe
ture ~italics superscriptsT are reserved for vector/matri
transposes!, andd is the usual Dirac symbol. The genera
zation of Verlet to Langevin dynamics is typically used
the following form described by Brooks, Bru¨nger and Kar-
plus ~‘‘ BBK’’ !:29,35

BBK Algorithm

Vn11/25Vn1M21
Dt

2
~2¹E~Xn!2gMVn1Rn!,

Xn115Xn1DtVn11/2, ~5!

Vn115Vn11/21M21
Dt

2
~2¹E~Xn11!

2gMVn111Rn11!.

In this formulation, the third equation above is implicit fo
Vn11, but the linear dependency allows solution forVn11 in
closed form.

LIN, the predecessor ofLN,6,7,9 successfully crosses th
half-period timestep barrier with timesteps of 15 fs wh
producing trajectories which agree closely with stand
integrators.9 Agreement has been assessed by thermo
namic averages and geometric properties within 1% or
difference.9

The first part ofLIN involves the solution of thelinear-
izedLangevin equation at some reference pointXr :

Ẋ5V, M V̇52¹E~Xr !2H̃~X2Xr !2gMV1R, ~6!

where the matrixH̃ is a sparse approximation to the Hessi
of E at Xr .9 We have used the Hessian resulting from sh
~e.g., 4.5 Å! cutoffs9 or the second derivatives coming from
the bond-length, bond-angle, dihedral-angle and the 1
electrostatic components. Our experience has shown tha
second choice is much easier to implement in practice~to
exploit sparsity!, though the first choice might be preferred
cost were not an issue since the interval over which the
earization is retained can be lengthened.9
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The solution Xh(t) of the linearized equations o
motion—the ‘‘harmonic component’’—can be approximat
by one of the discretization schemes given in systems~7! or
~8! below ~described forLN!. This numerical solution is an
efficient alternative to the costly analytic approach, by n
mal mode analysis, over time intervals that are not too la
like 15 fs ~see computational details in Refs. 6 and 1!.
While in theory the numeric procedure can become unsta
if vibrational modes with negative eigenvaluesl are encoun-
tered~corresponding to solutions exp(2iAlt), wherei , here
only, is the complex numberA21!, we have not encoun
tered such problems in practice for reasonable choices oDt
andDt. In our first suggestion of this numeric approach,9 we
have also described a procedure for approximating the n
tive eigenvalues and the corresponding eigenvectors~e.g., by
Lanczos-based techniques!, projecting the correspondin
imaginary frequencies, and then solving Eq.~6! by numerical
integration. Fortunately, we were not forced to resort to t
approach for bothLIN andLN with careful parameter choices

The second part ofLIN relies on implicit integration to
compute the residual component,Z(t), with a large timestep
Specifically,Z(t) can be determined by solving the new s
of equations whichZ satisfies. These are determined by u
ing Z5X2Xh and the origin ofX and Xh as solutions of
systems~4! and~6!, respectively. This leads to the equation6

for Z and its time derivativeW, as summarized in the Ap
pendix.

Through a combination of efficient algorithms for th
subintegration and minimization processes, we h
achieved computational speedup for theLIN outer step of 15
fs, but the factor is modest,9 about 1.5. Nonetheless,LIN is a
true long timestep method.16

In the remainder of the paper we present the new met
LN which combines the efficiency of impulseMTS methods
with the long timestep stability ofLIN to successfully over-
come the half-period barrier ofMTS methods.

III. THE LN METHOD

The idea ofLN is to eliminateLIN’s implicit integration
component and, concomitantly, reduce the interval len
over which the harmonic model is followed. This works b
cause anharmonic corrections are very small for
linearization-updating frequency of 5 fs or less.9,17 Thus,LN

approximates the linearized model for the equations of m
tion every Dtm ~e.g., 1–3 fs! interval, and explicitly inte-
grates the linearized system using an inner timestepDt ~such
as 0.5 fs!. This inner timestep parallels the timestep used
update the fast motion inMTS, and the linearization fre-
quency is analogous to the medium timestep used in a th
interval MTS scheme. The subintegration inLN of the linear-
ized model does not require new force evaluations, as
every step of standard molecular dynamics integrati
Since, in addition, the timestep of slow-force updates can
lengthened significantly,LN is computationally competitive.

LN begins with the linear approximation to the Langev
equation at some reference positionXr ~e.g., the previous
position, Xn, or a midpoint, Xn11/2!. System ~6! is then
solved numerically, at a small ‘‘inner’’ timestepDt, as men-
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tioned above forLIN ~see note above on the theoretical c
veat!. For the explicit integration of system~6!, we have
explored two possibilities. The first usesXn as a reference
point, in combination with thesecond-order partitioned
Runge-Kutta method~‘‘Lobatto IIIa,b’’ !,36 which reduces to
the velocity Verlet method@system~2!# when g50. This
yields the following iteration process for$Xn11,Vn11% from
the initial conditionsX05Xn, V05Vn:

Vi 11/25Vi1
Dt

2
M21@2¹E~Xr !2H̃~Xr !~Xi2Xr !

2gMVi 11/21Ri #,

Xi 115Xi1DtVi 11/2, ~7!

Vi 115Vi 11/21
Dt

2
M21@2¹E~Xr !2H̃~Xr !

3~Xi 112Xr !2gMVi 11/21Ri 11#.

In slight contrast to theBBK method of system~5!, the third
equation above is explicit, but the first equation is linea
implicit for Vi 11/2.

The second subintegration scheme uses position Ve
rather than velocity Verlet, and defines the inner iterat
process ofLN by

Xi 11/25Xi1
Dt

2
Vi ,

Vi 115Vi1DtM21@2¹E~Xr !2H̃~Xi 11/22Xr !

2gMVi 111Ri #, ~8!

Xi 115Xi 11/21
Dt

2
Vi 11.

Note the Hessian/vector products in the first and third eq
tions of system~7! and the second equation of system~8!.
The random force is updated according to equation~4b! at
everyDt substep, so there is no problem of thermal equil
rium as for larger timesteps.7

Thus, the skeletalLN procedure is a dual timeste
scheme ($Dt,Dtm%) which consists of two practical tasks

~a! constructing the HessianH̃ in system~6! every Dtm in-
terval, and~b! solving system~6!, whereR is given by equa-
tion ~4b!, at the timestepDt by procedures~7! or ~8!. When
a force-splitting procedure is also applied toLN, a valueDt
.Dtm is used to update the slow forces less often than
linearized model.

Our experience has shown that a sparseH̃ resulting from
4.5 Å cutoffs evaluated every 5 fs gives very similar resu
in comparison to explicit trajectories at 0.5 fs.9 We also

reported8 that a sparserH̃ including only bonded interaction
~i.e., bond-length, bond-angle and dihedral-angle! can be
used together with a 3 fstimestep for similar computationa
gains, as shown in Table I, which increase with system s
Detailed comparisons are shown in the next section.

The length of the parameterDtm is limited by two fac-
tors: the time interval over which the linearized forces a
adequate, and the fundamental timescale of the interact
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TABLE I. Timings for LN without ~top! and with ~bottom! force splitting. The reference timestep inBBK is Dt50.5 fs and the sparseH̃ of LN includes
bond-length, bond-angle, dihedral-angle and 1–4 electrostatic terms. For the top part of the table,T¹E , TH̃ , andTH̃d denote, respectively, the time for on
gradient evaluation, sparse Hessian evaluation, and one sparse-Hessian/vector multiplication. The percentages that follow these quantities repreCPU

percentages required for that task during an entire trajectory. The sparsity ofH̃ is the ratio of the number of nonzero entries in the upper triangle~diagonals
included! to the total number of elements in the upper triangle@N(N11)/2 entries for anN3N matrix#. The intervalDt(5Dtm) in the top part of the table
is 3 fs except for water where it is 1 fs. In the lower part, times are recorded during the 60 ps production simulations, and reflect force splitting o
Thus, evaluating each component of the force is slightly more expensive than in the ideal case, reflected in the top portion of the table. Here we
evaluation times for the three parts of the forces: fast~same terms associated withH̃!, middle~within 6 Å radius! and slow~outside the 6 Å spherical region!.
Then forBBK and eachLN variant, we show the percentage of totalCPU time spent on each such component~the subscript in the %fast column refers to the
percentage forH̃ evaluation!: With force splitting the time spent on the slow components decreases, but the percentage of time spent on the fast and
forces increases. The values ofDtm are as above, andDt5k2Dtm wherek253, 24, and 48 for theLN variants. For the reference water simulation with 12
cutoffs,T¹E in the upper portion includes the cost per step of constructing the nonbonded pair list; in the lower portion the correspondingT¹Eslow

value~6.28!
includes time for evaluating interactions within the 12 Å cutoff region~2.78 s! and time for constructing the nonbonded pair list~3.5 s!; for LN 3, where the
list is updated every 8Dt steps, the cost of the long-range forces is taken to be 2.781(3.5/8)53.22 s. All timings are taken from the simulations describ
in the text, run in serial mode on a 195 MHz SGI R10000 Power Challenge computer.

A. LN 1 ~without force splitting!
Atoms/

Variables
H̃

sparsity T¹E TH̃ TH̃d

BBK

CPU/Dt
LN

CPU/Dt
LN

Speedup

Dipeptide 22/66 0.459 4.7e-4~22%! 1.2e-3 ~57%! 4.2e-5 ~18%! 2.8e-3 2.1e-3 1.3
BPTI 904/2712 0.012 0.38~77%! 0.11 ~18%! 0.002 ~5%! 2.35 0.531 4.4
Lysozyme 2030/6090 0.005 1.98~81%! 0.45 ~16%! 0.005 ~3%! 12.6 2.53 5.0
Water 12393/37179 0.0003 53.5~99%! 0.07 ~0.3%! 0.12 ~0.7%! 106.9 53.6 2.0
Water @cutoff# 12393/37179 0.0003 3.0~91%! 0.07 ~2%! 0.12 ~7%! 6.6 3.6 1.8

B. LN with force splitting
T¹Efast

TH̃ T¹Emid
T¹Eslow

LN 3 LN 24 LN 48 LN Speedup

%fast %med %slow %fast %med %slow %fast %med %slow LN 3 LN 24 LN 48

BPTI 0.01 0.11 0.05 0.43 24(15) 33 43 38(24) 53 9 40(25) 55 5 7.4 11.7 12.6
Lysozyme 0.02 0.45 0.12 2.2 15(9) 32 53 28(16) 60 12 30(17) 64 6 9.3 17.2 18.6
Water 0.02 0.07 0.39 53.5 1(0) 2 97 7(3) 14 79 12(4) 23 65 5.4 32.6 48.0
Water @cutoff# 0.02 0.07 0.39 6.28 17(14) 22 61 32(8) 41 27 37(9) 47 16 3.4 5.4 7.1
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not included in the approximate linearization. In large s
tems, the long-range interactions—excluded from
linearization—have a fundamental timescale much lon
than the interval over which the linearized forces are
equate. Thus they can be updated less frequently than
approximate linearization. This observation suggests that
LN idea can be naturally extended by continuing the splitt
process: The bonded interactions are treated by the app
mate linearization, the local nonbonded interactions
treated by constant extrapolation over timesteps of len
Dtm , and the nonlocal interactions are treated by cons
extrapolation over much longer intervalsDt ~i.e., Dt
5k2Dtm for some integerk2.1!. Thus, like the impulseMTS

methods, the force¹E(Xr) is evaluated once perDt step
but, unlike these schemes,LN applies this forceat each inner
timestep Dt. This constant extrapolation over the out
timestep does not produce an impulse. The splitting of
nonbonded interaction into short and long-range parts ca
accomplished using a smooth switching function,23 discussed
in section IV.

Formally, theLN method with the above force splittin
for the triplet protocol$Dt,Dtm ,Dt% is given as follows:

LN algorithm

Xr5X1
Dtm

2
V,

Fs52¹Eslow~Xr !

for j 51, k2
-
e
r
-
he
he
g
xi-
e
th
nt

e
be

Xr5X1
Dtm

2
V,

H̃5H̃~Xr !,

Fm52¹Emid~Xr !2¹Efast~Xr !,

F5Fm1Fs

for i 51, k1

evaluateR

X←X1
Dt

2
V,

V←~V1M21Dt~F2H̃@X2Xr #1R!!/~11gDt!,

X←X1
Dt

2
V

end
end

IV. RESULTS

We use forLN the sparse Hessian matrixH̃ assembled
from all bonded interactions~bond lengths, bond and dihe
dral angles! as well as the 1–4 electrostatic interactions~i.e.,
those among atom pairs separated by three bonds!. The inner
timestep forLN is Dt50.5 fs, and the same value is used
the reference simulations ofBBK. The middle timestep inLN
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is Dtm53 fs except for water, where it is 1 fs; this timeste
can be considered an adjustable quantity when force split
is used. When force splitting is not used~as for the small
model amino acid system!, this middle timestep is also th
outer timestep~Dtm5Dt, k251!. In our force-splitting no-
tation below, thisLN variant is designated as ‘‘LN 1.’’

In the presence of force splitting inLN, we adopt the
notationLN 2, LN 3, etc., to indicate the frequency (k2) for
updating the slow forces relative toDtm . Namely, at these
integral multiples ofDtm , the nonbonded pairwise interac
tions at separationsr .r 0 are calculated, and the nonbond
pair list is updated for local (r ,r 0) interactions. In this

work, we use the valuer 056 Å. H̃ is updated eachDtm

along with the local nonbonded interactions associated w
atom pairs at separationsr ,r 0 . Thus, for example, theLN 3

scheme updates the local nonbonded interactions andH̃ ev-
ery Dtm but interactions outside of ther 056 Å range every
3Dtm .

The local interactions need not be truncated abruptly
r 0 ; rather, we can use a potential switching function23 over a
buffer region of lengthb as follows:

S~r !5H 1, r ,r 02b

11R2~2R23!, r 02b<r ,r 0

0, r 0,r

, ~9!

whereR5(r 2(r 02b))/b. The short and long-range force
Fshort andF long for each atom pair are then defined from t
full force F by

Fshort5FS~r !, F long5F2Fshort.

For the proteins, we used atomic-based cutoffs with
switching function usingb53 Å, and for the water drople
we used group-based cutoffs with no switching~i.e., b5R
50!. We use the unit dielectric constant and includeall non-
bonded interactions for the modeled systems, except w
stated otherwise.

The second subintegration scheme@equation~8!# is used
in all LN simulations with a collision frequency ofg520 or
5 ps21. Our motivation is to use as small ag as possible to
weigh the stochastic terms minimally~relative to the inertial
terms! but at the same time guarantee numerical stability
the method. Clearly, ifg is too small,LN is unstable. We
found the midpoint version of equation~8! to tolerate better
lower g ; there are also theoretical justifications.2 Since the
gradient and Hessian of the potential energy are compute
an intermediary pointXn11/2, for reporting purposes we
compute the bond and bond-angle energies at eachXn point
of the LN trajectory as well. The added cost is negligible.

All simulations were run withCHARMM37 version 24b1,
modified to include our integration modules, with th
CHARMM 22 all-atom parameter set.38 ~Our routines are cur-
rently being integrated intoCHARMM version 25a3.! The bath
temperature was set to T5300 K and, for fair comparison
the same starting position, velocity vector, and sequenc
random numbers were used in the comparedLN and BBK

trajectories. The equilibration~by BBK! and production
lengths are described for each system examined. The c
lation function and spectral densities are computed by
g

th

t

a

en

f

at

of

re-
e

correl routines inCHARMM. Computations were performed i
serial mode on a 195 MHz SGI Power Challenge compu
at New York University.

A. Blocked alanine residue model

We first examine data fromLN andBBK Langevin simu-
lations atg520 ps21 for a small blocked-alanine model~N-
Acetyl Alanyl N8-Methyl Amide!, with 22 atoms.26 All at-
oms are represented explicitly. Data were collected over 3
~following 160 ps of equilibration!, and trajectory snapshot
were recorded every 60 fs.

The excellent agreement in averages and variances o
energy components~total, kinetic, and potential! and time-
averaged properties of the dihedral anglesf andc, as well as
selected bond lengths and angles, can be seen from Tab
The results obtained with both methods are very close. T
is especially good for the stochastic Langevin simulation39

The angular variances from both simulations are about
and 49° forf andc, respectively.

This good agreement of theBBK andLN trajectories can
also be seen from Figure 1, which compares the ensem
generated distributions for a representative bond len
(r Ca–N), a representative bond angle (uN–Ca–C), and the two
dihedral angles. The matching of thef andc distributions,
in particular, indicates that the overall motion is essentia
the same. This can also be observed from the time evolu
of the distance between the dipeptide oxygen and hydro
atoms that form a hydrogen bond~data not shown!.

For reference, theCPU times required to cover 3 ns ar
47 and 36 min forBBK and LN, respectively. This timing
does not include any force splitting forLN.

B. BPTI and lysozyme

Results ofLN without ~LN 1! and with force splitting~LN

3, 6, 12, 24, 48, and 96! versusBBK are shown in Tables III

TABLE II. Averages~mean and variance! for the blocked alanine residue
computed over 3 ns trajectories produced byBBK and LN with g520 ps21

andDt50.5 fs, Dt5Dtm53 fs.

BBK LN

Ea 21.5 4.74 21.5 4.77
Ek 19.7 3.42 19.7 3.42
Ep 1.78 3.28 1.79 3.30
Tb 300.1 52.1 300.6 52.2
Ebond 6.73 2.07 6.71 2.06
Eangle 8.91 2.38 8.86 2.36
Etor 4.71 1.02 4.73 1.03
Evdw 0.12 1.09 0.14 1.12
Eelec 220.4 2.29 220.4 2.32
fc 2107.0 30.3 2106.6 30.0
c 117.5 48.5 117.5 48.8
r CaC

d 1.53 0.034 1.53 0.034
uCNCa

123.3 3.28 123.3 3.28
uNCaC 110.8 4.12 110.8 4.10
uCaCN 117.0 2.76 117.0 2.77
CPU 1.0 0.75

aEnergy is given in kcal/mol for the total, kinetic, potential, bond leng
bond angle, torsion angle, van der Waals, and electrostatic componen

bTemperature is given in degrees.
cAngles ~torsions and bond angles! are measured in degrees.
dBond lengths are given in Å.
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and IV for the proteinsBPTI ~bovine pancreatic trypsin in
hibitor! and human lysozyme, respectively. For the init
BPTI structures, we use forBPTI those described in Barth
et al.,40 with four internal water molecules. The startin
structure was taken from the Brookhaven Protein D
Bank41,42 from the file pdb4pti.ent.43 After the positions of
hydrogen atoms were generated,44 the coordinates were
energy-minimized with 500 steps of the Adopted Ba
Newton-Raphson method inCHARMM,37 subject to isotropic
harmonic constraints on heavy atoms.45 The unconstrained

FIG. 1. Distributions for a representative bond length Ca–N (r ); a repre-
sentative bond angleN–C–Ca ~u!; and the two torsion anglesf,c for BBK

~*** ! andLN ~—! for a blocked alanine model over 3 ns simulations. He
Dt50.5 fs ~the timestep ofBBK and the inner timestep ofLN!, Dtm

53.0 fs, andg520 ps21. Force splitting is not used for this small system
so Dt5Dtm .
l

a

s

system was then heated from 0 to 300 K by 20 K increme
during 5 ps~5000 steps of 1 fs!, and equilibrated at 300 K for
a further 5 ps. The final coordinates from this procedu
together with a random sample of velocities from
Maxwell–Boltzmann distribution at 300 K, were used
start the production runs. For lysozyme, we start from
crystallographic data46 ~1LZ1 in the Brookhaven
database41,42!. After the placement of hydrogen atoms, a
proximately 10,000 steps ofABNR minimization was per-
formed in CHARMM ~gradient tolerance 1028!, followed by
30 ps of equilibration by Langevin dynamics at 300 K.

As for the blocked amino acid above, we report e
semble averages and variances for the total, kinetic, and
tential energy, as well as the energy components~bond,
angle, torsion, van der Waals, electrostatic! and the kinetic
temperature. The last row shows the totalCPU time for LN

and the speedup overBBK ~recall that theCPU time reflects
inclusion of all nonbonded interaction—no cutoffs!.

The data for both proteins show very good agreemen
the mean values reported~first column of eachLN entry!,
with an error not greater than 0.5% for the total energy me
when LN is compared toBBK values. For the other mean
reported, errors are typically less than 1%, with up to 4
differences exhibited by the van der Waals term~4% for BPTI

and 2% for lysozyme!.
The LN variances~second column of eachLN entry!,

show larger differences when compared toBBK variance val-
ues but, in the worst case~electrostatics!, these errors are
large percentagewise because theBBK variance is a small
percentage of theBBK mean~see percentage tables in Re
17!. That is, when theBBK reference variance is used i
absolute~i.e., numerical! terms ~e.g., 16 kcal/mol for the
electrostatic energy ofBPTI! the LN value can be relatively
large ~e.g., 21 kcal/mol forLN 96, reflecting a 33% error
when the two variances are directly compared!; however, the
original BBK variance reflects only 0.82% fluctuations fro
the BBK mean; this increases to only 1.08% in the worstLN

case. Similarly, for lysozyme, the electrostatic energy va
ance inBBK is only 0.54% of theBBK mean and become
0.65% of theBBK mean forLN 96 ~a 22% deviation from the
numerical value of 27 kcal/mol!. The LN variances of the
total energy and potential energy increase monotonic
34.1
22.5
25.4
14.7
16.1
8.93

8.34

ial
TABLE III. Langevin dynamics averages~mean and variance! for BPTI over 60 ps withBBK (Dt50.5 fs) versusLN ~Dt50.5 fs, Dtm53 fs, andDt
5k2Dtm wherek2 ranges from 1 forLN 1 to 96 forLN 96! at g520 ps21.

BBK LN 1 LN 3 LN 6 LN 12 LN 24 LN 48 LN 96

Ea 1620.2 32.4 1626.8 32.9 1625.6 32.9 1625.0 33.0 1626.0 33.2 1625.0 33.4 1626.2 33.8 1625.8
Ek 809.0 22.3 812.5 22.5 811.9 22.4 812.1 22.4 812.4 22.4 812.5 24.2 812.6 22.4 812.6
Ep 811.1 23.0 814.5 23.3 813.7 23.3 812.9 23.6 813.7 23.9 812.6 24.2 813.7 24.9 813.3
Ebond 322.4 14.6 322.1 14.6 322.1 14.6 322.2 14.6 322.3 14.6 322.6 14.7 322.5 14.7 322.3
Eangle 456.2 16.0 454.7 16.0 454.4 15.9 453.8 15.9 453.8 15.9 457.3 15.9 457.5 15.9 457.3
Etor 353.6 8.93 355.5 8.94 355.1 8.91 354.7 8.94 354.5 8.94 352.2 9.05 352.5 8.96 354.4
Evdw 2119.0 12.9 2117.3 13.1 2117.2 13.1 2117.5 13.1 2117.5 13.1 2115.1 13.2 2114.5 13.3 2117.0 14.7
Eelec 21958.4 16.0 21958.0 17.5 21958.1 17.5 21957.7 17.9 21956.8 18.4 21961.6 19.8 21961.5 20.6 21960.1 21.2
T 300.2 8.28 301.5 8.33 301.3 8.33 301.4 8.32 301.5 8.33 301.5 8.34 301.6 8.32 301.6
CPUb 14.0 ~1.0! 3.5 ~4.0! 1.9 ~7.4! 1.5 ~9.3! 1.3 ~10.8! 1.2 ~11.7! 1.11 ~12.6! 1.08 ~13.0!

aEnergy@in kcal/mol# is given for the total, kinetic, potential~with respect to the initial values21664.96 corresponding to a local minimum near the init
configuration!, bond length, bond angle, torsion angle, van der Waals, and electrostatic components.

bTime is given in hours, with speedup shown in parentheses.
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TABLE IV. Langevin dynamics averages~mean and variance! for lysozyme simulations over 60 ps withBBK (Dt50.5 fs) andLN ~Dt50.5 fs, Dtm

53 fs, Dt variable! at g520 ps21.

BBK LN LN 3 LN 6 LN 12 LN 24 LN 48 LN 96

Ea 3605.2 46.4 3620.4 47.3 3617.1 47.9 3621.4 47.7 3620.7 48.2 3622.8 48.7 3623.3 49.0 3621.7
Ek 1814.9 32.8 1822.6 33.0 1822.1 33.0 1823.2 33.0 1823.8 33.0 1824.1 33.0 1824.0 33.0 1823.8
Ep 1790.3 33.6 1797.9 34.2 1795.0 34.7 1798.2 34.7 1796.9 35.4 1798.7 36.1 1799.4 36.8 1797.8
Ebond 714.6 21.5 714.0 21.5 714.1 21.5 714.3 21.5 713.9 21.4 714.1 21.4 714.2 21.4 714.3
Eangle 1010.3 23.8 1007.1 23.8 1006.1 23.8 1006.7 23.8 1005.3 23.7 1006.6 23.7 1006.7 23.7 1007.5
Etor 719.4 12.7 723.7 12.9 723.6 13.0 724.2 12.9 724.6 12.9 723.8 13.0 724.3 13.0 722.8
Evdw 2426.7 20.2 2423.3 20.6 2421.4 21.5 2422.0 20.5 2419.1 20.5 2422.7 20.6 2422.0 20.7 2420.4 20.3
Eelec 25080.2 27.2 25078.9 27.8 25082.5 29.1 25079.6 28.5 25083.4 28.8 25078.7 29.9 25079.3 31.0 25081.9 33.2
T 299.9 5.4 301.2 5.5 301.1 5.4 301.3 5.4 301.4 5.5 301.4 5.4 301.4 5.5 301.4
CPUb 72.4 ~1.0! 14.9 ~4.9! 7.8 ~9.3! 5.7 ~12.7! 4.7 ~15.4! 4.2 ~17.2! 3.9 ~18.6! 3.8 ~19.1!

aSee Table III legend. Here the potential energy is given with respect to the initial value24637.85 kcal/mol, corresponding to a local minimum near the ini
configuration.

bCPU time is shown in hours;LN speedup is shown in parentheses.
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with Dt, exhibiting up to 14% error~van der Waals energy
for BPTI in LN 96! in direct comparison to theBBK variance
value, but typically much less. The van der Waals varia
for BPTI obtained byBBK is 11% of the mean value; theLN

96 error of 14% corresponds to a variance of 12% of theBBK

mean. Thus, increasing the interval between slow-force
dates does not affect the trajectory means significantly
yields somewhat larger variances in these quantities~e.g.,
electrostatic energy!. Still, upon careful examination, the be
havior is satisfactory.

To examine configurational behavior in time for the
proteins, we also show in Figures 2–4 the root mean squ
~rms! fluctuations for various quantities:~a! total rms from
the starting structure,~b! rms of the backbone Ca atoms~58
for BPTI, 130 for lysozyme!, and~c,d! rms fluctuations of the
c angles along the protein backbone. For both proteins,
also performed aBBK simulation with 12 Å cutoffs for com-
parison to theLN trajectories ask2 , and hence the outermos
timestep, increases.

First, with respect to the total rms fluctuations of t
proteins from the initial~equilibrated! structure, we note tha
the BBK trajectory with cutoffs diverges from the othe
curves after around 35 ps. Most of theLN variants follow the
pattern ofBBK without cutoffs well, but theLN 96 version
shows poorer agreement than the others. This differenc
more notable forBPTI, but still the trend is not a diverging
pattern as is seen for the cutoff trajectory.

The rms plots of each Ca atom in the proteins~Figure 3!
again show good agreement between theLN variants and
BBK, as well as a substantial difference from the cutoff t
jectory. The same good agreement can also be seen in
rms fluctuations of eachc ~Figure 4! with LN 96 showing
poorer agreement. Thef data~not shown! exhibit the same
trends. Recall that inLN 96 the slow forces are only update
every 288 fs! These results suggest thatLN 24 or LN 48
present more reasonable limits, especially since
asymptotic speedup is nearly reached~see Table I!.

Dynamic analyses of the trajectories are performed
the cosine Fourier transforms of the velocity autocorrelat
function34 CVV(t), where

CVV5^V~ t !TV~0!&/^V~0!TV~0!&. ~10!
e

p-
ut

re

e

is

-
the

e

a
n

HereV(t) represents the discrete approximation toV at time
t, and the brackets denote ensemble averages. The tran
mation of this real-valued function into the frequency d
main produces the spectral density function

FIG. 2. The root-mean-square~rms! deviations from the initial~equili-
brated! structure ofBPTI ~top! and lysozyme~bottom! taken from 60 ps
Langevin simulations withg520 ps21: BBK without cutoffs ~ddd!, BBK

with a 12 Å cutoff ~––!, LN 1,24,48~—! andLN 96 ~ !. As before,Dt
50.5 fs, Dtm53 fs, andDt5k2Dtm wherek2 is the number followingLN.
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ĈVV~v!52E
0

`

dt CVV~ t !cosvt, ~11!

wherev52pcn ~c5speed of light! andn is the wave num-
ber.

The spectral density functions forBPTI and lysozyme
~Figure 5! are shown for two values ofg ~5 and 20 ps21! as
obtained from trajectories ofBBK, LN 1, LN 96, and Verlet
(g50). The excellent agreement between all theLN andBBK

spectra is striking. We note spectral peaks corresponding
O–H stretches around 3300 cm21 and C–H stretches around
3000 cm21. The regions around 1400 cm21 and between 600
and 1200 cm21 are associated with various bending node
and also heavy-atom bond vibrations such as C—C and
CvO.

Interesting from these spectra is the dependence ong,
that is the dependence of dynamics on the governing mo
rather than the scheme. The Verlet (g50) spectra show a
sharper peak for the C–H stretch around 3000 cm21, as well
as sharper patterns for the peak area 1400 cm21 and the re-
gion below it. The Langevin trajectory with the smallerg

FIG. 3. Ca RMS fluctuations forBPTI and lysozyme over 60 ps Langevin
simulations. ForBPTI, the top panel comparesLN 1 andLN 12 results toBBK,
without ~ddd! and with~––! cutoffs ~at 12 Å!, and the center panel shows
LN 24, 48 and 96 versusBBK. The lower box comparesBBK to LN for
lysozyme.
to

s

el

(5 ps21) agrees more closely with Verlet than the largerg
used (20 ps21). We also notice a rough agreement betwe
the g50 and g55 ps21 spectra. The Langevin modes a
pear more smoothed out in comparison to the resolved N
tonian frequency pattern, with splitting of some of the mo
notable Verlet peaks.

Besides velocity autocorrelation functions correspond
to all atoms, we also calculated these spectra forBPTI from
hydrogen atoms only~data not shown!; the difference be-
tween Langevin and Newtonian modes is smaller for bothg.

The trends in Langevin modes have been investigated
a number of authors as a function of the damping param

FIG. 4. Root-mean-square fluctuations of the backbone torsion anglec for
BPTI and lysozyme over 60 ps Langevin simulations atg520 ps21 as ob-
tained byBBK, LN, andBBK with a 12 Å cutoff.



o
-

th
tio
on

m
n

the
otic

a

-
se
in
ary

ally
are

city
nal
no

no-
a-
ee-
n

nt
2%

h
ces

-

the

rie

on

1626 J. Chem. Phys., Vol. 109, No. 5, 1 August 1998 E. Barth and T. Schlick
~see Case47 for a review and references cited therein! with
the goal of understanding the effect of solvent viscosity
biomolecular motion. Essentially, it is found that the low
frequency vibrational modes become overdamped in
Langevin treatment and that the decay of various correla
functions is smoother for Langevin than Newtonian moti
components.

With regard to speedup, theLN 3 scheme gives a
speedup factor of 8 forBPTI ~2712 variables! and 9 for
lysozyme~6090 variables!. Performance improves as syste
size increases because of the larger fraction of long-ra
interactions. As the outermost timestep increases,LN

FIG. 5. BPTI and lysozyme spectral densities derived from the cosine Fou
transforms of the velocity autocorrelation function for all atoms fromBBK

and LN Langevin trajectories of length 6 ps for two choices of collisi
frequency: g55 and 20 ps21. Here Dt50.5 fs, Dtm53.0 fs, and Dt
5Dtm for LN 1 andDt596Dtm5288 fs forLN 96. Spectral densities for the
Verlet method (g50) are also shown for reference~•••!.
n

e
n

ge

speedup approaches 13 forBPTI and 19 for lysozyme~Tables
III and IV!. Performance improves here since savings in
time-consuming slow force are realized, and the asympt
behavior stems from the increased importance ofCPU time
for the fast and medium force components~see also Table I!.
We discussCPU issues in more detail below.

C. Water droplet

Next we examine in Table V and Figure 6 results for
water droplet of radius 31 Å~with all nonbonded interactions
considered!. This system size~4131 molecules, 37,179 vari
ables! is large enough to envelop lysozyme. We u
CHARMM’s quartic spherical boundary potential to mainta
the appropriate density of the system and eliminate bound
effects on the primary region of interest.48 A flexible, modi-
fied version of the TIP3P49 water potential is used, in which
a van der Waals term for the hydrogens prevents unusu
close contacts with other charged atoms. Here we comp
Langevin trajectories with collision parameterg550 ps21.

We found for this system that smaller values ofDtm ~1
or 2 fs! work better than 3 fs in terms of agreement toBBK.
This can be explained by the high degree of anharmoni
governing the water droplet system and the fast libratio
modes in water. Recall that our results for water used
switching function and group-based cutoffs. Indeed, we
ticed increased sensitivity to the stability of the LN simul
tions to the choice of short-range cutoffs. The good agr
ment with the referenceBBK trajectories can also be see
from Figure 6, which shows for the differentLN protocols the
errors in various energy components relative toBBK. Results
are given for long-range forces updated everyk2Dtm for in-
tegersk2 ranging from 1 to 6. The bond energy compone
reveals the largest errors for this system, here at most
with LN 3 and only 1% withLN 6. The best agreement wit
the small-timestep method in terms of energies and varian
is obtained withLN 6 ~Dtm51 fs, Dt56 fs! formulation. The
speedup ofLN 6 with Dtm51 fs ~10.2! is only slightly less
thanLN 3 with Dtm52 fs ~10.7!, making the case for reduc
ing Dtm strong. Thus, the outer timestep ofLN dominates the
CPU performance for larger systems. This is because

r

s,

0.4

.4

.8
8.2

77
TABLE V. Langevin dynamics averages~mean and variance! for the water droplet simulations over 0.4 ps with all nonbonded interactions included:BBK

(Dt50.5 fs) versusLN ~Dt50.5 fs, Dtm51 and 2 fs, andDt5Dtm , 3Dtm , and 6Dtm! with the sparseH̃ constructed for bond-length and bond-angle term
g550 ps21.

BBK

Dt50.5 fs
LN

Dt51 fs
LN

Dt52 fs
LN 3

Dt52 fs
LN 6

Dt51 fs

Ea 259094.6 771.9 259113.1 797.8 258599.6 732.9 258602.3 734.8 259111.2 795.3
Ek 11133.8 232.7 11128.4 251.0 11381.4 212.2 11384.3 211.7 11131.3 25
Ep 270228.4 664.3 270241.6.0 672.2 269981.0 644.4 269986.5 646.5 270242.5.0 669.7
Ebond 3838.0 86.8 3788.7 84.5 3900.6 75.2 3902.0 75.5 3786.3 84
Eangle 4105.1 74.4 4098.4 74.3 4099.3 75.0 4099.2 74.3 4098.6 73
Evdw 6900.1 222.0 6894.2 220.4 6877.6 215.0 6878.6 214.3 6893.8 21
Eelec 285065.0 849.5 285016.2 855.3 284851.8 832.8 284859.7 834.6 285014.6 851.3
Tb 301.4 6.30 301.3 6.80 308.1 5.74 308.2 5.73 301.3 6.
CPUc 17.6 ~1.0! 8.81 ~2.0! 4.45 ~4.0! 1.64 ~10.7! 1.72 ~10.2!

aEnergy is given in kcal/mol for: total, kinetic, potential, bond-length, bond-angle, torsion, van der Waals, and electrostatic terms.
bTemperature is given in degrees.
cCPU time is shown in hours, with speedup ofLN in parentheses.
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short-range forces require a small percentage of the work
the long-range components.

While longBBK simulations of the water system withou
cutoffs are not generally feasible~we estimate that a 60 p
trajectory would require 73 days!, we have generated 60 p
trajectories usingLN. For example,LN with Dt548 fs re-
quired 36.7 h, a speedup of 48. Some timing results
shown in Figure 7. From this figure we see that smaller ou
timestepsDt are used for water than for the proteins cons
ered above. The outer timestep is limited by processes in
physical system~e.g., fast librations for water!; this is re-
flected in the need to update the pair list associated with
force-splitting cutoff distance more frequently. We have h
preliminary success in extendingDt by updating the force-
splitting pair list more frequently than the long-range no
bonded force evaluations. With this practice, however, th
is the danger of including interactions inneitherthe long nor
short-range treatments, or in bothsimultaneously. That is,
during the interval over which the long-range forces are k
constant, the separation of certain atom pairs may incre
~or decrease! sufficiently to change the status from short
long-range~or vice versa!. In the first case, the interaction
no longer considered in the short-range treatment and is
included in the long-range treatment until the next lon
range force update. In the second situation, both the o

FIG. 6. Error inLN energies for the water simulations relative toBBK. The
LN error is shown for the different energy components~see Table V! for
different LN protocols propagated over 0.4 ps atg550 ps21 without any
cutoffs enforced.
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long-range and the newer short-range forces include co
butions from the given atom pair. We continue to study t
issue.

To examine the performance ofLN with a more practical
water model, we also simulated the dynamics of the wa
system withDtm51 fs and 12 Å nonbonded cutoffs for bot
BBK andLN at g520 ps21. The smallerg value is preferred
if a better agreement of the spectral densities to Verlet is
concern. For large values ofk2 ~e.g., 24 or 48!, the non-
bonded pair list associated with the 12 Å cutoff is upda
every k2 LN steps, along with the recalculation of the no
bonded forces. For smaller values~such ask251 or 3! the
nonbonded cutoff pair list can be updated less frequently
the latter situation, we update the nonbonded pair list ev
24 fs ~i.e., every 8 outer steps ofLN 3!. We found again that
this updating limits the size ofk2 . However, the computa
tional efficiency of LN is not compromised here, due t
asymptotic speedup considerations considered in the
section. Results are shown in Table VI: The agreemen
BBK to LN is very good; significantly the speedup ofLN 48 is
7.1.

To compare the structural properties of water trajector
produced byLN, we have run 5 ps simulations for a bo
containing 216 TIP3P water molecules. We found the la
system with the quartic boundary potential inappropriate
this purpose due to an accumulation of excessive pressu

FIG. 7. LN speedup compared toBBK simulations withDt50.5 fs. Shown
are the ratios ofCPU times from 60 ps simulations forBBK and LN with
Dtm53.0 fs, for BPTI and lysozyme andDtm51 fs for water. In all cases,
Dt5k2Dtm wherek2 ranges from 1 to 96. The Langeving values~in ps21!
are 20 for the proteins and the water system with cutoffs, and 50 for
water system without cutoffs. The data for the water system is based on
estimate of 73 days for a 60 ps simulation without cutoffs.
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TABLE VI. Langevin dynamics averages~mean and variance! for the water system over 5 ps with nonbonded interactions truncated at 12 Å:BBK (Dt
50.5 fs) versusLN ~Dt50.5 fs, Dtm51 fs, andDt5k2Dtm wherek251, 3, 12, 24, 48! at g520 ps21.

BBK LN 1 LN 3 LN 12 LN 24 LN 48

Ea 267245.8 3122.6 267187.9 3115.5 267202.8 3135.5 267125.0 3160.5 266976.4 3110.7 266952.6 3109.1
Ek 11141.3 89.6 11239.7 92.5 11249.2 92.2 11276.8 95.3 11294.5 91.9 11284.8 9
Ep 278387.1 3099.4 278427.6 3085.3 278452.0 3114.5 278401.8 3132.6 278270.9 3091.9 278237.5 3082.3
Ebond 3905.1 80.0 3876.0 75.8 3880.4 78.2 2872.3 76.6 3878.1 77.2 3868.7 7
Eangle 4809.3 276.1 4801.3 268.8 4807.0 275.3 4820.3 289.8 4813.7 263.3 4808.6 27
Evdw 8012.3 273.7 8009.5 277.2 8006.6 275.2 7995.1 273.4 8016.8 278.9 8007.1 28
Eelec 295113.8 3630.8 295114.4 3606.4 295146.0 3639.4 295089.4 3679.0 294979.5 3618.3 294921.9 3606.1
T 301.6 2.43 304.3 2.51 304.5 2.47 305.3 2.58 305.7 2.49 305.5 2
CPUb 9.2 ~1.0! 5.0 ~1.8! 2.7 ~3.4! 1.7 ~5.4! 1.5 ~6.1! 1.3 ~7.1!

aEnergy@in kcal/mol# is given for the total, kinetic, potential, bond length, bond angle, van der Waals, and electrostatic components.
bTime is given in hours, with speedup shown in parentheses.
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the system’s interior. The equilibrated structure was obtai
from theCHARMM test file test/data/tip216.crd37 and used for
LN and BBK simulations. Radial distribution functions from
these simulations are compared in Figure 8. These distr
tions agree well with each other and with those reported
other simulations that developed the TIP3P model49 for good
agreement with experiment; some flattening beyond the

FIG. 8. Water radial distribution functions@g(r )# for O–O, O–H, and H–H
interactions~gOO, gOH , andgHH! calculated from 5 ps simulations withBBK

~dd!, andLN 12, 48 withDtm51.0 fs, atg520 ps21.
d
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peak in the computed O–O radial distribution functions w
originally attributed to this water model.49

D. CPU time

The two parts of Table I show theCPU timings of BBK

versusLN without ~part A! and with~part B! force splitting in

LN. In part A, for each system we show the sparsity ofH̃, as
measured by the ratio of nonzero elements in the upper
angle~diagonals included! to the total number of elements i
the upper triangle@N(N11)/2 entries for anN3N matrix#.
The value ofT¹E gives the cost~in seconds! of evaluating
the full gradient, andTH̃ specifies the evaluation cost of th
sparse Hessian.TH̃d indicates the cost of one multiplicatio

of H̃ by a vector. The cost of the linearization phase ofLN

~covering the intervalDtm! amounts tok sparse-Hessian
vector products. Following theCPU values, theCPU percent-
age of that task~e.g., gradient evaluation! with respect to the
entire computational time is also given. In the last three c
umns, theCPU costs perDt interval ~5Dtm in part A! are
also given forBBK andLN, followed by the ratio of the two
~speedup!.

As system size increases~lysozyme has 2.5 times mor
atoms thanBPTI!, the number of entries in the approxima

HessianH̃ grows linearly, and so does the computation
cost of integrating the linearized equations of moti

(H̃/vector products!. In principle, the cost of evaluating th
Hessian should also increase linearly with the number
entries, but the currentCHARMM implementation of the 1–4
electrostatic terms does not exploit the increased sparsit

Note that the sparsity of ourH̃ is less than 5% for sys

tems with more than 6000 atoms. One calculation ofH̃ re-
quires about one fourth theCPU of the gradient calculation
This fact, combined with the cheapness of evaluating
linearized forces—about 24% of the total time forBPTI, 19%
for lysozyme, and only 1% for the large water system wi
out cutoffs~9% for water with a 12 Å cutoff!—explains why
LN 1 offers overall speedups.

The smallCPU percentages for the sparse Hessian eva
ation and the linearization inLN 1 also imply that the major-
ity of the work comes from gradient computations. Indee
the percentage ofCPU spent on gradient computation is abo
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80% for lysozyme and 99% for water~91% with cutoffs! in
LN 1. This suggests the benefit of force splitting inLN, in the
spirit of MTS methods, for additional speedup. For the thre
stageMTS method described in system~3!, the speedup fac
tors depend on the ratior 5Dt/Dt and the cost of the full
gradient (¹E) relative to the gradient of the fast (¹Efast) and
the medium (¹Emid) forces. Similarly inLN with force split-
ting, where the fast forces are treated by linearizati
speedup depends on the cost of¹E relative to the cost of

¹Emid and the cost of evaluating the approximate HessiaH̃
and performing the sparse Hessian/vector products.

The costs of the fast and medium gradient parts, as w
as the linearization components, are given in part B of Ta
I. Note that for the proteins, more than half of the work f

the fast components involvesH̃ evaluation. Using these val
ues, we can estimate theCPU cost ofLN relative toBBK and
the impulseMTS scheme, as follows. TheCPU cost of oneDt
step ofLN is given by

TLN5T¹E1k2~T¹Emid
1TH̃1k1TH̃d!,

whereTH̃ is the cost of evaluating the sparse Hessian,
TH̃d is the cost of a sparse Hessian vector product. The
of BBK over the same (Dt) interval isTBBK5rT¹E . The LN

speedup overBBK is given by the ratio

LN speedup5k2k1T¹E /@T¹E1k2~T¹Emid
1TH̃1k1TH̃d!#

5k1T¹E /@T¹E /k21~T¹Emid
1TH̃1k1TH̃d!#.

~12!

From equation~12! we see that as the long-range upda
parameter k2 grows, the LN speedup approaches th
asymptotic limit
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AsymptoticLN speedup

5k1T¹E /~T¹Emid
1TH̃1k1TH̃d!. ~13!

Using the data from Table I, wherek156, we can calculate
the asymptotic speedup forBPTI to be (630.38)/(0.05
10.111630.002)'13.3. The analogous calculation fo
lysozyme gives 19.8 as the approximate asymptoticLN

speedup. It can be seen from Table I~part B! and Figure 7
that LN rapidly approaches the asymptotic speedup as
long-range force update frequency,k2 , increases.

Similarly, theCPU cost of the impulseMTS method@sys-
tem ~3!# is given by

TMTS5T¹E1k2~T¹Emid
1k1T¹Efast

!,

and the speedup over Verlet~or BBK! is

Impulse MTS speedup

5k2k1T¹E /@T¹E1k2~T¹Emid
1k1T¹Efast

!#

5k1T¹E /@T¹E /k21~T¹Emid
1k1T¹Efast

!#. ~14!

In contrast toLN, the stability of the impulse method dis
cussed above and in the companion paper2 restricts the pa-
rametersk1 andk2 to values such thatk1k2Dt,5 fs. Hence
the notion of asymptotic speedup does not apply in this ca
Using theBPTI data from Table I, and the typical11 values
k154 andk252 andDt50.5 fs, theMTS speedup overBBK

is close to 6, possibly higher than realized in practice due
omission of some overhead calculations.

Assuming that the timestep treatmentDtm5k1Dt is the
same in both methods, we can approximate theLN speedup
over MTS by taking the ratio of the costs perDtm of each
method
LN speedup overMTS'S k2
LN

k2
MTSD S T¹E1k2

MTS~T¹Emid
1k1T¹Efast

!

T¹E1k2
LN~T¹Emid

1TH̃1k1TH̃d!D , ~15!
-
rom
r
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ting

the
are
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ns
wherek2
MTS andk2

LN correspond to the long-range force upda
frequencies in the respective schemes. In fact, we see
eq. ~15! that the speedup is given by the product of the ra
(k2

LN/k2
MTS) and the ratio of the costs for treating the mediu

and fast forces in the two methods. Thus, the speedup ad
tage ofLN over MTS comes largely from the method’s su
cess in using a largerk2 , and hence largerDt value for the
slow-force updating frequency. This computational adv
tage is amplified by the second term in equation~15! when
the linearization treatment offers cost savings over dir
evaluation of the fast and medium force components. T
expression also suggests thatLN’s linearization approach ca
be replaced by direct calculation of the fast forces when
earization is not advantageous in terms of computatio
speed.
m
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E. Comparison of LN to MTS at increasing Dt

The success ofLN in overcoming the half-period reso
nance due to its extrapolative technique can be seen f
Figure 9 shown forBPTI and lysozyme. The results for wate
~not shown! reveal the same trend. The impulse-MTS version
for Langevin dynamics has been adapted and implemente
CHARMM for this purpose. The plots show the average bo
energy, and associated variance, as a function of the upda
frequency of the long-range~slow! forces. We useDtm

51 fs in all cases, so the abscissa also corresponds to
time in units of femtoseconds. The total simulation times
short ~see captions! to reduce computation time. We not
that the presence of stochasticity renders the impulse me
immune to the half-period barrier, but not at the period~10
fs! of the fastest motion, where large energetic fluctuatio
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result. Our linear analysis2 shows expected artifacts at mu
tiples of half the period for a two-class force-splittin
scheme.

No such average-energy increase due to resonance i
served forLN. We found that the energy increase effect f
impulse-MTS can be significantly diminished by increasingg,
but our reasoning for minimal relative weight of the rando
forces argues against this approach.

V. DISCUSSION AND CONCLUSION

Traditional time discretization schemes for molecu
dynamics—Verlet and its variants—have been popular
30 years. This is due to their simplicity and reliability. Th
suitability of these methods for propagating molecular m
tion is largely attributable to their preservation of abstr
properties~symplecticness, phase-space volume, time rev
ibility ! present in the exact solution of the Newtonian eq
tions of motion. The disadvantage of these methods is
the length of timestep, and hence the efficiency of the ove
simulation, is limited by numerical stability of the method

Furthermore, the notion of symplecticness becom
more blurred as the timestep is increased, since all theore
concepts~e.g., the closeness of the symplectic trajectory
that of a nearby Hamiltonian19! are true only in the limit of
very small timesteps. The timesteps used in molecular

FIG. 9. Impulse-MTS vs LN for Langevin simulations ofBPTI and lysozyme
over 2 ps (g520 ps21). Average bond energy and variance are shown
the two methods: Verlet-I/r-Respa~or impulse-MTS! generalized for Lange-
vin dynamics andLN with extrapolation of the long-range nonbonded force
The abscissa gives the interval~in fs! between updates of the long-rang
forces, defined as interactions outside of a 6 Å radius. In all cases, bond an
angle forces are updated everyDt50.5 fs, and local (,6 Å) forces are
updated everyDtm51.0 fs.
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namics are, in fact, relatively large. In our experience, ma
differential-equation packages that use adaptive timestep
not permit the typical 1 fs timesteps used in molecular d
namics~only one tenth the fastest period!, due to violation of
error tolerance parameters. Indeed, Deuflhardet al. recently
showed that only timesteps less than 0.01 fs yield conv
gence of the end-to-end distance of a butane molecule!50 ~see
also Ref. 17!.

The Verlet method has been generalized in a numbe
ways for increased efficiency in biomolecular simulation
Success has been achieved by adding constraints viaSHAKE

~speedup of 2–4!,51 and by usingMTS methods such as r
Respa and Verlet-I~speedup of about 5!.10,11 In each such
case, the time discretization shares the structure-preser
properties of Verlet, as well as the inherent numerical sta
ity issues which limit the timestep length.

With the introduction of stochasticity in Langevin dy
namics, a number of numerical integration schemes bec
available which are not applicable for long-time simulatio
in the time-reversible regime of Newtonian dynamics. T
exchange of Hamiltonian dynamics for stochastic dynam
can guarantee better numerical behavior, but the resul
detailed dynamics are not the same.

Here we have described theLN method, which differs
from those mentioned above in that forces are applied
quently, but updated more or less rarely, based on the
damental timescales involved; between updates, the fo
are held constant. Such extrapolation methods appear q
suitable for Langevin dynamics simulations in combinati
with small g, to stabilize the simulations but weigh the ine
tial terms maximally. Moreover, this extrapolative approa
of LN does not suffer dramatically from the resonance lim
tations of the impulse treatments.2 This results in speedup
factors over currentMTS schemes, and thus longer times c
be followed for the same amount of computing time.

The LN scheme uses the triplet$Dt,Dtm ,Dt%, whereDt
corresponds to the subintegration time of the linearized eq
tions of motion,Dtm is the frequency of updating the ha
monic approximation, andDt is the interval between slow
force updates. In each inner timestep, sparse-Hessian/v
multiplications are required; at integral multiples ofDtm , the
local Hessian is updated along with the fast and ‘‘medium
forces ~the latter defined here within a 6 Å radius!; and,
everyDt5k2Dtm interval, the long-range forces are recalc
lated. We have usedDt50.5 fs,Dtm51 fs ~for water! and 3
fs for the proteins, andDt5k2Dtm wherek2 extends from 1
to 96. The nonbonded pair list is updated everyDt, but this
might improve~see note in text!. Special care was needed
the implementation of cutoffs and switching function para
eters. We have shown through detailed examinations of
jectories for two proteins in vacuum and a water drop
system thatLN gives very good agreement to explicit Lang
vin trajectories performed at the inner timestepDt. This
agreement was assessed in terms of ensemble-generate
erages and means for the energy components, geom
quantities, and rms fluctuations from the initial structure, a
of each backbone Ca andc angle from its trajectory mean.

The correctness of the resultingLN dynamic properties
was demonstrated by the agreement of the spectral de

r
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function ofLN to that obtained for a small-timestep Langev
trajectory. Speedup factors depend on the problem size~see
tables!, but factors exceeding 10 arise whenk2 is 6 or greater
in our examples.

A comparison to Newtonian dynamics demonstrated t
as g is decreased, the smoothed Langevin spectra rese
more closely the sharper Newtonian spectra. In particu
the agreement between theLN spectra atg55 ps21 with that
of Verlet (g50) is not bad. Thus, a value smaller tha
20 ps21 may be preferred if such considerations are imp
tant. However, decreasingg increases the probability that
trajectory will become unstable at some point because
stochastic terms may be too weak to restore equilibrium.
have encountered such a case forg55 ps21 in LN 48 with
Dtm53 fs ~LN 96 was stable for this protocol!, but this could
occur more generally. In such occurrences,g should be in-
creased orDtm decreased~doing either stabilized the com
putation above!. See paper II2 for a discussion of the effec
of g on LN’s stability.

The general issue of Langevin versus Newtonian dyna
ics depends strongly on the applications in mind. For th
modynamic and structural questions, the efficiency of theLN

method may be preferred, while for detailed dynamic qu
tions, symplectic integration of the Newtonian equatio
may be important. Given the highly approximate nature
the governing molecular mechanics force fields and the e
mous spatial and temporal scales involved in biomolecu
motion, theLN method may be well suited for thermody
namic and sampling questions. Small-timestep dynam
simulations can always be performed in tandem once an
teresting region of conformation space is identified.

Based on our analyses, we recommendk2524 or 48 as
an upper bound. The asymptotic speedup is nearly reac
for these values~Figure 7!. Similarly, theDtm51 fs used for
water is likely to be the recommended value for solva
biomolecules, although slightly larger values can be con
ered. Water’s fast librational modes appear to force t
smaller value forLN as well as forMTS schemes. If this
smaller value is used, speedup factors will be smaller t
those we showed for the proteins in vacuum, but the sys
sizes will be larger.

TheLN method can also be incorporated in the contex
Monte Carlo schemes for enhanced sampling. For added
ficiency and decreased emphasis on dynamics, theLN proto-
col may be pushed further, for example by using a sma
radius than 6 Å for defining the medium forces, increasin
Dtm , and also incorporating nonbonded cutoffs at a la
value ~e.g., 15 Å!.

The implementation ofLN in any program that alread
incorporates force splitting is straightforward. Besides
composing the forces, such programs must carefully turn
the slow forces@i.e., by means of a gradual switching fun
tion such as that given in equation~9!# and update the loca
nonbonded pair list every time the slow forces are reca
lated.

In addition to this splitting,LN requires a routine to as
semble the sparse Hessian approximation from the lo
terms ~bond lengths, bond angles, dihedral angles, a
nearby electrostatics!, and a subprogram to efficiently mult
t
ble
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ply this sparse Hessian by a vector. InCHARMM, the sparse
Hessian multiplication routine is provided as part
the DIMB diagonalization module. A combination ofLN

with fast electrostatic treatments—multipoles or Ewa
summations—is possible in the same way as forMTS

schemes. However, as found inMTS schemes with fast
summations,10 the efficiency of the integrator, relative to tra
ditional small-timesteps methods, decreases somewhat d
faster force routines.

It is also possible to substituteLN’s linearization ap-
proach with direct calculation of the fast forces. The line
ization is not crucial forLN’s stability and efficiency; rather
it is the combination of stochasticity with extrapolation th
avoids notable resonances and offers speedup factors ex
ing 5; see also the companion paper.2 Thus, the cost benefi
of this substitution~straightforward force-splitting instead o
linearization plus force splitting! should be determined on
the basis of the cost distribution of the associated com
nents for the target system@see Table I, part B and equatio
~15!#. Note that with our linearization treatment for the pr
teins, more than half of the work in the fast compone

involves H̃ evaluation.
In essence, the stochastic extrapolative approach oLN

invites many variations and allows molecular dynamics pr
titioners to balance desired accuracy, as measured by
resemblance to Newtonian dynamics, with computational
ficiency.

Note added in proof:We have since implemented
direct-force version of LN, and the results are similar
those described here with the linearization. These results
well as LN performance on solvated biomolecular system
will be reported separately~Sandu and Schlick!.
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APPENDIX: LIN DESCRIPTION

After the linearized equations~6! are solved by system
~7! or ~8! for the nextXh , Xh

n11 , the residual componen
Z(t) and its time derivativeW(t) are obtained from

Ż~ t !5W~ t !,

MẆ~ t !52¹E~Xh1Z~ t !!2gMW~ t !1¹E~Xr~ t !!

1H̃~Xh2Xr !. ~A1!

The initial conditions for system~A1! are Z(0)50 and
W(0)50.

To solve this system for the residual components,LIN

applies the second-order midpoint scheme. Following al
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braic manipulations,6,7 we obtain a nonlinear system
¹F(Y)50, where Y5(X1Xn)/2. This system can be
solved by reformulating the problem as minimization for t
‘‘dynamics’’ function F :

F~Y!52~11~gDt/2!!~Y2Y0
n!TM ~Y2Y0

n!

1~Dt !2E~Y!, ~A2!

where

Y0
n5Yh1~Dt !2/@4~11~gDt !/2!#M21@¹E~Xr !

1Hh~Yh2Xr !#,

Yh5~Xh
n111Xn!/2. ~A3!

Thus, each correction step ofLIN for the anharmonic residua
requires nonlinear minimization ofF. This is the cost of the
large timesteps possible inLIN. This minimization subprob-
lem can be accomplished efficiently using our trunca
Newton package52–54 with an initial approximate minimizer
of F of Xh

n11 or (Xh
n111Xn)/2. The new coordinate an

velocity vectors for timestepn11 are then obtained from th
relations

Xn1152Y2Xn, Vn115Vh
n1112~Xn112Xh

n11!/Dt.
~A4!
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29A. Brünger, C. L. Brooks III, and M. Karplus, Chem. Phys. Lett.105, 495
~1982!.

30T. Simonson, Chem. Phys. Lett.250, 450 ~1996!.
31D. Beglov and B. Roux, J. Chem. Phys.100, 9050~1994!.
32D. Beglov and B. Roux, Biopolymers35, 171 ~1994!.
33D. Beglov and B. Roux, J. Chem. Phys.103, 360 ~1995!.
34D. A. McQuarrie, Statistical Mechanics~Harper and Row, New York,

1976!, Chaps. 20–21.
35R. W. Pastor, B. R. Brooks, and A. Szabo, Mol. Phys.65, 1409~1988!.
36E. Hairer and G. Wanner,Solving Ordinary Differential Equations II. Stiff

and Differential-Algebraic Problems, Vol. 14, Springer Series in Compu
tational Mathematics~Springer, New York, 1991!.

37B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swa
nathan, and M. Karplus, J. Comput. Chem.4, 187 ~1983!.

38A. D MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr.,
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph
Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T
Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich,
Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Y
and M. Karplus, J. Phys. Chem.~in press!.

39B. Mishra and T. Schlick, J. Chem. Phys.105, 299 ~1996!.
40E. Barth, K. Kuczera, B. Leimkuhler, and R. D. Skeel, J. Comput. Che

16, 1192~1995!.
41F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, Jr., M.

Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasum
Mol. Biol. 112, 535 ~1977!.

42E. E. Abola, F. C. Bernstein, S. H. Bryant, T. F. Koetzle, and J. Weng
Crystallographic Databases—Information Content, Software Systems,
entific Applications, edited by F. H. Allen, G. Bergerhoff, and R. Sieve
~Data Commission of the International Union of Crystallography, Bon
1987!, pp. 107–132.

43R. Huber, D. Kukla, A. Ruehlmann, O. Epp, H. Formanek, J. Deisenho
and W. Steigemann, Brookhaven Protein Data Bank, 1982.
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