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Extrapolation versus impulse in multiple-timestepping schemes. II. Linear
analysis and applications to Newtonian and Langevin dynamics

Eric Bartha) and Tamar Schlickb)

Department of Chemistry and Courant Institute of Mathematical Sciences, New York University
and Howard Hughes Medical Institute, 251 Mercer Street, New York, New York 10012

~Received 22 July 1997; accepted 17 February 1998!

Force splitting or multiple timestep~MTS! methods are effective techniques that accelerate
biomolecular dynamics simulations by updating the fast and slow forces at different frequencies.
Since simpleextrapolation formulas for incorporating the slow forces into the discretization
produced notable energy drifts, symplecticMTS variants based on periodicimpulsesbecame more
popular. However, the efficiency gain possible with these impulse approaches is limited by a
timestep barrier due to resonance—a numerical artifact occurring when the timestep is related to the
period of the fastest motion present in the dynamics. This limitation is lifted substantially forMTS

methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the
LN method in the companion paper for protein dynamics. To explain our observations on those
complex nonlinear systems, we examine here the stability of extrapolation and impulses to
force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the
energy drift of the former and the resonance-related artifacts of the latter technique. We show that
two-class impulse methods are generally stable except at integer multiples of half the period of the
fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods
are generally unstable for the Newtonian model problem, but the instability is bounded for
increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation
methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate
extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in
the LN method described in paper I. ©1998 American Institute of Physics.
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I. INTRODUCTION

The primary difficulty in computer simulation of larg
physical systems is efficient treatment of the wide range
temporal and spatial scales present in the underlying mod
In the field of biomolecular dynamics, the high-frequenc
low-amplitude degrees of freedom dictate a timescale in
atom models of 10215 s ~1 fs!. However, large-scale motion
of biological interest—such as protein folding—occur on
mescales of seconds, many orders of magnitude longer. F
general recent review of methods for biomolecular dyna
ics, see Ref. 1. Recognizing this formidable range-of-sca
problem in simulation and modeling, various timestepp
algorithms for numerical dynamics have been introduc
These methods seek to separate spatial scales of the m
treating each at the appropriate temporal scale and com
ing these levels as accurately and efficiently as possible

The popular Verlet algorithm2 is based on a second
order finite-difference discretization of the acceleration
Newton’s equations of motion. The method requires calcu
tion of the forces of interaction~the gradient of the potentia
energy E, a function of the system coordinates! at each
timestep. Effectively, the forces are considered constant

a!Present address: Department of Mathematics, Kalamazoo College,
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ing each timestep interval. The numerical stability of Ver
depends critically on the period of the fastest motion in
system. This stability requirement limits the timestep size
and hence force recalculation frequency—to the range 0.
1 fs for biomolecular systems modeled with all degrees
freedom flexible. As the system size grows, the number
interactions increases asN2, whereN is the number of at-
oms, and force calculations involving all atom pairs dom
nate the other operations. Notwithstanding the amount
computational work involved, the Verlet method is often r
garded as the ‘‘gold standard’’ for molecular dynamics sim
lations. The integrator is symplectic,3 preserving geometric
properties~such as time reversibility and phase-space v
ume! present in the exact solution of these equations
conservative Hamiltonian systems.3 This preservation likely
accounts for the good energy conservation along the c
puted trajectories observed in practice. This behavior in t
renders the Verlet scheme most suitable for low-accur
long-time simulations of conservative systems.

Nearly two decades ago, multiple timestep~MTS! meth-
ods were introduced4,5 in an effort reduce the computationa
cost of molecular simulations. Assuming that forces due
distant interactions can be held constant to a good appr
mation over long intervals, ordinary timestepping procedu
are modified simply: The long-range forces are evalua
less often than the short-range terms; between updates,
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slow forces are incorporated into the discretization as c
stants from step to step. However, thisforce extrapolation
approach disrupts the energy-preserving features of the
modified timestepping algorithms. Therefore, force splitti
via extrapolation did not gain wide acceptance in dynam
schemes.

Work continued on MTS methods in a variety of
contexts,6,7 leading to the introduction in 1991 by Gru¨b-
muller, Heller, Windemuth, and Schulten8—and indepen-
dently in 1992 by Tuckerman, Berne, and Martyna9—of an
MTS method which is ‘‘Verlet-like’’ in its energy preserva
tion behavior. ThisMTS variant, called Verlet-I8 or r-Respa,9

establishes a new class ofMTS schemes.~The latter is more
general.! This class differs from its predecessors in that
forces on each scale are incorporated into the numerical
namics only at the time of recalculation, with a strength p
portional to the interval between evaluations. Thus, as
time interval between slow-force updates increases, the
of these ‘‘impulses’’ grows. Though the original work8 ex-
pressed reservations regarding force impulses, these
plectic MTS variants quickly became favored.

However, recently it has become clear that, like Verl
considerations of numerical stability also limit the allowab
timestep in impulseMTS methods. Namely, rapid energ
growth has been observed10–12 when the interval between
slow-force updates approaches and exceeds 5 fs. This ba
occurring around half the period of the fast motion in b
molecules when all degrees of freedom are allowed~e.g., an
O–H bond stretch! can be explained by resonance.13,14 This
resonance refers to an integrator-induced artifact that oc
at particular discretization timesteps related to internal p
ods of the simulated physical system. See Ref. 13 for a t
ough analysis of resonance by the implicit-midpoint sche
and Ref. 14 for a discussion of nonlinear resonance in m
lecular dynamics.

The presence of these resonances limits the outerm
timestep,Dt ~i.e., interval of slow-force update!, in MTS

schemes and thus the overall speedup that can be achiev
practice over a standard Verlet trajectory. When bo
lengths are constrained via SHAKE,15 this artifact is delayed
to a timestep related to the light-atom bending modes w
period around 20 fs.16 Other implementational details of th
MTS protocol can also delay resonance to larger ou
timesteps.

The stability of impulseMTS methods has also been stu
ied for a linear system by Garcı´a-Archilla, Sanz-Serna, an
Skeel.17 This work offers insight into the nature of instabil
ties and introduces several ‘‘mollified’’ impulse metho
which employ averaging or other smoothing techniques
extend the outer timestep slightly.

In paper I,18 we introduced an efficient method for bio
molecular dynamics that does not suffer from this resona
limitation. NamedLN for its origin in a Langevin/Normal-
mode scheme,16,19,20the method combines force splitting an
Langevin dynamics.LN differs from the symplecticMTS

schemes Verlet-I8 and r-Respa9 in several respects:

~1! The simple Langevin equation is used as the govern
equation for dynamics.
-
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~2! The slow forces are incorporated via extrapolation rat
than impulses.

~3! The short-range motion is propagated on the basis o
linearized model of the equations of motion. This featu
of LN, however, can be replaced by direct for
calculations;18 see below.

Results show18 very good agreement ofLN trajectories with
small-timestep trajectories for proteins in vacuum and a la
water system. The reference simulations used a sm
timestep ofDt50.5 fs, the innermost timestep inLN, as in
MTS methods.11,21 In addition, speedup factors of 10 or mo
are possible for the larger systems since the outerm
timestep (Dt) can be increased to 48 fs or more.18

The success of theLN method in overcoming resonance
related instabilities is the subject of this analytical pap
Among the three distinct features ofLN enumerated above
the combination of the two—Langevin heat bath and
extrapolation treatment of the slow forces—allows the use
long timesteps. A Langevin version of Verlet-I8 and r-Respa9

at moderate values of the Langevin collision parameteg
appears less sensitive to timesteps near half the fastest p
but produces trajectories with exaggerated energies and
peratures for timesteps near that period.18 Better numerical
behavior could be achieved by increasingg by a factor of 2
or more, but this is undesirable due to substantial dampin
the internal modes, especially those of lower frequencies18

In contrast, theLN method is stable at moderateg across
a wide range of outer timesteps, without apparent sensiti
to the periods of fast motion present in the system. As
ready emphasized, this favorable feature is not a con
quence of the linearization treatment of local forces; the
placement of linearization by direct force evaluations resu
in similar behavior~Barth and Schlick, unpublished data!.

In this article we explain these observations on comp
nonlinear systems18 by studying the stability of impulse an
extrapolationMTS methods on a simple model problem wi
two force classes. We emphasize that realistic nonlinear
tentials~for proteins! were already tested in paper I; resu
were so striking that we seek here analytical explanatio
Without loss of generality, we formulate impulse and e
trapolation MTS methods based on the simple first-ord
symplectic-Euler method3 ~see paper I18 for a Verlet-based
MTS method!. Intermediate techniques described by Scu
and Hermans22 and more recently by Hermans~private com-
munication!, developed to correct the effect of constant e
trapolation of the slow forces over long timesteps, are a
discussed.

We formulate, for each method applied to a simple on
dimensional linear system, the propagation of the dynam
from one timestep to the next as multiplication by apropa-
gation matrix. We compute the propagation matrix eigenva
ues and examine the relationship between these eigenva
and the periods of motion in the linear system, outer times
lengths for theMTS methods, and ultimately the numeric
stability of the methods.

This theoretical stability analysis gives insight into th
energy drift observed in extrapolation treatments and
timestep barrier associated with impulse methods. We sh



m
tr
u

u
fu

ler

th
n
te

ng

c-
ha
c

r-
a

w
ie
-

th

x

rts

lex
the

ero

ous
t

ga-
the
d.

e
ered
s.
pa-
tic-
f

the
els

pre-
the

-

site

e
-

eal
ds

la-
y-

e

1635J. Chem. Phys., Vol. 109, No. 5, 1 August 1998 E. Barth and T. Schlick
in particular, that extrapolation suffers less dramatically fro
such a barrier. We then extend the analysis and demons
that extrapolation methods are suitable for the efficient sim
lation of systems modeled by the stochastic Langevin eq
tions of motion. Indeed, these ideas have been success
applied to the simulation of biomolecular systems by theLN

method, presented in paper I.18

Although we consider the first-order symplectic-Eu
integrator here, our analysis can be easily generalized
Verlet/leapfrog, as well as higher-order methods, and
conclusions are similar. Analogous results with Verlet a
further insights into resonance problems will be repor
separately.23

II. THE SYMPLECTIC-EULER METHOD AND LINEAR
STABILITY

We consider the linear model described by the followi
system of first-order differential equations:

Ẋ5V, V̇52~l11l2!X. ~1!

The variablesX andV denote the scalar position and velo
ity, respectively, for a particle of unit mass. We assume t
l2!l1 to represent motion components differing in chara
teristic timescales. The solution of system~1! has the form
X5exp(a6iAl11l2t), where a is a real constant andi
5A21. Note that theLN method18 applies force splitting to
a linearized system like~1!.

We formulateMTS integrators based on thesymplectic-
Euler discretization,3 given by

Xn115Xn1DtVn11, Vn115Vn2DtLXn, ~2!

whereL5l11l2 andDt is the timestep. The integer supe
script n refers to the discretized-equation approximation
time nDt.

To establish the methods and notation used later,
examine the stability of the symplectic-Euler method appl
to the test system of equation~1!. The step-to-step propaga
tion operatorF:$Vn,Xn%→$Vn11,Xn11% can be described
by the following matrix equation:

FVn11

Xn11G5F 1 0

Dt 1GF1 2DtL

0 1 G FVn

XnG .
The 232 product matrix

A~Dt,L!5F 1 2DtL

Dt 12~Dt!2L
G5F 1 0

Dt 1GF1 2DtL

0 1 G ~3!

defines the method and determines its stability. Namely,
integrator is stable for values ofDt and L for which the
eigenvalues ofA lie on the closed unit disk in the comple
plane. Formally, we say the spectral radiusr~A! ~the maxi-
mum, in absolute value, of the eigenvalues ofA! is bounded
by unity: r(A)<1. Here, the eigenvalues ofA can be com-
puted as

12 1
2 Dt2L6 1

2 A24Dt2L1Dt4L2,

or by splitting the expression into real and imaginary pa
as
ate
-

a-
lly

to
e
d
d

t
-

t

e
d

e

,

12 1
2 Dt2L6 1

4 Au24Dt2L1Dt4L2u~1

1signum~24Dt2L1Dt4L2!!

6 1
4 iAu24Dt2L1Dt4L2u~1

2signum~24Dt2L1Dt4L2!!.

It follows that for Dt in the open interval~0, 2/AL!, the
eigenvalues have nonzero imaginary parts, occur in comp
conjugate pairs, and are of modulus one—that is, lie on
unit circle in the complex plane. For increasingDt>2/AL,
the eigenvalues are strictly real; one value tends to z
while the other grows without bound. ThusDt52/AL is the
maximum stable timestep for the method. This is analog
to the well-known condition for stability of the Verle
method for a harmonic oscillator: 2/v or P/p, whereP is
the oscillator’s period.

The fact that all stable timesteps correspond to propa
tion matrix eigenvalues with modulus one is related to
structure-preserving properties of the symplectic metho3

The determinant of this matrix~equal to the product of the
two eigenvalues! is one, implying the preservation of volum
in phase space. In the one-dimensional system consid
here, volume preservation is equivalent to symplecticnes

Figure 1 illustrates the relationship between the pro
gation matrix eigenvalues and the stability of the symplec
Euler scheme forL5400. Panel~a! shows the magnitude o
both eigenvalues as a function of the timestepDt. This mag-
nitude departs from unity at the timestepDt52/AL50.1;
for larger timesteps, one eigenvalue tends to zero and
other grows in magnitude beyond one. The other pan
show the complex eigenpairs for selected timesteps re
sented as vectors. On the unit circle, points correspond to
eigenvalues computed for timestepsDt50.001n for integers
n in the rangeDt50 to Dt50.1. We see that the two ei
genvalues begin on the real axis at one forDt50 ~b! and, as
Dt increases, travel as complex conjugate pairs in oppo
directions around the unit circle@parts ~c!–~e!#. At the sta-
bility threshold ofDt52/AL, the two eigenvalues converg
on the real axis at21 ~f!, remaining on the real axis there
after and departing from the unit circle~g!. This behavior—
complex eigenvalues converging to a point on the r
axis—is associated with instabilities for each of the metho
considered in the remainder of the paper.

III. STABILITY OF IMPULSE AND EXTRAPOLATION
TREATMENTS

We now consider the stability of impulse and extrapo
tion force-splitting methods for Newtonian and Langevin d
namics in turn.

A. Newtonian dynamics

An impulseMTS method treats the slow component~as-
sociated withl2! of the force at timestepsk times larger than
those for the fast (l1) components. A discretization schem
based on system~3! above is
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FIG. 1. Propagation-matrix eigenvalue magnitudes for the symplectic-Euler method given by equation~3! applied to the linear test system,L5400, plotted
versus the timestep,Dt50.001n for integersn @panel~a!#, and the two eigenvalues plotted as vectors in the complex plane for selectedDt ~b!–~g!. The
method is stable for 0<Dt<2/AL50.1, and in this interval, the eigenvalues occur in complex conjugate pairs,~b!–~f!. For Dt.2/AL, the eigenvalues of
the propagation matrix depart from the unit circle along the real axis~g!, one growing without bound and the other approaching zero. On the unit circle in
~b!–~g!, points correspond to eigenpairs forDt equal to integral multiples of 0.001.
e
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For
Impulse Method
X05Xn,
V05Vn2kDtl2Xn

for i 50, k21
Vi 115Vi2Dtl1Xi ,
Xi 115Xi1DtVi 11

end
Vn115Vk,
Xn115Xk.
~The index i above and hereafter should not be confus
with the complex number.! The associated propagation m
trix AI for this method is given by
d

AI~Dt,l1 ,l2 ,k!5F 1 2Dtl1

Dt 12~Dt!2l1
G kF1 2kDtl2

0 1 G ~4!

5A~Dt,l1!kF1 2kDtl2

0 1 G . ~5!

It can be shown that the determinant of the matrixAI is
always one, just as in the case for symplectic-Euler. Th
this formulation results in a symplectic method. We sh
see, however, that the impulse formulation suffers fro
resonance-related instabilities at certain timestep lengths.
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timesteps short enough to avoid these instabilities,
structure-preserving properties of this method make it m
suitable for Newtonian dynamics.

To avoid the impulses proportional tokDt—and per-
haps lessen the effects of resonance-related instabilities—
hold the slow component of the force constant overk steps.
This approach results in the following alternative treatme

Extrapolation Method
X05Xn,
V05Vn

for i 50, k21
Vi 115Vi2Dt(l1Xi1l2X0),
Xi 115Xi1DtVi 11

end
Vn115Vk,
Xn115Xk.
As before, the slow force (l2X0) is evaluated at intervals
kDt, but in contrast to the impulse method, this const
force contributes to the numerical dynamics at every in
stepDt.

Defining the extrapolation matrixE as

E~h,l!5F0 2hl

0 0 G ,
we obtain the relevant propagation matrixAE in terms ofA
above andE for a step of lengthkDt for the extrapolation
method:

AE~Dt,l1 ,l2 ,k!5A~Dt,l1!k1~A~Dt,l1!k

1A~Dt,l1!~k21!1¯

1A~Dt,l1!!E~Dt,l2!. ~6!

In Figure 2 we illustrate behavior of the impulse a
extrapolation variants of the symplectic-Euler scheme for
case ofl15400 andl251. In the central panel, we show th
eigenvalue magnitudes of the associated propaga
matrices—AI and AE, respectively—as a function of th
timestep. The period associated with each exponential c
ponent of the solution,eiAlt, is P52p/Al. Hence forl1

5400, the periodP1'0.314 in our units, and forl251,
P252p, 20 times larger.

For the results in Figure 2, we useDt50.001~the inner
timestep! and kDt for the outer timestep. The maximum
outer timestep shown~unity! corresponds to about thre
times the period of the fast motion. We see from the fig
that the impulse method is unstable at certain timestep
integral multiples of half the fastest period. The severity
these corruptions increases withk, approximately as
e6l2kDt/(2Al1). This can be seen from the lower panel
Figure 2, which extends the middle view to larger ou
timesteps approaching the period of the slow motion~2p!.
Impulses clearly lead to serious artifacts at certain timest
For other timesteps, however, the impulse method is stab
the eigenvalues have magnitude one. Still, for a large n
linear system, it is likely that once a resonant timestep
reached, good numerical behavior cannot be reestablishe
increasing the timestep.14 That is, avoiding resonan
timesteps is virtually impossible due to many clustered
brational modes and intricate coupling between them.
e
st

we
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t
r

e
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e
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f

r
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is
by
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For the extrapolation method, in contrast, we note dev
tions from unit eigenvalues except at integral multiples of
fast period. Since both eigenvalues exceed one in magnit
the determinant ofAE is also greater than one, implying tha
the method is not volume-preserving or symplectic. This
plains the energy drift observed in practice for such metho
The sinusoidal pattern of the extrapolation plot has am
tudel2 /l1 ~0.0025 here!; therefore, the larger the separatio
of frequencies, the more benign the numerical artifacts
practice.

At half-period multiples, spikes are also seen for t
extrapolation method, but they do not increase in magnit
ask increases. The upper magnified views of Figure 2 sh
for the extrapolation and impulse methods, the spikes in
tail for kDt near 1

2,
3
2, and 5

2 the period associated withl1 .
This boundedness associated with the extrapolation
proach, together with the discussion in the next section,
plains the good behavior ofLN at large timesteps observed
practice.18

Interestingly, a method which lies between these t
force-splitting extremes was proposed by Scully a
Hermans,22 and recently modified Hermans@J. Hermans~pri-
vate communication!#. These extrapolative/correction meth
ods seek to improve the behavior of the low-order extra
lation by introducing corrections to the velocity~and in the
original method to the position as well! after extrapolation:

Extrapolation/Correction Methods
V05Vn,
X05Xn

for i 50, k21
Vi 115Vi2Dt(l1Xi1l2X0),
Xi 115Xi1DtVi 11

end

Vn115Vk2
k21

2
Dt~l2Xk2l2X0!,

Xn115Xk2Fk221

6
~Dt!2~l2Xk2l2X0!G .

Omission of the position correction~enclosed by square
brackets in the last line above!, constitutes the recent mod
fication, resulting in a scheme we call th
Extrapolate/CorrectV method. The propagation matrix ass
ciated with this method is

AE/CV
~Dt,l1 ,l2 ,k!5S I1ES k21

2
Dt,l2D D

3AE~Dt,l1 ,l2 ,k!2ES k21

2
Dt,l2D .

~7!

To express the propagation matrix for th
Extrapolate/CorrectV,X method, we first introduce the follow
ing extrapolation matrix:

EX~h,l!5F0 0

0 2hl
G .

Then the propagation matrix for this method can be
pressed as
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FIG. 2. Propagation-matrix eigenvalue magnitudes for the impulse method given by equation~5! ~•••! applied to the linear test system,l15400, l251,
versus the extrapolation method of equation~6! ~—!, plotted as a function of the outer timestep. The upper magnified views show the behavior ne
multiples of the period associated withl1 . The lower view extends the outer timestep near the period~2p! of the motion due to the slow force. The spike
associated with the impulse method grow with increasingk like exp$6(l2kDt)/(2Al1)% ~––!.
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AE/CV,X
~Dt,l1 ,l2 ,k!5S I1ES k21

2
Dt,l2D

1EXS k221

6
~Dt!2,l2D DAE~Dt,l1 ,l2 ,k!

2ES k21

2
Dt,l2D2EXS k221

6
~Dt!2,l2D . ~8!
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Behavior of these two methods for our model proble
can be seen in Figure 3. The magnified inset shows sm
deviation from unit eigenvalues forkDt less than about one
quarter the period of the fast motion. This result likely e
plains the good behavior in practice for the methods at m
erate timesteps, as well as the slight energy damping~asso-
ciated with eigenvalues less than unity! for the original
extrapolation/correction method@J. Hermans~private com-
munication!#. At large timesteps, however, both schem
suffer from sinusoidal oscillations with increasing amplitud
as well as spikes at multiples of half the period; these sp
grow in height with increasingk.

B. Langevin dynamics

The stochastic Langevin framework has been used as
underlying dynamical model in a number of molecular mo
eling contexts,24–32 as well as a stabilizing influence from
numerical point of view.16,19,20,33With this in mind, we now
extend the stability discussions above to Langevin dynam

We consider the Langevin equations of motion

Ẋ5V, V̇52~l11l2!X2gV1R, ~9!

with the friction parameterg. The random forceR is a sta-
tionary Gaussian process with statistical properties given

^R~ t !&50, ^R~ t !R~ t8!&52gkBTMd~ t2t8!,

FIG. 3. Propagation-matrix eigenvalue magnitudes for the extrapola
correction methods of equation~8! ~––! and equation~7! ~––!. Eigenvalue
magnitudes for the impulse~•••! and pure extrapolation~—! MTS methods
are included for comparison.
all

-
-

s
,
s
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-
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where T is the temperature,kB is Boltzmann’s constant, and
d is the Diracd-function. As before, we assume a unit ma
matrix M .

The symplectic-Euler method applied to this equati
becomes

Xn115Xn1DtVn11,

Vn115~12gDt!Vn2DtLXn1DtRn, ~10!

where againL5l11l2 . The corresponding step-to-ste
propagation can be described compactly as

FVn11

Xn11G5F 12Dtg 2DtL

Dt~12Dtg! 12~Dt!2L
G FVn

XnG1F DtR
Dt2RG .

~11!

This expression resembles those given in equations~5! and
~6!—a multiplication of the vector@Vn, Xn] T by a matrix
with entries involvingX, V, L, k, Dt, andg. It differs from
those deterministic formulations in the addition of a vector
random variables not dependent onL, X, andV. We follow
Kloeden and Platen34 in examining the method’s stability
independent of the random vector, and define the stab
matrix for the Langevin integrator as the propagation ma
for a damped oscillator with linear friction coefficientg :

AL~Dt,L,g!5F 12Dtg 2DtL

Dt~12Dtg! 12~Dt!2L
G . ~12!

Here the superscriptL denotes the generalization to Lang
vin dynamics of the stability matrixA defined in equation
~3!. As before, the method is stable at values ofDt, L, andg
for which the spectral radius is bounded by unity.

Similarly, the stability of the impulse and extrapolatio
MTS methods applied to the Langevin equations~9! is deter-
mined by the eigenvalues of the matrices

AI
L~Dt,l1 ,l2 ,k,g!5AL~Dt,l1 ,g!kF1 2kDtl2

0 1 G
~13!

and

AE
L~Dt,l1 ,l2 ,k,g!5AL~Dt,l1 ,g!k

1~AL~Dt,l1 ,g!k

1AL~Dt,l1 ,g!~k21!1¯

1AL~Dt,l1 ,g!!E~Dt,l2!.

~14!

n/
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FIG. 4. Propagation-matrix eigenvalue magnitudes for the symplectic-Euler method given by equation~12! ~––!, the impulseMTS method of equation~13!
~•••!, and the extrapolation method of equation~14! ~—! applied to the Langevin linear test system forl251 with l1520, 100, and 400. The Langevin
parameterg in each case is the minimal stable value for the extrapolation method, computed by the formula in equation~15!. For the symplectic-Euler method
the notion of outer timestepkDt reduces to applyingk steps of the method defined by equation~14! with timestepDt.
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FIG. 5. Root-mean-square fluctuations of the velocity over 3000 steps of integration of the Langevin linear test system by the impulse~•••! and extrapolation
~—! MTS treatments withl1520, l251. The upper view, corresponding to Langevin parameterg50.28, shows resonance effects in the impulse method
largerg is required to eliminate this behavior~bottom view!.
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We have already observed in Figure 2 that the oscillat
in the propagation matrix eigenvalues for the extrapolat
method has amplitudel2 /l1 ~with a peak of 112l2 /l1 at
odd multiples of half the fast period! and approximately the
same period as the motion associated withl1 , (P
52p/Al1). The spectral radius of the exact flow of th
damped oscillator should decay~due to friction! like e2gt/2.
Thus for a given value ofg, the exponentially decaying ei
genvalue oscillations should be bounded above, for allDt,
by

exp$2~gDt !/2%@11~2l2!/l1#.

Substituting half the period of the fastest motion forDt, and
requiring the eigenvalue magnitudes to be restricted to u
or less, we have

1>exp$2~gp!/~2Al1!%@11~2l2!/l1#.

We next solve the inequality forg :

g>~2Al1!/p ln@11~2l2!/l1#, ~15!

to obtain the minimum valueg which assures stability of the
extrapolation method at all outer timestepsDt5kDt.
n
n

ty

Figure 4 shows eigenvalue magnitudes for the t
schemes forl251 and three ratios:l1 /l2520,100,400~or
a period ratio of 20, 10, andA20, respectively!. Theg values
0.28, 0.13 and 0.065 in Figure 4 were calculated in each c
from formula ~15!.

The eigenvalue magnitudes decrease with the o
timestep. In Langevin dynamics, this effect is compensa
by the restoring forceR in equation~9!. The greater rate of
damping for largerg, as is physically correct, is eviden
~note the different lower ordinate value in eachg panel!. The
figure also suggests that instability results wheng is too
small. This has been observed for theLN method.18 The de-
pendency on the ratiol1 /l2 emerges from the other parts o
the figure.

Figure 4 further shows that the Langevin/impulse a
proach is stable for the choseng, since the eigenvalues d
not exceed unity in magnitude. However, the large dev
tions from the damped oscillator spectral radius ofe2gt/2 can
result in stable,but incorrectLangevin trajectories. This is
demonstrated in Figure 5, where the root-mean-square fl
tuations in velocity are plotted versus the outer timestep
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two values ofg. We see that a larger value ofg is required
by the impulse method than by extrapolation. This behav
has been noted in practice in paper I18 for a protein and a
water system; namely, a Langevin/impulseMTS method at
outer timestep near the period of the fastest motion produ
trajectories with erroneously high energy and tempera
averages at moderate values ofg. This artifact can only be
remedied by increasingg by more than a factor of 2.

IV. SUMMARY AND CONCLUSIONS

We have analyzed, for a simple linear test system,
behavior of impulse and extrapolative dual-timestep
proaches. It is clear that impulse treatments lead to re
nances, or corrupted behavior, at outer timesteps which
related to multiples of half the period associated with
fastest motion, even though the inner timestep remains sm
This limits the speedup gains in symplecticMTS versions
used for biomolecular dynamics to factors around five.11,21

The extrapolation treatment does not suffer from these
matic effects, but reveals mild sinusoidal departures fr
structure-preserving properties. Hence, we suggest that
trapolative treatments are most suitable for long timestep
the context of Langevin dynamics, where the damping a
stochastic terms exert a stabilizing influence. Moreover,
additional terms of the Langevin equation can be small,
sufficient for stability. We have usedg in the range
10– 20 ps21 in LN for good numerical behavior, as well a
good agreement with Newtonian dynamics.1,18 Recently
suggested22 hybrids of impulse and extrapolation techniqu
slightly improve numerical behavior of extrapolation met
ods at small timesteps but exhibit serious instabilities wh
grow with increasing timestep.

Clearly, our results can be generalized to more com
cated reference integration schemes,23 to more than two
timestep classes~where resonance is likely delayed to
larger outer timestep!, and possibly to simple nonlinear sy
tems. Still, the linear test cases analyzed here already sug
the basic guidelines we seek. Behavior in practice for mu
scale nonlinear systems can only be tested by comp
simulations proper.
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