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Force splitting or multiple timestegMTs) methods are effective techniques that accelerate
biomolecular dynamics simulations by updating the fast and slow forces at different frequencies.
Since simpleextrapolation formulas for incorporating the slow forces into the discretization
produced notable energy drifts, sympleatits variants based on periodimpulsesbecame more
popular. However, the efficiency gain possible with these impulse approaches is limited by a
timestep barrier due to resonance—a numerical artifact occurring when the timestep is related to the
period of the fastest motion present in the dynamics. This limitation is lifted substantiallyréor
methods based on extrapolation in combination with stochastic dynamics, as demonstrated for the
LN method in the companion paper for protein dynamics. To explain our observations on those
complex nonlinear systems, we examine here the stability of extrapolation and impulses to
force-splitting in Newtonian and Langevin dynamics. We analyze for a simple linear test system the
energy drift of the former and the resonance-related artifacts of the latter technique. We show that
two-class impulse methods are generally stable except at integer multiples of half the period of the
fastest motion, with the severity of the instability worse at larger timesteps. Extrapolation methods
are generally unstable for the Newtonian model problem, but the instability is bounded for
increasing timesteps. This boundedness ensures good long-timestep behavior of extrapolation
methods for Langevin dynamics with moderate values of the collision parameter. We thus advocate
extrapolation methods for efficient integration of the stochastic Langevin equations of motion, as in
the LN method described in paper I. @998 American Institute of Physics.
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I. INTRODUCTION ing each timestep interval. The numerical stability of Verlet
depends critically on the period of the fastest motion in the
The primary difficulty in computer simulation of large system. This stability requirement limits the timestep size—
physical systems is efficient treatment of the wide range ofnd hence force recalculation frequency—to the range 0.5 to
temporal and spatial scales present in the underlying models. fs for biomolecular systems modeled with all degrees of
In the field of biomolecular dynamics, the high-frequency,freedom flexible. As the system size grows, the number of
low-amplitude degrees of freedom dictate a timescale in alljyieractions increases &8, whereN is the number of at-
atom models of 10'° s (1 fs). However, large-scale Motions ,ms and force calculations involving all atom pairs domi-

of biological interest—such as protein folding—occur on ti- \ate the other operations. Notwithstanding the amount of
mescales of seconds, many orders of mggnltude longer. I:Orc%mputational work involved, the Verlet method is often re-

general recent review o_f _methqu for_b|omolecular dynams arded as the “gold standard” for molecular dynamics simu-
ics, see Ref. 1. Recognizing this formidable range-of-scale Stions. The integrator is symplecfigpreserving geometric

problem in simulation and modeling, various timestepping : ) .
. . . : properties(such as time reversibility and phase-space vol-
algorithms for numerical dynamics have been introduced. . . .
. me present in the exact solution of these equations for
These methods seek to separate spatial scales of the model

treating each at the appropriate temporal scale and combiff® nser\;aufve JI;\amHtorgan systemdhis prﬁservzlatmn tl|hkely
ing these levels as accurately and efficiently as possible. accounts for the good energy conservation along the com-

The popular Verlet algorithfnis based on a second- puted trajectories observed in practice. This behavior in turn
order finite-difference discretization of the acceleration in"€Nders the Verlet scheme most suitable for low-accuracy

Newton’s equations of motion. The method requires calculalong-time simulations of conservative systems.

tion of the forces of interactiotthe gradient of the potential Nearly two decades ago, multiple timesteprs) meth-

energy E, a function of the system coordinalest each 0ds were introducéd in an effort reduce the computational

timestep. Effectively, the forces are considered constant du€ost of molecular simulations. Assuming that forces due to
distant interactions can be held constant to a good approxi-

dpresent address: Department of Mathematics, Kalamazoo College, 120%16'tlon 0\./$-:'I’ Ion'g |nte.rvals, ordinary timestepping procedures

Academy Street, Kalamazoo, M 49006. are modified simply: The long-range forces are evaluated
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slow forces are incorporated into the discretization as con¢2) The slow forces are incorporated via extrapolation rather

stants from step to step. However, tlig@ce extrapolation than impulses.

approach disrupts the energy-preserving features of the uri3) The short-range motion is propagated on the basis of a
modified timestepping algorithms. Therefore, force splitting  linearized model of the equations of motion. This feature
via extrapolation did not gain wide acceptance in dynamic  of LN, however, can be replaced by direct force
schemes. calculationst® see below.

Work continued onMTs methods in a variety of
context’ leading to the introduction in 1991 by Gru
muller, Heller, Windemuth, and Schulferand indepen-
dently in 1992 by Tuckerman, Berne, and Mart}saf an

Results show? very good agreement af\ trajectories with
small-timestep trajectories for proteins in vacuum and a large
water system. The reference simulations used a small

timestep ofA7=0.5 fs, the innermost timestep im, as in

MTS method which is "Verletlike™ in its energy preserva- o/ 121y, addition, speedup factors of 10 or more
tion behavior. ThisvTs variant, called Verlet§ or r-Respa, ) )
are possible for the larger systems since the outermost

lish new cl fr hemes(The latter is mor . .
establishes a new class laf's schemes(The latter is more timestep At) can be increased to 48 fs or mdfe.

general). This class differs from its predecessors in that the ) .
. . . The success of then method in overcoming resonance-
forces on each scale are incorporated into the numerical dy-

namics onlv at the time of recalculation. with a strenath rc)_related instabilities is the subject of this analytical paper.
y ’ gihp Among the three distinct features ofl enumerated above,
L . he combination of the two—Langevin heat bath and the
time interval between slow-force updates increases, the size .
N . extrapolation treatment of the slow forces—allows the use of
of these “impulses” grows. Though the original w&rkx-

: i : long timesteps. A Langevin version of Verlétand r-Respa
pressed reservations regarding force impulses, these sym:-

. . . at moderate values of the Langevin collision parameter

plectic MTs variants quickly became favored. " : .
. . appears less sensitive to timesteps near half the fastest period

However, recently it has become clear that, like Verlet, . : . .

. : . - - but produces trajectories with exaggerated energies and tem-
considerations of numerical stability also limit the allowable ) .
. S . peratures for timesteps near that periddetter numerical
timestep in impulseuts methods. Namely, rapid energy behavior could be achieved by increasipdpy a factor of 2
growth has been obsend'? when the interval between y "oy

. .or more, but this is undesirable due to substantial damping of
slow-force updates approaches and exceeds 5 fs. This bal’l’l(ﬁ[‘],e internal modes, especially those of lower frequen@ies
occurring around half the period of the fast motion in bio- ’ '

In contrast, theN method is stable at moderageacross
molecules when all degrees of freedom are alloed., an a wide range of outer timesteps, without apparent sensitivit
O-H bond stretchcan be explained by resonande? This 9 PS, P Y

: i : to the periods of fast motion present in the system. As al-
resonance refers to an integrator-induced artifact that occurs . . .

. ) L . .ready emphasized, this favorable feature is not a conse-
at particular discretization timesteps related to internal peri- uence of the linearization treatment of local forces: the re-
ods of the simulated physical system. See Ref. 13 for a thor? '

ouah analvsis of resonance by the implicit-midpoint SChem‘_{placement of linearization by direct force evaluations results
g y y P P in similar behaviornBarth and Schlick, unpublished data

and Ref. 14 for a discussion of nonlinear resonance in mo- . : . :
. In this article we explain these observations on complex
lecular dynamics. ) . i :
- nonlinear systent8 by studying the stability of impulse and
The presence of these resonances limits the outermos . . .
extrapolationmTs methods on a simple model problem with

timestep, At (i.e., interval of slow-force updatgin MTS : L .
: two force classes. We emphasize that realistic nonlinear po-
schemes and thus the overall speedup that can be achieved in

oractice over a standard Verlet trajectory. When bOnOIIennals(for proteing were already tested in paper [; results

lengths are constrained via SHAKEthis artifact is delayed ' o c >0 striking that we seek here analytical explanations.
Without loss of generality, we formulate impulse and ex-

to a timestep related to the light-atom bending modes Wm{rapolation MTS methods based on the simple first-order
period around 20 & Other implementational details of the symplectic-Euler methdd(see paper™f for a Verlet-based

MTS protocol can also delay resonance to larger outer . ) .
times?eps y 9 MTS method. Intermediate techniques described by Scully

The stability of impulseuts methods has also been stud- and H er.mar?§ and more recently by Hermagrivate com-
. : . ) munication, developed to correct the effect of constant ex-
led for a linear system by GaesArchilla, Sanz-Serna, and trapolation of the slow forces over long timesteps, are also
Skeel'” This work offers insight into the nature of instabili- 2P g pS,

ties and introduces several “mollified” impulse methods discussed.

: . . . We formulate, for each method applied to a simple one-
which employ averaging or other smoothing techniques to,. . . . .
X . dimensional linear system, the propagation of the dynamics
extend the outer timestep slightly.

In paper I*® we introduced an efficient method for bio- from one timestep to the next as multiplication bympa-

: ) ation matrix We compute the propagation matrix eigenval-
molecular dynamics that does not suffer from this resonanc : . . .
Lo . L . ues and examine the relationship between these eigenvalues
limitation. NamedLN for its origin in a Langevin/Normal-

mode schem&1°the method combines force splitting and and the periods of motion in the Ilnea_r system, outer tlmgstep
) . : . lengths for themTs methods, and ultimately the numerical
Langevin dynamicsLN differs from the symplectiovTs

schemes Verletland r-Respain several respects: stability of the methods.
P P ' This theoretical stability analysis gives insight into the

(1) The simple Langevin equation is used as the governingnergy drift observed in extrapolation treatments and the
equation for dynamics. timestep barrier associated with impulse methods. We show,
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in particular_, that extrapolation suffers less _dramatically from 4 _ LARA+L ([—4A2A+AAZ(1
such a barrier. We then extend the analysis and demonstrate
that extrapolation methods are suitable for the efficient simu- + signum —4A 7?A + A7*A?))
lation of systems modeled by the stochastic Langevin equa- L. > oy
tions of motion. Indeed, these ideas have been successfully =3 i[-4APA+ATAY (1
applied to the simulation of g)iomolecular systems by itke —signum( — 4A A + A74A2)).
method, presented in papetd. . _

Although we consider the first-order symplectic-Euler It follows that for A7 in the open interval0, 2IA), the

integrator here, our analysis can be easily generalized tgigenvalues have nonzero imaginary parts, occur in complex
Verlet/leapfrog, as well as higher-order methods, and th&onjugate pairs, and are of modulus one—that is, lie on the
conclusions are similar. Analogous results with Verlet angunit circle in the complex plane. For increasing= 2IJA,

further insights into resonance problems will be reportedh® eigenvalues are strictly real; one value tends to zero
separately® while the other grows without bound. This-=2/\/A is the

maximum stable timestep for the method. This is analogous
to the well-known condition for stability of the Verlet
1. THE SYMPLECTIC-EULER METHOD AND LINEAR method for a harmonic oscillator: @/or P/7T, whereP is
STABILITY the oscillator’s period.
The fact that all stable timesteps correspond to propaga-
We consider the linear model described by the followingtion matrix eigenvalues with modulus one is related to the
system of first-order differential equations: structure-preserving properties of the symplectic method.
X=V, V=—(+r)X. 1) The d_eterminanft of this_ mat_ri(equal to the pr_oduct of the
two eigenvaluesis one, implying the preservation of volume
The variables< andV denote the scalar position and veloc- in phase space. In the one-dimensional system considered
ity, respectively, for a particle of unit mass. We assume thahere, volume preservation is equivalent to symplecticness.
A ;<<\, to represent motion components differing in charac-  Figure 1 illustrates the relationship between the propa-
teristic timescales. The solution of systéf) has the form  gation matrix eigenvalues and the stability of the symplectic-
X=expla=iyAi+Ayt), wherea is a real constant and  Euler scheme foA =400. Panela) shows the magnitude of
=/—1. Note that then method?® applies force splitting to  both eigenvalues as a function of the timestep This mag-

a linearized system likél). nitude departs from unity at the timestepr=2/\/A=0.1;
We formulatemTs integrators based on tteymplectic-  for larger timesteps, one eigenvalue tends to zero and the
Euler discretizatior® given by other grows in magnitude beyond one. The other panels
XML XNy A pYMHL Loy A fA XD 7 show the complex eigenpairs for selected timesteps repre-

sented as vectors. On the unit circle, points correspond to the
whereA =\;+\, andAris the timestep. The integer super- eigenvalues computed for timesteps=0.001n for integers
script n refers to the discretized-equation approximation atn in the rangeA7=0 to A7=0.1. We see that the two ei-
time nAr. genvalues begin on the real axis at onefor=0 (b) and, as
To establish the methods and notation used later, W@ r increases, travel as complex conjugate pairs in opposite
examine the stability of the symplectic-Euler method applieddirections around the unit circlgoarts (c)—(e)]. At the sta-
to the test system of equati¢t). The step-to-step propaga- bility threshold ofA 7= 2/y/A, the two eigenvalues converge
tion operator®:{V",X"}—{V"*1 X""1} can be described on the real axis at-1 (f), remaining on the real axis there-

by the following matrix equation: after and departing from the unit circlg). This behavior—
V1 1 0][1 —ArA][yn complex eigenvalues converging to a point on the real
xn+1|= [ X”}' axis—is associated with instabilities for each of the methods
Ar 1]0 1 considered in the remainder of the paper.
The 2X2 product matrix
AARA 1 —ATA 1 0|1 —-A7A 3
@Ar0=a; 12 Tar 10 1 | @

. . . - Ill. STABILITY OF IMPULSE AND EXTRAPOLATION
defines the method and determines its stability. Namely, th%REATMENTS

integrator is stable for values &fr and A for which the

eigenvalues oA\ lie on the closed unit disk in the complex We now consider the stability of impulse and extrapola-

plane. Formally, we say the spectral radj#\) (the maxi- jon force-splitting methods for Newtonian and Langevin dy-
mum, in absolute value, of the eigenvalues®dfis bounded  amics in turn.

by unity: p(A)<1. Here, the eigenvalues éf can be com-
puted as A. Newtonian dynamics

An impulsemMTs method treats the slow compondas-
sociated with\ ,) of the force at timestegstimes larger than
or by splitting the expression into real and imaginary partsthose for the fastX;) components. A discretization scheme
as based on syster{8) above is

— 3 APPAE S - AATPPA+ATAZ,
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FIG. 1. Propagation-matrix eigenvalue magnitudes for the symplectic-Euler method given by e(Biatipplied to the linear test system,=400, plotted
versus the timesteg)7=0.00In for integersn [panel(a)], and the two eigenvalues plotted as vectors in the complex plane for seleetd—(g). The
method is stable for & A r<2/\/A=0.1, and in this interval, the eigenvalues occur in complex conjugate plairgf). For Ar>2/\/A, the eigenvalues of

the propagation matrix depart from the unit circle along the real@xjone growing without bound and the other approaching zero. On the unit circle in parts
(b)—(g), points correspond to eigenpairs fisr equal to integral multiples of 0.001.

Impulse Method 1 —A7n; |1 —kAm\,
0_ wn =
\)jO:i;n’_kAT)\ Xn AI(AT’)\l')\Z,k) At 1_(AT)2)\1 0 1 (4)
- 2
for i=0,k—-1 KA
ViFI=Vi— A\ X, 1 —KkA7X,
xi+lzxi+ATv%+l :A(AT,)\I)k 0 1 (5)
end
V”ii=Vt, It can be shown that the determinant of the makijxis
Xnri=X, always one, just as in the case for symplectic-Euler. Thus,

(The indexi above and hereafter should not be confusedhis formulation results in a symplectic method. We shall
with the complex number.The associated propagation ma- see, however, that the impulse formulation suffers from
trix A, for this method is given by resonance-related instabilities at certain timestep lengths. For
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timesteps short enough to avoid these instabilities, the For the extrapolation method, in contrast, we note devia-
structure-preserving properties of this method make it mostions from unit eigenvalues except at integral multiples of the
suitable for Newtonian dynamics. fast period. Since both eigenvalues exceed one in magnitude,
To avoid the impulses proportional A ~—and per- the determinant oA is also greater than one, implying that
haps lessen the effects of resonance-related instabilities—whke method is not volume-preserving or symplectic. This ex-
hold the slow component of the force constant ovesteps.  plains the energy drift observed in practice for such methods.
This approach results in the following alternative treatmentThe sinusoidal pattern of the extrapolation plot has ampli-

Extrapolation Method tudel, /N4 (0.0025 herg therefore, the larger the separation

X0=xn of frequencies, the more benign the numerical artifacts in
Vo=yn practice.
for i=0,k—1 At half-period multiples, spikes are also seen for the

VIFI=Vi— A7(A X'+ ,X9), extrapolation method, but they do not increase in magnitude

X Tl=xX+ A7V T1 ask increases. The upper magnified views of Figure 2 show,
end for the extrapolation and impulse methods, the spikes in de-
\VAREERVAS tail for kA7 near3, 3, and3 the period associated witk, .
X=Xk, This boundedness associated with the extrapolation ap-

As before, the slow forceN,X°) is evaluated at intervals proach, together with the discussion in the next section, ex-
kA7, but in contrast to the impulse method, this constanfplains the good behavior af\ at large timesteps observed in
force contributes to the numerical dynamics at every innepractice!®

stepAr. Interestingly, a method which lies between these two
Defining the extrapolation matrik as force-splitting extremes was proposed by Scully and
Hermans’2 and recently modified Hermafd. Hermangpri-
E(h\)= 0 _h)‘} vate communicatior]. These extrapolative/correction meth-
’ 0O 0 | ods seek to improve the behavior of the low-order extrapo-

. . o lation by introducing corrections to the velocig@nd in the
we obtain the relevant propagation matAx in terms of A griginal method to the position as wekifter extrapolation:

above ancE for a step of lengttkA 7 for the extrapolation Extrapolation/Correction Methods
method: Vo=vn,
XOZXn
AE(AT Ay A2, K)=A(AT A + (A(AT N for i=0 Ke1
+AAT AP+ VIFI=VI— A 7(h X +1,X0),
+A(AT,N))E(AT,N,). (6) X=X+ A7V +1
In Figure 2 we illustrate behavior of the impulse and &"d

extrapolation variants of the symplectic-Euler scheme for the k—
case of\ ;=400 and\,= 1. In the central panel, we show the V= k- >
eigenvalue magnitudes of the associated propagation
matrices—A, and Ag, respectively—as a function of the k2—1
timestep. The period associated with each exponential com- X”+1=Xk—{ 6
ponent of the solutione"™, is P=24/\\. Hence for\,
=400, the periodP,;~0.314 in our units, and foh,=1, Omission of the position correctiofenclosed by square
P,=2m, 20 times larger. brackets in the last line aboyeconstitutes the recent modi-
For the results in Figure 2, we uder=0.001(the inner  fication, resulting in a scheme we call the
timestep and kA7 for the outer timestep. The maximum Extrapolate/Corregtmethod. The propagation matrix asso-
outer timestep showrunity) corresponds to about three ciated with this method is
times the period of the fast motion. We see from the figure

1
AT(A XK=\ ,X0),

(A7)2(A XK= ,XO)

that the impulse method is unstable at certain timesteps—a_,. (Ar,\;,\,,k)=|1+E I(__lAT,M))

integral multiples of half the fastest period. The severity of v 2

these corruptions increases witk, approximately as -1

e k472X This can be seen from the lower panel of XAE(AT’AIJ‘Z’I‘)_E(TAT'AZ)-
Figure 2, which extends the middle view to larger outer )

timesteps approaching the period of the slow moti@n). To express the propagation matrix for the

Impulses clearly lead to serious artifacts at certain timeStep%xtrapoIate/Corrth method. we first introduce the follow-
For other timesteps, however, the impulse method is stable— X '

the eigenvalues have magnitude one. Still, for a large non'—ng extrapolation matrix:
linear system, it is likely that once a resonant timestep is

reached, good numerical behavior cannot be reestablished by Ex(h,\)=
increasing the timesteld. That is, avoiding resonant

timesteps is virtually impossible due to many clustered vi-Then the propagation matrix for this method can be ex-

brational modes and intricate coupling between them. pressed as

0 —ha[
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FIG. 2. Propagation-matrix eigenvalue magnitudes for the impulse method given by eq&atient) applied to the linear test system; =400, A\,=1,

versus the extrapolation method of equatiéh (—), plotted as a function of the outer timestep. The upper magnified views show the behavior near odd
multiples of the period associated with . The lower view extends the outer timestep near the pd&gadl of the motion due to the slow force. The spikes
associated with the impulse method grow with increasifike exp{i(xzkAr)/(z\/}\_l)} (—).
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AE/CVX(AT,)\l,)\z,k): I+E

k—1
TAT,)\z

k?-1
+EX 6 (AT)Z,)\Z AE(AT,)\l,)\z,k)

-1 2
_E(TAT,Xz)_Ex( 6 (AT)Z,)\2>. (8)

Behavior of these two methods for our model problemwhere T is the temperaturky is Boltzmann’s constant, and
can be seen in Figure 3. The magnified inset shows smablf is the Diracé-function. As before, we assume a unit mass
deviation from unit eigenvalues fd&A 7 less than about one matrix M.
guarter the period of the fast motion. This result likely ex- The symplectic-Euler method applied to this equation
plains the good behavior in practice for the methods at modbecomes
erate timesteps, as well as the slight energy damfasgo- Nl un nil
ciated with eigenvalues less than unitior the original X E=X+ ATV,
extra}polgtion/correction .metho[dl. Hermans(private com- VL= (1 yA VI — AFAX + A 7R, (10)
munication]. At large timesteps, however, both schemes

suffer from sinusoidal oscillations with increasing amplitude,where againA=\;+\,. The corresponding step-to-step

as well as spikes at multiples of half the period; these spikepropagation can be described compactly as
grow in height with increasing.

Vn+1

. . 1-Ary —A7A |[V"] [A7R
B. Langevin dynamics xn+1|= Ar(l-Ary) 1—(A7)2A[XT TIAPR|
The stochastic Langevin framework has been used as the (11

underlying dynamical model in a number of molecular mod-__, . . . .

eling context€**2as well as a stabilizing influence from a 'S Expression resembles those given I:nTequat(ﬁ)wsln_d
numerical point of view51%2033wjith this in mind, we now (6)—a multiplication of the vectofV", X'] by a matrix
extend the stability discussions above to Langevin dynamicsW'th entries involvingX, V, A, k, A, andy. It differs from

. . . . those deterministic formulations in the addition of a vector of
We consider the Langevin equations of motion .

9 q random variables not dependent AnX, andV. We follow
K=V, V= — (At hy)X— YR, © Kloeden and Platéfi in examining the method’s stability

independent of the random vector, and define the stability
with the friction parametery. The random forceR is a sta-  Matrix for the Langevin integrator as the propagation matrix
tionary Gaussian process with statistical properties given b{P" @ damped oscillator with linear friction coefficient

—A —ATA
(R)=0, (RIOR(L))=27ksTMS(t—t"), A (A A p=| TR T

Ar(1-ATy) l—(A’T)ZA ' (12

Here the superscript’ denotes the generalization to Lange-

vin dynamics of the stability matriXA defined in equation

(3). As before, the method is stable at value\ef A, andy

for which the spectral radius is bounded by unity.
Similarly, the stability of the impulse and extrapolation

o " L] MTsS methods applied to the Langevin equatigfsis deter-

5 . mined by the eigenvalues of the matrices
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FIG. 3. Propagation-matrix eigenvalue magnitudes for the extrapolation/

correction methods of equati@B) (——) and equatior{7) (—-). Eigenvalue +A %(A 7N1,7))E(AT,N\y).
magnitudes for the impulse --) and pure extrapolatiofi—) mMTs methods
are included for comparison. (14
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FIG. 4. Propagation-matrix eigenvalue magnitudes for the symplectic-Euler method given by eqlatien-), the impulsemts method of equatioril3)
(--+), and the extrapolation method of equatid®) (—) applied to the Langevin linear test system for=1 with A;=20, 100, and 400. The Langevin
parametety in each case is the minimal stable value for the extrapolation method, computed by the formula in éd8atior the symplectic-Euler method,
the notion of outer timestepA 7 reduces to applying steps of the method defined by equatidd) with timestepAr.
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FIG. 5. Root-mean-square fluctuations of the velocity over 3000 steps of integration of the Langevin linear test system by the impuildeextrapolation
(—) mTs treatments with\ ; =20, A,= 1. The upper view, corresponding to Langevin parameten.28, shows resonance effects in the impulse method. A
larger vy is required to eliminate this behavi@bottom view.

We have already observed in Figure 2 that the oscillation  Figure 4 shows eigenvalue magnitudes for the two
in the propagation matrix eigenvalues for the extrapolatiorschemes foh,=1 and three ratiosx,/\,=20,100,400(or
method has amplitude,/\; (with a peak of #2\,/\; at  a period ratio of 20, 10, an¢20, respectively The y values

odd multiples of half the fast perip@nd approximately the (.28, 0.13 and 0.065 in Figure 4 were calculated in each case
same period as the motion associated with, (P from formula(15).

=2m/\\;). The spectral radius of the exact flow of the  The eigenvalue magnitudes decrease with the outer
damped oscillator should decague to friction) like e__ytlz- _ timestep. In Langevin dynamics, this effect is compensated
Thus for a given value of, the exponentially decaying ei- e restoring forc® in equation(9). The greater rate of
genvalue oscillations should be bounded above, foAa)l damping for largery, as is physically correct, is evident
by (note the different lower ordinate value in eagpane). The
exp{— (yAD/2H 1+ (2N5)/\4]. figure also suggests that instability results whens too

H 18
Substituting half the period of the fastest motion &, and ~ S™Mall- This has been observed for the method.” The de-
requiring the eigenvalue magnitudes to be restricted to unit€Ndency on the ratib, /A, emerges from the other parts of

or less, we have the figure.
Figure 4 further shows that the Langevin/impulse ap-
1=exp{— (ym)/(2YN )} 1+ (2h5)/A 4], proach is stable for the chosen since the eigenvalues do
We next solve the inequality foy: not exceed unity in magnitude. However, the large devia-
tions from the damped oscillator spectral radiugof"? can
72(2\/}‘—1)/7 IN[1+(2N2)/A4], (15) result in stableput incorrectLangevin trajectories. This is

to obtain the minimum valug which assures stability of the demonstrated in Figure 5, where the root-mean-square fluc-
extrapolation method at all outer timesteps=kA 7. tuations in velocity are plotted versus the outer timestep for



1642 J. Chem. Phys., Vol. 109, No. 5, 1 August 1998 E. Barth and T. Schlick

two values ofy. We see that a larger value ¢fis required  T. Schlick, E. Barth, and M. Mandziuk, Annu. Rev. Biophys. Biomol.

by the impulse method than by extrapolation. This behavior Struct.26, 179(1997).

has been noted in practice in papéf for a protein and a z'-- Verlet, Phys. Rev159, 98 (1967). _ -

water system; namely, a Langevin/impules method at J. M. Sanz-Serna and M. P. Calvblumerical Hamiltonian Problems
. . . (Chapman and Hall, London, 1994

ouFer tlmestep near the period qf the fastest motion produceswl B. Streett, D. J. Tildesley, and G. Saville, Mol. Phgs, 639 (1978,

trajectories with erroneously high energy and temperaturesg  swindoll and J. M. Haile, J. Chem. PhyS, 289 (1984).

averages at moderate valuesyfThis artifact can only be  6m. E. Tuckerman, B. J. Berne, and A. Rossi, J. Chem. PB¢s1465

remedied by increasing by more than a factor of 2. (1992.
"M. E. Tuckerman and B. J. Berne, J. Comput. Ch88.8362(1992.
1IV. SUMMARY AND CONCLUSIONS 8H. Grubmiler, H. Heller, A. Windemuth, and K. Schulten, Mol. Sim8|.
121 (199).

We have analyzed, for a simple linear test system, the®m. E. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Fy4.990
behavior of impulse and extrapolative dual-timestep ap- (1992.
proaches. It is clear that impulse treatments lead to resd-R. Zhou and B. J. Berne, J. Chem. Phy83 9444(1995.
nances, or corrupted behavior, at outer timesteps which arié'\"- Watanabe and M. Karplus, J. Phys. Che?, 5680(1999.
related to multiples of half the period associated with the - BiShoP. R. D. Skeel, and K. Schulten, J. Comput. Cha#). 1785

. . . . (1997.
fastest motion, even though the inner timestep remains smalk,; “\1andziuk and T. Schlick, Chem. Phys. LeZ67, 525 (1995.

Thisd |:(mit§. the ISPG?dUg gain$ int SB;mfilecms Ve(;s:fi;i%%ls 4T, Schlick, M. Mandziuk, R. D. Skeel, and K. Srinivas, J. Comput. Phys.
used for biomolecular dynamics to factors aroun . 139 1 (1998.
The extrapolation treatment does not suffer from these dra®J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. PBys.
matic effects, but reveals mild sinusoidal departures fromle327 (1979. _ o _ _ _
structure-preserving properties. Hence, we suggest that ex=: IBa“T* '\g '\fa”dz.'ﬁ';v a”"'t_T-Iscr:";k' '@C_’mp“ttelr s'”;_“'at,'ogkozi'o'
trapolative treatments are most suitable for long timesteps jn Mo\écular Systems: Theoretical and Experimental Applicaliedsed by
. . . W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, Vol. lll, Chap. 4
the context of Langevin dynamics, where the damping and (ESCOM, Leiden, The Netherlands, 199@p. 97—121.
stochastic terms exert a stabilizing influence. Moreover, therg  garéa-Archilla, J. M. Sanz-Serna, and R. D. Skeel, SIAM J. Sci.
additional terms of the Langevin equation can be small, just comp.(to appear, Also Tech. Rept. 1996/7, Dep. Math. Applic. Comput.,
sufficient for stability. We have useds in the range Univ. Valladolid, Valladolid, Spain.
10-20 pst in LN for good numerical behavior, as well as iZE Barth and T. Schlick, J. Chem. Phy€9, 1617 (1998.
good agreement with Newtonian dynamtc$. Recently zog- ;Eang a”g I gcﬂ:!ctv j ggmp“;r?hehﬁégslzlg;%-
suggestett hybrids of impulse and extrapolation techniques,, > 2"and and T. Schiick, J. Chem. Phgell, 4995(1994).
. . . . . D. E. Humphreys, R. A. Friesner, and B. J. Berne, J. Phys. Ci8ém.
slightly improve numerical behavior of extrapolation meth- 6885 (1994,
ods at §m§1II timegteps but exhibit serious instabilities whichz; | scully and J. Hermans, Mol. Simul1, 67 (1993.
grow with increasing timestep. ZA. Sandu and T. Schlickin preparation
Clearly, our results can be generalized to more compli#*R. W. Pastor, irThe Molecular Dynamics of Liquid Crystaisdited by G.
cated reference integration scherﬁ%ﬁo more than two R. Luckhurst and C. A. VeraciniKluwer Academic, Dordrecht, The
timestep classe$where resonance is likely delayed to azsgetjhe['a”dﬁ' _19h94§ph858‘13f- 4 R W, Pastor. Bionolvrisesa3
larger outer timestgpand possibly to simple nonlinear sys- /o) oncharich, B. K. BIoOKs, and R. W. Fasior, Blopolynts
tems. Still, the linear test cases analyzed here already Sugg,eé. Derreumaux and T. Schiick, Proteins: Struct., Funct., Gefiet282
the basic guidelines we seek. Behavior in practice for multi- (1995,

scale nonlinear systems can only be tested by computéfm. H. Hao, M. R. Pincus, S. Rackovsky, and H. A. Scheraga, Biochem-

simulations proper. istry 32, 9614(1993.
28, Brunger, C. L. Brooks lII, and M. Karplus, Chem. Phys. L&#5, 495
ACKNOWLEDGMENTS (1982.

297, Simonson, Chem. Phys. Lef50, 450 (1996.
Support from the National Institutes of Health and the®D. Beglov and B. Roux, J. Chem. Phyi0, 9050(1994.
National Science Foundation is gratefully acknowledged. W€'D. Beglov and B. Roux, Biopolymer35, 171(1994.
thank Jan Hermans for valuable scientific exchanges relatezéD- Beglov and B. Roux, J. Chem. Phy03 360 (1995.

to multiple-timestep variants. T.S. is an investigator of the34g' : Eis:égr?giJ'Escg‘lg‘i';cj’msrl‘;”'P T;éezAgngligMggmlom(l%g'
Howard Hughes Medical Institute. T ' T ' '



