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1 Introduction

Geometry optimization is a fundamental component of molecular modeling. The determi-
nation of a low-energy conformation for a given force �eld can be the �nal objective of the
computation. Alternatively, the minimum for the system on the speci�ed potential energy
surface, in a local or global sense, can serve as a starting or reference point for subsequent
calculations. These may be simulations | such as molecular dynamics and free-energy
perturbations | or analyses such as of normal modes (see conformational analysis
entry).

Already, �nding a local minimum (i.e., one near the input point) is a challenging task for
a large biological system governed by a nonlinear potential energy function. This is because
the optimization scheme must �nd a minimum from any point along the potential surface,
even one associated with a very high-energy, and should not get trapped at local maxima
or saddle points. Finite-precision arithmetic and other errors that accumulate over many
operations also degrade practical performance in comparison to theoretical expectations.
Nonetheless, this local optimization problem is solved in a mathematical sense: convergence
to a nearby minimum can be achieved on modern computers; in the mathematical literature,
this is referred to as global convergence to a local minimum. Indeed, many algorithms have
been implemented by numerical analysts and application specialists for this purpose and
are also available in widely used molecular mechanics and dynamics packages. Still, their
performance and solution quality vary considerably and depend greatly on the user-speci�ed
algorithmic convergence parameters and the starting point.

The global optimization problem, in contrast, remains unsolved in general. This is be-
cause the exponentially-growing number of minima with system size cannot be exhaustively
surveyed. Certainly, e�ective strategies have been developed in speci�c application contexts
(e.g., for polypeptides) and work well for moderately-sized systems. These global algorithms
di�er from the local schemes in that they allow the energy to increase throughout the search
(in addition to a decrease), making possible escape from local potential wells and entry into
others (see theMonte Carlo and Simulated Annealing entries). These global optimizers
can be stochastic or deterministic, or a combination of these, and they sometimes rely on
local optimization components.

Both local and global optimization problems lie at the heart of numerous scienti�c and
engineering problems | from the biological and chemical disciplines to architectural and in-
dustrial design to economics. Optimization is part of our every day life | responsible for our
weather forecasts, 
ight planning, telephone routing, or the functioning of enzymes in our
bodies. The mathematical techniques developed to address these optimization-formulated
problems are just as robust and varied as the problems themselves. Their algorithmic com-
plexity has led to many available computer programs that require minimal output from the
user (e.g., the starting point and a routine for function evaluation). However, a careful
user of these canned software modules | even within standard molecular mechanics and
dynamics packages | should understand the fundamental structure of the optimization al-
gorithms and associated performance issues to make their usage both e�cient and correct,
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in terms of the chemical interpretations. This entry introduces key optimization concepts
for this purpose, highlighting the fundamentals of local optimizers for large-scale nonlinear

unconstrained problems, an important optimization sub�eld relevant to molecular applica-
tions. The most promising approaches among them are discussed, and practical issues, such
as parameter variations and termination criteria, are mentioned. Of course, the latter are
best learned by experimentation in the context of real problems. The reader is referred
to classic texts [1; 2; 3; 4] and some reviews [5; 6; 7] for further details and for other cate-
gories of the rich and exciting �eld of optimization. See also the closely-related entries of
conformational search and structure elucidation.

2 Basic De�nitions of Optimization Problems

The methods for solving an optimization task depend on the problem classi�cation. Since
the maximum of a function f is the minimum of the function �f , it su�ces to deal with
minimization. The optimization problem is classi�ed according to the type of independent
variables involved (real, integer, mixed), the number of variables (one, few, many), the
functional characteristics (linear, least squares, nonlinear, nondi�erentiable, separable, etc.),
and the problem statment (unconstrained, subject to equality constraints, subject to simple
bounds, linearly constrained, nonlinearly constrained, etc.). For each category, suitable
algorithms exist that exploit the problem's structure and formulation.

2.1 Problem Formulation

For a vector x of n components fxig, we write the minimization problem as:

min x ff(x)g ; x 2 D; (1)

where f is the objective function and D is a feasible problem domain for the independent
variables. The problem can be subject to m constraints, which can be written generally as
a combination of equality and inequality constraints:

ci(x) = 0 for i = 1; : : : ;m0;

ci(x) � 0 for i = m0 + 1; : : : ;m: (2)

Note that special bound constraints in the form ci(x) = xi, where xi is the ith component of
the vector x, or two-sided constraints such as li � ci(x) � ui, can be reduced to the above
form.

2.2 Independent Variables

In most computational chemistry problems, x is a real vector in Euclidean space, i.e., x 2 <n,
and f de�nes a transformation to a real number, i.e., f(x) : <n ! <. When the components
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of x are integers, the optimization problem is classi�ed as integer-programming. When
x is a mixture of real and integer variables, the problem is of mixed-integer programming

type. Common examples of integer-programming are network optimization and the traveling
salesman problem, also classi�ed as combinatorial optimization.

2.3 Function Characteristics

The nature of the function f is the next step in problem classi�cation. Many application
areas such as �nance and management-planning tackle linear or quadratic objective functions.
These can be written in vector form, respectively, as f(x) = bTx+ f0 and f(x) = xTAx+
bTx+ f0 where b is a column vector, f0 is a scalar, and A is a constant symmetric matrix
(i.e., one whose entries satisfy Ai;j = Aj;i) of dimension n�n. The superscripts T above refer
to a vector transpose; thus xTy is an inner product. Linear programming problems refer to
linear objective functions subject to linear constraints (i.e., a system of linear equations), and
quadratic programming problems have quadratic objective functions and linear constraints.

Nonlinear functions can be classi�ed further if they are of least-square type (i.e., f(x) =
1
2

Pm
i=1 fi(x)

2) or separable when f is a sum of subfunctions (f(x) =
Pm

i=1 fi(x)), each de-
pendent only on a subset of the independent variables (i.e., there are many xj for each fi for
which fi(x+ xj) = fi(x)).

The objective function may be nondi�erentiable or possess continuous derivatives up to
a given order. Since most optimization algorithms exploit derivative information to locate
optima, nondi�erentiable functions pose special di�culties, and very di�erent algorithmic
approaches must be used.

Geometry optimization problems for molecules in the context of standard all-atom force
�elds in computational chemistry are typically of the multivariate, continuous, and nonlinear
type. They can be formulated as constrained (as in adiabatic relaxation) or unconstrained.
Discontinuities in the derivatives may be a problem in certain formulations involving trun-
cation, such as of the nonbonded terms (see Section 7). The large number of independent
variables for biomolecules, in particular, warrants their classi�cation as large-scale and rules
out the use of many algorithms that are e�ective for a small number of variables. However,
as will be discussed, e�ective techniques are available today that achieve rapid convergence
even for large systems. In practice, these optimization algorithms must be modest in storage
requirements for macromolecular applications and economical in computations, which are
dominated by the function and derivative evaluations.
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3 Optimization Fundamentals

3.1 Local and Global Minima

The local unconstrained optimization problem in the Euclidean space <n can be stated as in
equation (1) for x 2 D � <n where D is a region in the neighborhood of the starting point,
x0. The global optimization problem requires D be the entire feasible space.

A (strong) local minimum x� of f(x) satis�es

f(x�) < f(y) for all y 2 D; y 6= x�: (3)

The point x� is a weak local minimum if equality holds for all y 2 D. A global minimum x�

satis�es the stringent requirement that

f(x�) < f(y) for all y 6= x�: (4)

See Figure 1 for an illustration of a one-dimensional function with several minima. Figure 1

3.2 Derivatives of Multivariate Functions

When f is a smooth function with continuous �rst and second derivatives, we de�ne its
gradient vector of �rst derivatives by g(x), where each component of g is

gi(x) = @f(x)=@xi: (5)

The n� n symmetric matrix of second derivatives, H(x), is called the Hessian. Its compo-
nents are de�ned as:

Hi;j(x) = @2f(x)=@xi@xj : (6)

At a stationary point, the gradient is zero. At a minimum point x�, in addition to
stationarity, the curvature is positive. This curvature generalization to higher dimensions
of positive second derivatives (for a univariate function) is known as positive-de�niteness of
the Hessian. This convexity of the multivariate nonlinear function at x� can be written as

yTH(x�)y > 0 for all nonzero y: (7)

In particular, positive de�niteness guarantees that all the eigenvalues are positive at x�. A
positive semi-de�nite matrix has nonnegative eigenvalues, and a negative-de�nite matrix has
only negative eigenvalues; otherwise, the matrix is inde�nite. Since inde�nite Hessians signal
the existence of both minima and maxima, utilization of curvature information is important
for formulating e�ective multivariate optimization algorithms. Figure 2 illustrates this notion Figure 2

of curvature for quadratic functions (xTAx+bTx) of two variables by displaying the contours
of these functions (curves on which the function is constant) in four cases forA: (a) inde�nite,
(b) positive de�nite, (c) negative de�nite, and (d) singular (i.e., not invertible).
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3.3 The Hessian of Potential Energy Functions

A matrix is termed sparse if it has a large percentage of zero entries; otherwise it is dense. A
sparse matrix can be structured (as in a banded matrix where there are zeros for ji� jj > p)
or unstructured, as shown in Figure 3a. This �gure shows the percentage of nonzero elements Figure 3

(13%) resulting from the nonzero second-derivative terms of the potential energy function
for the protein BPTI (bovine pancreatic trypsin inhibitor) when an 8 �A cuto� is used for the
nonbonded terms. Figure 3b shows the sparsity pattern for the matrix corresponding only to
the bonded second-derivative terms for BPTI (bond-length, bond angle, and dihedral-angle).
Here the sparsity is less than 2%. Note from the insets, which zoom on two submatrices,
how the sparsity pattern repeats in triplets (for the x, y, and z components) and how nearly
banded the matrix structure is.

Since formulation of a dense Hessian (n2 entries, of which n(n+1)=2 are unique) is both
memory and computation intensive, many Newton techniques for minimization approximate
curvature information implicitly and often progressively (i.e., as the algorithm proceeds).
Limited-memory versions reduce computational and storage requirements so that they can
be applied to very large problems and/or to problems where second derivatives are not
available.

In most molecular mechanics packages, the second derivatives are programmed, though
sparsity (when relevant) is not often exploited in the storage techniques for large molecular
systems. The optimizer should utilize some of this second-derivative information to make
the algorithm more e�cient. Truncated Newton methods, for example, are designed with
this philosophy.

4 Basic Algorithmic Components

The basic structure of an iterative local optimization algorithm is one of \greedy descent".
It is based on one of the following two algorithmic frameworks: line-search or trust-region
methods. Both are found throughout the literature and in software packages and are essential
components of e�ective descent schemes that guarantee convergence to a local minimum from
any starting point. No clear evidence has emerged to render one class superior over another.

The initial guess for the iterative minimization process can be derived from experimental
data, where available, or from results of conformational search techniques.

4.1 Line-Search-Based Descent Algorithm

Algorithm [A1]: Basic Descent Using Line Search

From a given point x0, perform for k = 0; 1; 2; : : : until convergence:

1. Test xk for convergence (k g(xk) k � �g [1 + f(xk)], for example)

9



2. Calculate a descent direction pk (method dependent)

3. Determine a steplength �k by a one-dimensional line search so that the new position
vector, xk+1 = xk + �kpk, satis�es:

f(xk+1) � f(xk) + � �g(xk)
Tpk [\su�cient decrease"] (8)

and

jg(xk+1)Tpkj � � jg(xk)Tpkj [\su�cient directional derivative reduction"] (9)

where 0 < � < � < 1 (typically, � = 10�4 and � = 0:9)

4. Set xk+1 to xk + �kpk and k to k + 1 and go to step 1

4.1.1 Descent Direction

A descent direction pk is one along which the function can decrease. Formally, we de�ne
such a vector as one for which the directional derivative is negative:

g(xk)
Tpk < 0 : (10)

To see why this property implies that f can be reduced, approximate the nonlinear objective
function f at x by a linear model along the descent direction p, assuming that higher-order
terms are smaller than the gradient term. Then we see that the di�erence in function values
is negative:

f(x+ �p)� f(x) = �g(x)Tp +
�2

2
pTH(x)p

� �g(x)Tp < 0 ; (11)

for su�ciently small positive �.

The descent condition is used to de�ne the algorithmic sequence that generates pk but
is not always tested in practice. In reality, numerical errors can lead to departure from the-
oretical expectations. Thus, it is often necessary to check explicitly for the descent property
of pk from equation (10), especially in nonlinear conjugate gradient methods which are very
sensitive to roundo�.

4.1.2 The One-Dimensional Optimization Subproblem

The line search procedure in step 3 of Algorithm [A1] is an approximate univariate mini-
mization problem. It is typically performed via quadratic or cubic polynomial interpolation
of the one-dimensional function of �: �(�) � f(xk + �pk). For the polynomial interpolant
of �(�), p(�), the known values of xk; xk+1; g(xk), and possibly g(xk + �pk) are used at
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each � step. The solution to p0(�) = 0 then gives an optimal � value. However, bracketing
strategies are also necessary to ensure that the minimum of � is located within the feasible
region [xk; xk+�pk]. Typically, the initial trial value for � is one. Thus, the line search can
be considered as a backtracking algorithm for � in the interval (0; 1].

The line search criteria above are formulated to ensure su�cient decrease of f relative
to the size of step (�) taken. The �rst condition (equation (8)) prescribes an upper limit
on acceptable new function values (recall that the second term on the right is negative
by the descent property). The second criterion (equation (9)) imposes a lower bound on
�. The controlling parameters � and � determine the balance between the computational
work performed in the line search and the reduction in function achieved. Since each line-
search iteration requires a new function (and possibly gradient) evaluation to de�ne the
new interpolant p(�), most algorithms specify a very small � and a � close to unity; with
this combination, the �rst condition is easily satis�ed (assuming that the search vector pk

produced by the algorithm is well-scaled), and the second condition is very lenient and
typically satis�ed when the �rst is. The combination of criteria, however, is important for
avoiding di�cult situations when divergence of the process or cycling of the iterate can result.

The line search and the procedure that de�nes pk form the central components of the
basic descent local optimization algorithm above. The work in the line search (number
of polynomial interpolations) should be balanced with the overall progress realized in the
minimization algorithm.

4.2 Trust-Region-Based Descent Algorithm

Algorithm [A2]: Basic Descent Using A Trust Region Subsearch

From a given point x0, perform for k = 0; 1; 2; : : : until convergence:

1. Test xk for convergence

2. Calculate a step sk by solving the subproblem

min s fqk(s)g ; (12)

where qk is the quadratic model of the objective function:

qk(s) = f(xk) + g(xk)
Ts +

1

2
sTH (xk) s ; (13)

subject to a size bound, �k (a positive value), on s. This bound involves a scaling
matrix, Dk, and requires

k Dks k < �k ; (14)

where k � k denotes the standard Euclidean norm

3. Set xk+1 to xk + sk and k to k + 1 and go to step 1

11



The idea in trust-region methods | the origin of the quadratic optimization subproblem
in step 2 above | is to determine the vector sk on the basis of the size of region within which
the quadratic functional approximation can be \trusted" (i.e., is reasonable). The quality of
the quadratic approximation can be assessed from the following ratio:

�k =
f(xk) � f(xk + sk)

f(xk) � qk(sk)
: (15)

A value near unity implied that the bound �k imposed on s can be increased; in contrast, a
small positive or a negative value for �k implies that the quadratic model is poor, requiring
a decrease in �k.

Many Newton methods (see next section for details) based on trust-region approaches
determine a candidate sk by solving the linear system

H(xk) s = �g(xk) (16)

that results from minimizing qk(s). (A related system may also be formulated). The scaling
of this vector s is determined according to the quality of the quadratic model at the region of
approximation. A good source of a trust-region Newton method is the program LANCELOT
[8].

4.3 Convergence Criteria

The criteria used to de�ne convergence of the minimization algorithm must be chosen with
care. The desire to obtain as accurate a result as possible should be balanced with the
amount of computation involved. In other words, it is wasteful to continue a loop when the
answer can no longer be improved.

Typically, minimization algorithms test for a su�ciently small gradient norm, i.e.,

k g(xk) k � �g (17)

where �g is a small positive number such as 10�6. However, �g should depend on the machine

precision, �m, and the size of the problem. The quantity �m is roughly the largest number for
which 1+�m = 1 in computer representation, rounded up to the nearest order or magnitude�.
To introduce a proper dependency on the number of variables, the norm on the left-hand-
side of equation (17) may be set to the Euclidean norm divided by

p
n. In addition, the

right-hand-side may be modi�ed by the factor 1+ k f(xk) k or max (1; k xk k).
For some functions and certain regions of the feasible space, the desired accuracy may be

di�cult to achieve if �g is smaller than warranted. (See the Newton section for illustrations).
In that case, a well-structured algorithm should halt the iteration process when progress is
poor. For example, progress can be assessed from the di�erences between successive iterates

�Typically, �m is 10�15 and 10�6, respectively, for double and single-precision arithmetic.
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of the independent vector (k xk�1 � xk k) and/or between the associated function values,
f(xk) � f(xk�1). The algorithm should stop when these di�erences become small. The
amount of progress realized (in terms of function decrease) could also be related to the size
of step taken. In addition, algorithms often introduce limits for the number of allowable
function and/or gradient evaluations. All these precautions are especially important for

minimization of large-scale functions in macromolecular applications [1].

5 Newton's Method

Newton'sy method is a classic iterative scheme for solving a nonlinear system f(x) = 0 or for
minimizing the multivariate function f(x). These root-�nding and minimization problems
are closely related since obtaining the minimum of a function f(x) can be formulated as
solving for the zeros of f 0(x) for which f 00(x) > 0.

Many e�ective methods for nonlinear, multivariate minimization can be related to New-
ton's method. This even includes the nonlinear conjugate gradient method, recently shown
to be closely related to quasi-Newton methods. Hence, a good understanding of the Newton
solver, including performance and convergence behavior, is invaluable for applying geometry
optimization techniques in general. We �rst discuss the univariate case of Newton's method
for obtaining the zeros of a function f(x). In one dimension, instructive diagrams easily
illustrate the method's strengths and weaknesses. We then discuss the general multivariate
formulations and continue in the next section by describing the e�ective variants known as
quasi-Newton, nonlinear conjugate gradient, and truncated-Newton methods.

5.1 Historical Perspective

A historical note on Newton's method is essential since the method's credit to Sir Isaac New-
ton is a partial one. Although many references also credit Joseph Raphson, the contributions
of mathematicians Thomas Simpson and Jean-Baptiste-Joseph Fourier are also noteworthy.
Furthermore, Newton's description of an algebraic procedure for solving for the zeros of a
polynomial in 1664 had its roots in the work of the 16th-century French algebraist Fran�cois
Vi�ete, which itself had precursors in the 11th-century works of Arabic algebraists.

In 1687, three years after Newton described a root �nder for a polynomial, he described
in Principia Mathematica an application of his procedure to a nonpolynomial equation. That
equation originated from the problem of solving Kepler's equation: determining the position
of a planet moving in an elliptical orbit around the sun, given the time elapsed since it was
nearest the sun. Newton's procedure was nonetheless purely algebraic and not even iterative,
as the solution process at each step was not the same.

In 1690, Raphson turned Newton's method into an iterative one, applying it to the
solution of polynomial equations of degree up to ten. His formulation still did not use

ySee historical note below on the method's name.

13



calculus; instead he derived explicit polynomial expressions for f(x) and f 0(x).

Simpson in 1740 was the �rst to formulate the Newton-Raphson method on the basis of
calculus. He applied the iterative scheme for solving general systems of nonlinear equations.
In addition to this important extension of the method to nonlinear systems, Simpson ex-
tended the iterative solver to multivariate minimization, noting that by setting the gradient
to zero the same method can be applied.

Finally, Fourier in 1831 published the modern version of the method as we know today in
his celebrated book Analyse des �Equations Determin�ees. The method for solving f(x) = 0
was simply written as:

xk+1 = xk � f(xk)=f
0(xk) : (18)

Unfortunately, Fourier omitted credits to either Raphson or Simpson, possibly explaining
the method's name.

For brevity, we refer below to the Newton-Raphson-Simpson-Fourier method as Newton's.

5.2 The One-Dimensional Version of Newton's Method

The iterative scheme of equation (18) can be easily derived by using a Taylor expansion to
approximate a twice-di�erentiable function f locally by a quadratic function about xk:

f(xk+1) = f(xk) + (xk+1 � xk) f
0(xk) +

1

2
(xk+1 � xk)

2 f 00(�) (19)

where xk � � � xk+1. Omitting the second-derivative term, the solution of f(xk+1) = 0
yields the iteration process of equation (18). Precursors to this method replaced f 0(x) as:

f 0(xk) � f(xk + h) � f(xk) = h (20)

or
f 0(xk) � f(xk) � f(xk�1) = (xk � xk�1) (21)

where h is a suitably-chosen small number. These approximations | known as �nite-

di�erences and the method of secants | mirror the modern discrete-Newton and quasi-

Newton methods. Note that the use of �nite-di�erences to approximate the Hessian of a
multivariate function requires one di�erence in gradient values for each column of the Hes-
sian. This costly process is not feasible for large functions, unless problem structure can be
exploited to reduce the work considerably.

Newton's method in one dimension has a simple geometric interpretation: at each step,
approximate f(x) by its tangent at point fxk ; f(xk)g and take xk+1 as the abscissa of the
intersection of this line with the x-axis (see Figure 4). The method works well in the ideal Figure 4

case (Figure 4a), when x0 is near the solution and jf 0(�)j � M > 0 nearby. However,
di�culties arise when x0 is far from the solution, x�, or f 0(x) too is close to zero (Figure 4b).
This can occur when there are multiple roots so the curvature changes. Further di�culties
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emerge when f 0(x) is identically zero at the solution (Figures 4c,d), in which case the root
is considered \not simple".

Note that the Newton iteration process is unde�ned when f 0(x) = 0 and can exhibit
poor numerical behavior when jf 0(x)j is very small. In general, performance and attainable
accuracy of the solver worsen if any of the above complications arise.

5.2.1 A Classic Example

A classic application of Newton's method is solving for the square root of a number a. Writing
f(x) = x2 � a = 0, we obtain the following iterative scheme for computing x =

p
a:

xk+1 =
1

2

�
xk +

a

xk

�
: (22)

A computer result from a double-precision program is shown below for a = 9 and four
starting points: 6, �50, 1000, and 10�6.

Newton iterate, x Error: |x-x*| / x*

6.000000000000000 1.000000000000000

3.750000000000000 0.2500000000000000

3.075000000000000 2.5000000000000060E-02

3.000914634146342 3.0487804878050656E-04

3.000000139383442 4.6461147225803266E-08

3.000000000000004 1.1842378929335002E-15

3.000000000000000 0.0000000000000000E+00

-50.00000000000000 15.66666666666667

-25.09000000000000 7.363333333333333

-12.72435432443204 3.241451441477348

-6.715829684400157 1.238609894800052

-4.027973526155810 0.3426578420519366

-3.131173847545831 4.3724615848610281E-02

-3.002747624232596 9.1587474419870440E-04

-3.000001257088485 4.1902949495427794E-07

-3.000000000000263 8.7781633813695706E-14

-3.000000000000000 0.0000000000000000E+00

1000.000000000000 332.3333333333333

500.0045000000000 165.6681666666667

250.0112499190007 82.33708330633358

125.0236241495426 40.67454138318088

62.54780527230187 19.84926842410063

31.34584760656851 9.448615868856171

15.81648348801446 4.272161162671487
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8.192755049598201 1.730918349866067

4.645643305694222 0.5485477685647405

3.291471138804049 9.7157046268016398E-02

3.012905388073158 4.3017960243858511E-03

3.000027639275030 9.2130916765261386E-06

3.000000000127320 4.2440125488004320E-11

3.000000000000000 0.0000000000000000E+00

9.9999999999999995E-07 -0.9999996666666666

4500000.000000500 1499999.000000167

2250000.000001250 749999.0000004167

1125000.000002625 374999.0000008750

562500.0000053125 187499.0000017708

281250.0000106563 93749.00000355208

140625.0000213281 46874.00000710937

70312.50004266406 23436.50001422135

35156.25008533203 11717.75002844401

17578.12517066602 5858.375056888672

8789.062841333005 2928.687613777669

4394.531932666483 1463.843977555494

2197.266990333083 731.4223301110275

1098.635543165269 365.2118477217562

549.3218675724537 182.1072891908179

274.6691257047825 90.55637523492750

137.3509462008599 44.78364873361997

68.70823588892520 21.90274529630840

34.41961227628149 10.47320409209383

17.34054555390984 4.780181851303282

8.929780183224812 1.976593394408271

4.968821869065736 0.6562739563552453

3.390058212414881 0.1300194041382937

3.022439940487617 7.4799801625389977E-03

3.000083302057113 2.7767352371051619E-05

3.000000001156507 3.8550229675138326E-10

3.000000000000000 0.0000000000000000E+00

Note the very rapid, quadratic convergence in all cases at the last 4{5 steps. In these
steps, the number of correct digits for the solution is approximately doubled from one step to
the next! This is the ideal case because the root of f(x) is simple and well separated from the
other root. When x0 is not close to the solution, convergence is much slower than quadratic
at the beginning but then improves rapidly until the region of quadratic convergence is
approached.

Note the longer time for convergence when x0 is near zero (x0 = 10�6 shown). Since
the derivative is zero at x = 0, the tangent takes the iterates very far, but then works back
systematically toward the solution. If the algorithm of equation (18) is started from x0 = 0,
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the sequence of iterates diverges.

We see from this example that the order of convergence associated with a method (see
below) measures asymptotic behavior; practical considerations such as accuracy and problem
conditioning are at least as important.

5.2.2 Convergence De�nitions

A sequence fxkg is said to converge to x� with order p if p is the largest number such that a
�nite limit � (the \convergence ratio") exists, where:

0 � lim
k!1

jxk+1 � x�j
jxk � x�jp = � <1 : (23)

When p = 2, we have quadratic convergence. When p = 1, we refer to the convergence as
superlinear if � = 0 and as linear if � 6= 0.

For example, the reader can verify that the sequences f2�2kg, fk�kg, and f2�kg converge,
respectively, quadratically, superlinearly, and linearly. Quadratic convergence is faster than
superlinear, which in turn is faster than linear.

5.2.3 Performance of Newton's Method

The proof of the quadratic convergence for Newton's method for a simple root and for x0
su�ciently close to the solution x� is given in Appendix A. If x0 is far, bracketing safeguards
are essential to guarantee convergence.

Quadratic convergence is often the fastest reference behavior for large-scale functions.
Tensor methods based on fourth-order approximations to the objective function can achieve
more rapid convergence [9] but they are restricted to problems of less than about 100
variables. A recent proposal has also shown that Newton's method converges faster than
quadratic if higher-order derivatives are used [10].

The attainable accuracy for Newton's method depends on the function characteristics,
computer type, and on whether the root is simple or not. Essentially, if the root is simple,
the best accuracy attainable is of order �m (machine precision); the constant for the obtain-
able accuracy depends on the magnitude of f 0(�) near x�. For a nonsimple root, the best
attainable accuracy is of order O(

p
�m), with a constant that depends on jf 00(�)j near x�.

This constitutes a substantial reduction considering that the typical value of �m is 10�15 for
double-precision, and that many other errors are present in large-scale problems.

Appendix B sketches the proof for attainable accuracy in both cases.
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5.3 Newton's Method for Minimization

To derive the iteration process of Newton's method for minimization of the one-dimensional
f(x), we use a quadratic, rather than linear, approximation:

f(xk+1) � f(xk) + (xk+1 � xk) f
0(xk) +

1

2
(xk+1 � xk)

2 f 00(xk) : (24)

Since f(xk) is constant, minimization of the second and third terms on the right-hand-side
in equation (24) yields the iteration process:

xk+1 = xk � f 0(xk)=f
00(xk) : (25)

Thus, we have replaced f and f 0 of equation (18) by f 0 and f 00, respectively. This Newton
scheme for minimizing f(x) is de�ned as long as the second derivative at xk is bound away
from zero.

5.4 The Multivariate Version of Newton's Method

We generalize Newton's method for minimization in equation (25) to multivariate functions
by expanding f(x) locally along a search vector p (in analogy to equation (24)):

f(xk + pk) � f(xk) + g(xk)
Tpk +

1

2
pTkH(xk)pk : (26)

Minimizing the right-hand side leads to solving the linear system of equations, known as the
Newton equations, for pk:

H(xk)pk = �g(xk) : (27)

Performing this approximation at each step k to obtain pk leads to the iteration process

xx+1 = xk � H�1(xk)g(xk) : (28)

This classic Newton method for minimization thus uses the search vector pk = �H�1(xk)g(xk)
and requires solution of a linear system involving the Hessian at each step. Not only is this an
expensive, order n3 process for general dense matrices; for multivariate functions with many
minima and maxima, the Hessian may be ill-conditioned (i.e., have near-zero eigenvalues) or
singular (zero eigenvalues) for certain xk. Thus, in addition to the line-search or trust-region
modi�cations that essentially dampen the Newton step (by scaling pk by a positive scalar
less than unity), e�ective strategies must be devised to ensure that pk is well de�ned at each
step and that the solution of the linear system at each step be reasonable computationally.
Such e�ective strategies are described in the next section.

6 E�ective Large-Scale Minimization Algorithms

The popular methods that �t the descent framework outlined in subsections 4.1 and 4.2
require gradient information. In addition, the truncated-Newton method may require more
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input to be e�ective, such as partial, but explicit, second-derivative information. The meth-
ods described in this section render steepest descent (SD) obsolete as a general method. In
SD, the descent direction is de�ned as pk = �g(xk) at each step. Only if the energy and
gradient at x0 are very high, SD may be useful for a few iterations, before a better minimizer
is applied.

6.1 Quasi-Newton

Quasi-Newton (QN) methods avoid using the actual Hessian and instead build up curvature
information as the algorithm proceeds. Actually, it is often the Hessian inverse ( bB) that is
updated in practice so that a term bBk gk (where bBk and gk are short hand for bB(xk) and
g(xk), respectively) replaces H�1(xk)�1 gk in equation (28). The Hessian approximation Bk

is derived to satisfy the quasi-Newton condition (see below). Quasi-Newton variants de�ne
di�erent formulas that satisfy this condition. Since memory is considered premium for large-
scale applications, the matrix Bk or bB is formulated through several vector operations,
avoiding explicit storage of an n� n matrix; the update Uk, that when added to Bk de�nes
Bk+1, is thus said to be of low-rank.

Two important developments have emerged in modern optimization research in connec-
tion with QN methodology. The �rst is the development of limited-memory versions, in
which the inverse Hessian approximation at step k only incorporates curvature information
generated at the last few m steps (e.g., m = 5). The second is the emergence of insightful
analyses that explain the relationship between QN and nonlinear conjugate gradient meth-
ods.

The QN condition that the new approximation Bk+1 must satisfy is:

Bk+1 sk = yk (29)

where
sk = xk+1 � xk ; (30)

yk = gk+1 � gk : (31)

If f(x) were a quadratic function, its Hessian H would be a constant and would satisfy (from
the Taylor expansion of the gradient) the following relation:

gk+1 � gk = H (xk+1 � xk) : (32)

This equation makes clear the origin of the QN condition of equation (29).

The updating QN formula can be written symbolically as:

Bk+1 = Bk + Uk(sk; yk; Bk) (33)

where Uk is a matrix of low rank (typically 1 or 2). Note that a rank 1 matrix can be
written as the outer product of two vectors: uvT. In addition to rank, imposed symmetry
and positive-de�niteness are used in the formulation of Uk.
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One of the most successful QN formulas in practice is associated with the BFGS method
(for its developers Broyden, Fletcher, Goldfard, and Shanno). The BFGS update matrix has
rank 2 and inherent positive de�niteness (i.e., if Bk is positive de�nite then Bk+1 is positive
de�nite) as long as yTk sk < 0. This condition is satis�ed automatically for convex functions
but may not hold in general. In practice, the line search must check for the descent property;
updates that do not satisfy this condition may be skipped.

The BFGS update formula is given by

Bk+1 = Bk � Bksks
T
kB

T
k

sTkBksk
+

yky
T
k

yTk sk
: (34)

The corresponding formula used in practice to update the inverse of B, bB, is:
bBk+1 =

 
I � sky

T
k

yTk sk

! bBk

 
I � yks

T
k

yTk sk

!
+

sks
T
k

yTk sk
: (35)

From this bB, the BFGS search vector is de�ned as pk = � bBk gk.

Since we only need the product of bB with the gradient (and not B or bB per se), e�ective
matrix/vector products have been developed to minimize storage requirements considerably
for this special case of a low-rank matrix update. Typically, O(n) memory is required to
store the successive pairs of update vectors (sk and yk) and the respective inner products
yTk sk. Limited-memory QN methods reduce storage requirements further by only retaining
the fs; yg pairs from the previous few iterates (3{7). Since the older gradient di�erences used
to de�ne Bk can quickly become irrelevant for multivariate functions, the limited-memory
BFGS method restarts the Bk update with a fresh matrix every few steps. The identity
matrix, I, or a multiple of it, is typically used for the initial approximation B0.

The limited-memory BFGS code of Nocedal and co-workers [11; 12; 13] is one of the most
e�ective methods in this class. The combination of modest memory, requiring only gradient
information, and good performance in practice makes it an excellent choice for large-scale
multivariate minimization.

6.2 Conjugate Gradient

Nonlinear CG methods form another popular type of optimization scheme for large-scale
problems where memory and computational performance are important considerations. These
methods were �rst developed in the 1960s by combining the linear CG method (an iterative

technique for solving linear systems Ax = b where A is an n � n matrix [14]) with line-
search techniques. The basic idea is that if f were a convex quadratic function, the resulting
nonlinear CG method would reduce to solving the Newton equations (equation (27)) for the
constant and positive-de�nite Hessian H.

In each step of the nonlinear CG method, a search vector dk is de�ned by a recursive
formula. A line search is then used as outlined in Algorithm [A1]. The iteration process that
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de�nes the search vectors fdkg is given by:

dk+1 = �gk+1 + �k+1 dk ; (36)

where d0 = �g0. The parameter �k, scheme dependent, is chosen so that if f were a convex
quadratic and the line search exact (i.e., xk + �kdk minimizes f exactly along dk), then
the linear CG process would result. The reduction to the linear CG method in this special
case is important because linear CG is known to terminate in at most n steps of exact
arithmetic. This �nite-termination property relies on the fundamental notion of mutual

conjugacy (gTk dj = 0 for all j < k) for two sets of vectors (fgg and fdg) generated in the
CG method; this in turn implies that the search vectors span the entire n-dimensional space
after n steps, so a solution should be obtained.

Di�erent formulas for �k have been developed for the nonlinear case, though they all
reduce to the same expressions for convex quadratic functions. These variants exhibit dif-
ferent behavior in practice. Three of the best known algorithms are due to Fletcher-Reeves,
Polak-Ribi�ere, and Hestenes-Stiefel. They are given by:

�FR
k+1 = gTk+1gk+1 =g

T
k gk ; (37)

�PR
k+1 = gTk+1yk =g

T
k gk ; (38)

�HS
k+1 = gTk+1yk =d

T
k yk ; (39)

where yk = gk+1 � gk. The PR version is often found in software packages, but to be
e�ective it restarts the iteration process (setting �k to zero) occasionally (e.g., if �k becomes
negative). Some important modi�cations of this version (e.g., with slightly more memory

requirements but fewer function evaluations) are due to Powell [15], available in the IMSL

library, and to Shanno & Phua [16], available in the NAG library. A careful line search is
important for nonlinear CG methods because the search directions tend to be poorly scaled.

Key connections between CG and quasi-Newton algorithms for minimization began to
emerge in the late 1970s. Essentially, it was found that the CG conjugacy property can be
closely related to the quasi-Newton condition, and so an appropriate formula for �k could
be obtained from both viewpoints. The many developments in the 1980s have shown that
the limited-memory quasi-Newton class of algorithms best balances the extremely modest
storage requirements of nonlinear CG with good convergence properties in practice. The
fact that the unit steplength in quasi-Newton methods is often acceptable leads to greater
e�ciency in terms of function evaluations and hence less computational time overall.

Still, the linear and nonlinear CG methods play important theoretical roles in the nu-
merical analysis literature as well as practical roles in many numerical techniques; see the
recent research monograph, [17], for a modern perspective. The linear CG method, in par-
ticular, proves ideal for solving the linear subproblem in the truncated Newton method for
minimization (discussed next), especially with convergence-accelerating techniques known as
preconditioning.
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6.3 Truncated-Newton

In the early 1980s a very simple but important idea emerged in connection with the Newton
equations: why solve this linear system for the search vector pk exactly

[18]? In the context
of large-scale nonlinear optimization, an accurate solution of equation (27) is not warranted!
As long as the function and gradient-norm values are high, a descent direction may su�ce
and should result in greater computational savings, while still producing progress toward a
minimum. Only near the solution, where the quadratic model is good, should the system be
solved more accurately.

In practice, truncated-Newton (TN) methods allow a nonzero residual, rk, for the Newton
equations. For example, we can require

rk � k Hkpk + gk k � �k k gk k ; (40)

where �k is the forcing sequence. This condition on the size of rk at step k of the minimiza-
tion scheme, becomes stricter as the gradient norm becomes smaller. Thus, near the solution
we solve for pk more accurately, whereas far away we permit a cruder approximation. The-
oretical work further showed that asymptotic quadratic convergence of the method can be
realized for a well chosen �k as k gk k! 0 [18]. For example, an e�ective setting is:

�k = min fcr=k ; k gk kg ; 0 < cr � 1 : (41)

This choice forces the residuals to be smaller and smaller as the number of iterations (k)
increases and as the gradient becomes smaller. Another termination criterion based on the
quality of the quadratic approximation has also been suggested [12].

To implement an upper bound on the residual norm in practice, an iterative, rather
than direct procedure, that can be \truncated" is required for approximating pk from equa-
tion (27) at each outer step k. The linear conjugate gradient method is an excellent candi-
date since it is simple and very modest in memory. The linear conjugate gradient algorithm
mirrors in structure the general descent method of Algorithm [A1]. That is, it generates
search vectors fdkg at each step recursively (as the nonlinear conjugate gradient method
of the previous subsection) but, in place of the line search, uses an explicit formula for the
steplength. This expression is derived analytically by minimizing the quadratic model at
the current point along dk and then using the conjugacy condition to simplify the formula.
However, to accelerate convergence, preconditioning is essential in practice. This technique
involves modi�cation of equation (27) through application of a closely-related matrix to Hk,
Mk (namely, multiplication of both sides by the inverse of Mk). The preconditioner M is
typically chosen as a sparse matrix that is rapid to assemble and factor. Theoretically, con-
vergence improves if M�1

k Hk, the coe�cient matrix of the new linear system, has clustered
eigenvalues or approximates the identity matrix.

The TN code in CHARMM [19] uses a preconditioner from the local chemical interactions
(bond length, bond angle, and dihedral-angle terms). This sparse matrix is rapid to compute

and was found to be e�ective in practice, whether the matrix is inde�nite or not [20]. Other
possibilities of preconditioners in general contexts have also been developed, such as a matrix
derived from the BFGS update (de�ned in the quasi-Newton subsection) [12].
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Although more complex to implement than quasi-Newton or nonlinear conjugate gradient
methods, TN algorithms can be very e�cient overall in terms of total function and gradient
evaluations, convergence behavior, and solution accuracy, as long as the many components
of the algorithm are carefully formulated (truncation, solution process for the inner loop,
preconditioning, etc.).

In terms of the computational work per outer Newton step (k), TN methods based on
preconditioned conjugate gradient require: a Hessian/vector product (Hd) at each inner
loop iteration, and one solution of a linear system Mz = r where M is the preconditioner.
Since M may be sparse, this linear solution often takes a very small percentage of the total
CPU time (e.g., < 3% [20]). The bene�ts of faster convergence generally far outweigh these
costs.

The Hessian/vector products in each linear conjugate gradient step are more signi�cant.
For a Hessian formulated with a nonbonded cuto� radius (e.g., 8 �A), many zeros result for
the Hessian (see Figure 3); when this sparsity is exploited in the multiplication routine,
performance is fast compared to a dense matrix/vector product. When the Hessian is dense
and large in size, the following forward-di�erence formula of two gradients often works faster:

Hk dk � [g(xk + hdk) � g(xk)] = h ; (42)

where h is a suitably-chosen small number. A central di�erence approximation may alter-
natively be used for greater accuracy, but it requires one more gradient evaluation than the
one-sided di�erence formula above. In either case, �nding an appropriate value for h is non-
trivial, and the accuracy of the product near the solution (where the gradient components
are small) can be problematic.

Thus, TN methods require more care in implementation details and user interface, but
their performance is typically at least as good overall as limited-memory quasi-Newton meth-
ods. If simplicity is premium, the latter is a better choice. If partial second-derivative in-
formation is available, the objective function has many quadratic-like regions, and the user
is interested in repeated minimization applications, TN algorithms may be worth the e�ort
(see Table 1). In general, though Newton methods may not always perform best in terms of Table 1

function calls and CPU time, they are the most reliable of methods for multivariate mini-
mization and have the greatest potential for achieving very small �nal-gradient norms. This
could be especially important if normal-mode analysis is performed following minimization.

7 Available Software and Practical Recommendations

Table 2 summarizes the available minimizers in several chemistry and mathematics packages.
See Ref. [11] for a recent compilation of mathematical software for optimization. Table 2

Nonlinear conjugate gradient and various Newton methods are quite popular, but algo-
rithmic details and parameters vary greatly from package to package. In particular, nonlinear
conjugate gradient implementations are quite di�erent. Several comprehensive mathemati-
cal libraries, such as IMSL, NAG, and MATLAB are sources of quality numerical software.
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Table 1: Typical complexity versus performance in some optimization methods (SD: steepest
descent, CG: conjuate gradient, QN: quasi-Newton, TN: truncated-Newton)

Complexity/ Low Moderate High
Convergence

Slow SD
Moderate CG QN,TN Classic Newton
Rapid QN,TN Classic Newton, TN

In addition to careful implementation of popular algorithms, some of these companies of-
fer useful service routines, such as for derivative checking and determination of appropriate
�nite-di�erence intervals.

Of special note is the adopted-basis Newton method implemented in CHARMM, ABNR.
It is a memory-saving adaptation of Newton's method that avoids analytic second derivatives.
The idea is to use steepest descent steps for a given number of iterations, m (e.g., 5), after
which a set of m+1 coordinate and gradient vectors are available. A Hessian is constructed
numerically in this m�m subspace, and all corresponding eigenvalues and eigenvectors are
computed. If all eigenvalues are negative, steepest descent steps are used; if some are negative
and some are positive, the search direction is modi�ed by a Newton direction constructed
from the eigenvectors corresponding to the positive eigenvalues only. In all cases, the n-
dimensional search vector pk is determined via projection onto the full space. The ABNR
algorithm is similar in strategy to limited-memory quasi-Newton methods in that it uses only
recent curvature information and exploits this information to make steady progress toward
a solution.

The TN method in CHARMM is described in detail elsewhere [19; 20]. It uses a pre-
conditioner constructed from the local chemical interactions (see Figure 3b) and determines
pk from a truncated preconditioned conjugate gradient loop. When negative curvature is
detected, the preconditioned conjugate gradient loop is halted with a guaranteed direction
of descent. Interestingly, recent analysis and experiments have shown that the method can
produce quadratic convergence near a solution regardless of whether the preconditioner is
inde�nite or not [20]!

Performance comparisons in CHARMM among the conjugate gradient, ABNR, and
TNPACK minimizers are shown in Table 3 for a dipeptide model and a protein. See Ref. [20]
for details. Note that the same minimum is obtained for the small system (the dipeptide) Table 3

but that di�erent minima result for the much larger lysozyme system (though energy dif-
ferences are not large). Considerable di�erences in CPU times can be noted, especially for
lysozyme, where conjugate gradient is much slower. The conjugate gradient method also
fails to produce very small gradient norms. Both Newton methods perform well for these
problems, though ABNR is relatively expensive for the small system. TNPACK displays
faster convergence and smaller �nal gradient norms. Note that conjugate gradient requires
about 3 function evaluations per iteration (in the line search), while ABNR employs only one.
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TNPACK uses more than one, since the line search often produces a very small steplength
at some iterations because of the inde�nite preconditioner. The quadratic convergence of
TNPACK is evident from Figure 5, where the gradient norm per iteration is shown. Figure 5

In general, geometry optimization in the context of molecular potential energy func-
tions has many possible caveats. Hence, a novice user especially should take the following
precautions to generate as much con�dence as possible in a minimization result.

1. Use many starting points. There is always the possibility that the method will fail to
converge from a certain starting point, or converge to a nearby stationary point that is
not a minimum. A case in point is minimization of biphenyl from a 
at geometry [21];
many minimizers will produce the 
at ring geometry, but this actually corresponds to
a maximum! Di�erent starting points will produce the correct nonplanar structure.

2. Compare results from di�erent algorithms. Since many packages o�er more than one
minimizer, experimenting with more than one algorithm is an excellent way to check
a computational result. Often, one method may fail to achieve the desired resolution
or may converge very slowly. Another reference calculation under the same potential
energy surface may help assess the results.

3. Compare results from di�erent force �elds whenever possible. Putting aside the qual-
ity of the minimizer, the local minimum produced by any package is only as good
as the force �eld itself. Since force �elds for macromolecules today are far from con-
verging to one another | in fact there are very large di�erences both in parameters
and in functional forms | a better understanding of the energetic properties of vari-
ous conformations can be obtained by comparing the relative energies of the di�erent
con�gurations as obtained by di�erent force �elds. Di�erences are expected, but the
results should shed more insight into the lowest-energy con�guration. If signi�cant dif-
ferences are observed, the researcher could further investigate both the associated force
�elds (e.g., a larger partial charge, an additional torsional term) and the minimizers
for explanations.

4. Check eigenvalues at the solution. If the signi�cance of the computed minima is unclear,
the corresponding eigenvalues may help diagnose a problem. Near a true minimum,
the eigenvalues should all be positive (except for the 6 zero components correspond-
ing to translation and rotation invariance). In �nite-precision arithmetic, \zero" will
correspond to numbers that are small in absolute value (e.g., 10�6), with \small" de-
pending on both the machine and program precision. Values larger than this tolerance
might indicate deviations from a true minimum, perhaps even a maximum or saddle
point. In this case, the corresponding structure should be perturbed substantially and
another trial of minimization attempted.

5. Be aware of arti�cial minima caused by nonbonded cuto�s! When cuto�s are used
for the nonbonded interactions, especially in naive implementations involving sudden
truncation or potential-switching methods, the energy and/or gradient can exhibit nu-
merical artifacts: deep energy minima and correspondingly-large gradient value near
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the cuto� region. Good minimizers can �nd these minima, which are correct as far
as the numerical formulation is involved, but unfortunately not relevant physically.
One way to recognize these artifacts is to note their large energy di�erence with re-
spect to other minima obtained for the same structure (as obtained from di�erent
starting points or minima). These arti�cial minima should disappear when all the
nonbonded interactions are considered, or improved spherical-cuto� treatments (such
as force shifting and switching methods) are implemented instead.

8 Looking Ahead

Only a small subset of topics was covered here in the challenging and ever-evolving �eld of
nonlinear large-scale optimization. Key factors that will undoubtedly in
uence the develop-
ment of optimization algorithms in the next decade are the increase in computer memory
and speed, and the growing availability of parallel platforms. Parallel architectures can be
exploited, for example, for performing minimization simulations concurrently from di�erent
starting points, evaluating function and derivatives in tandem for greater e�ciency in the line
search or �nite-di�erence approximations, and performing matrix decompositions in parallel
for structured, separable systems.

The increase in computing speed is also making automatic di�erentiation a powerful
resource for nonlinear optimization. In this technique, automatic programs are available
that code function derivatives on the basis of a chain-rule application to the elementary
constituents of a function [22]. It is foreseeable that such codes will replace �nite-di�erence
methods and make Newton methods more powerful [23]. The cost of di�erentiation is not
reduced, but the convenience and accuracy may increase.

Function separability is a more general notion than sparsity, since all sparse systems are
separable but the reverse is not true. It is also another area where algorithmic growth can
be expected [23]. Separable functions are composites of subfunctions, each of which depends
only on a small subset of the independent variables. Therefore, e�cient schemes can be
devised in this case to compute the search vector, function curvature, etc., much cheaper by
exploiting the invariant subspaces of the objective function.

Such advances in local optimization will certainly lead to further progress in solving the
global optimization problem as well; see Ref. [24] for recent examples. Scientists from all
disciplines will anxiously await all these developments.

9 Related Articles In This Volume

� conformational analysis

� conformational search

26



� distance geometry

� force �elds

� free-energy perturbation calculations

� molecular dynamics

� molecular mechanics

� Monte Carlo simulation methods

� simulated annealing

� structure elucidation
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Appendix A: The Quadratic Convergence of Newton's Method

Let �k = xk � x�, where xk is the Newton iterate, xk�1 � f(xk)=f
0(xk), and x� is the

solution of f(x) = 0. Assume that f(x) has continuous �rst and second derivatives; and
assume that x� is a simple root, i.e., f 0(x�) 6= 0 and f 0(x) 6= 0 near x�. We expand f(x�) in
a Taylor series about xk to obtain:

0 = f(x�) = f(xk) + (x� � xk) f
0(xk) +

1

2
(x� � xk)

2 f 00(�) (A.1)

where xk � � � xk+1. Dividing by f 0(xk) and rearranging, we have:

�k+1 =
�2k
2

 
f 00(�)

f 0(xk)

!
: (A.2)

Therefore, we have quadratic convergence from:

lim
k!1

j�k+1j
j�kj2 =

1

2

f 00(x�)

f 0(x�)
� � (A.3)

since � ! x� as fxkg ! x�. Note that the convergence ratio is nonzero if f 00(x�) 6= 0. To
complete the proof, we must show convergence for the sequence f�kg, i.e., that j�kj ! 0. For

a simple root, we have an upper bound m on 1
2
jf 00(�)j
jf 0(x)j for x and � in the neighborhood of a

simple root. Thus if m jx0 � x�j < 1, from equation (A.2) we have �k+1 � m j�kj2, or

jm�k+1j � (m�k)
2 � (m�0)

2k : (A.4)

Since jm�0j < 1,

j�k+1j � 1

m
(m�0)

2k ! 0 (A.5)

as k !1 or xk ! x�.
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Appendix B: The Attainable Accuracy of Newton's Method

Case 1 (Simple Root). We assume that �x is our computer approximation to the root x�

and that the �rst derivative satis�es jf 0(�)j � M for � between x and x�. We also assume
that the computed approximation to f(x), namely �f(x), incurs an error of at most �, i.e.,
j �f(x)� f(x)j � �. Using the Taylor expansion, we write (since f(x�) = 0):

f(�x) = f(�x) � f(x�) = (�x� x�) f 0(�) ; �x � � � x� : (B.1)

From this approximation, we have

j�x� x�j = jf(�x)j = jf 0(�)j � jf(�x)j =M � (j �f(�x)j+ �) =M ; (B.2)

or (since �f(�x) = 0),
j�x� x�j � �=M : (B.3)

Thus, the attainable accuracy, �=M , is of order �m if � � �m and 1=M � 1. The value 1=M
depends on the curvature at x�: the larger M is, the greater is the attainable accuracy.

Case 2 (Multiple Roots). We now assume that �x is our computer approximation to an
\ill-conditioned" root x�2, i.e., one for which f 0(x) � 0 near x�2. Further, we assume a bound
of the second derivative: jf 00(�)j �M 0 for � between x and x�2. We now expand f(�x) about
x�2, but since f

0(x�2) = 0, we use the second-derivative term:

f(�x) = f(�x) � f(x�2) = (�x� x�2) f
0(x�2) +

1

2
(�x� x�2)

2 f 00(�) ; �x � � � x�2 : (B.4)

Thus,

f(�x) =
1

2
(�x� x�2)

2 f 00(�) ; (B.5)

and

j�x� x�2j =
vuut2 jf(�x)j
jf 00(�)j �

s
2�

M 0
: (B.6)

The attainable accuracy now depends on 2=M 0 and, if � � �m, the best attainable accuracy
is of order

p
�m.
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GLOSSARY:

Convergence order, p| the largest number such that a �nite limit � (the convergence ratio)

exists where 0 � limk!1
jxk+1�x

�j

jxk�x�jp
= � < 1 . Linear, superlinear, and quadratic

convergence refer to, respectively, p = 1 and � 6= 0, p = 1 and � = 0, and p = 2.

Descent direction | a direction along which function reduction can be achieved.

Gradient | the vector of n components corresponding to the �rst partial derivatives of a
multivariate objective function of n variables.

Hessian | symmetric n�n matrix of second partial derivatives of a multivariate objective
function of n variables.

Line search | a one-dimensional minimization process, component of many nonlinear opti-
mization methods, performed via quadratic or cubic interpolation in combination with
bracketing strategies.

Newton's method | a classic iterative scheme for solving for the zeros of a nonlinear
function or minimizing a function. Credit for the method is also due to Raphson,
Simpson, and Fourier.

Positive de�nite | a property of a symmetric matrix that generalizes to higher dimensions
the notion of positive curvature.

Sparse matrix | a matrix with a large percentage of zeros.

Trust region | an optimization framework which determines the search vector at each step
according to the size of region in which the objective function is well approximated by
a quadratic model.
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Figure 1: A one-dimensional function containing several minima

Figure 2: Contour curves for a quadratic function (xTAx + bTx) of two variables, where
A is: (a) inde�nite, with entries by row 1,2,2,2; (b) positive de�nite, entries 4,0,0,2; (c)
negative de�nite, entries �1,0,0,�4; and (d) singular, entries 1,1,1,1.

Figure 3: Sparse matrix structures resulting from the Hessian of the potential energy function
of the protein BPTI: (a) when 8-�A cuto�s are used for the nonbonded terms, 13% nonzeros;
and (b) when only bond-length, bond-angle, and dihedral-angle terms are included, with
insets showing enlarged submatrices.

Figure 4: Newton's method in one dimension: (a) geometric interpretation and behavior in
the ideal case; (b) divergent behavior; and (c),(d) behavior in di�cult cases of nonsimple
roots.

Figure 5: Minimization progress (gradient norm) of three CHARMM minimizers for: (a)
alanine dipeptide; and (b) lysozyme. See Table 3.
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Table 2: Available optimization algorithms

Package Contact Minimizers

AMBER
http://www.amber.ucsf.edu

/amber/amber.html
SD, nonlinear CG from the IMSL library (due to Powell),
and Newton

CHARMM
Martin Karplus
marci@brel.u-strasbg.fr

SD, nonlinear CG (FR, and modi�ed PRa version, the lat-
ter from the IMSL library), Adopted-Basis Newton (ABNR),
Newton, truncated-Newton (TNPACK)

DISCOVER
Biosym Technologies,
San Diego, CA

SD, nonlinear CG (PR, FR versions), quasi-Newton, trun-
cated Newton

DUPLEX Brian E. Hingerty Powell's coordinate descent method
hingertybe@ornl.gov (no derivatives)

ECEPP/2 QCPE 454
Calls SUMSL, a quasi-Newton method based on a trust-region
approach (by Gay)

http://qcpe5.chem.indiana

.edu/qcpe.html

GROMOS http://igc.ethz.ch/gromos SD and nonlinear CG (FR version), both with and without
SHAKE constraints

IMSL Lib.

IMSL, Inc.,
Sugar Land, TX
http://www.vni.com/adt

.dir/imslinfo.html

Many routines for constrained and unconstrained minimiza-
tion (nonsmooth, no derivatives, quadratic and linear pro-
gramming, least-squares, nonlinear, etc.), including a nonlin-
ear CG method of Powell (modi�ed PR version with restarts)

LANCELOT
Philippe Toint
pht@math.fundp.ac.be

Various Newton methods for constrained and unconstrained
nonlinear optimization, specializing in large-scale problems
and including a trust-region Newton method and an algo-
rithm for nonlinear least squares that exploits partial sepa-
rability

MATLAB

The Math Works, Inc.,
Natick, MA
info@mathworks.com,

http://www.mathworks.com

SD, DFPb and BFGS quasi-Newton, simplex algorithm, and
others for linear and quadratic programming, least squares,
etc.

MMFF94
Tom Halgren
halgren@merck.com

Calls OPTIMOL which uses a BFGS quasi-Newton method,
with the initial inverse Hessian approximated from the inverse
of a 3�3 block-diagonal Hessian

MM4, MM3 http://europa.chem.uga.edu 3� 3 block-diagonal Newton and full Newton

MM2 http://europa.chem.uga.edu 3� 3 block-diagonal Newton

NAG Lib.
NAG, Inc.,
Downers Grove, IL

Quasi-Newton, modi�ed Newton and nonlinear CG (CON-
MIN by Shanno & Phua, modi�ed PR version); also quadratic
programming, least squares minimization, and many service
routines

SiGMA
http://femto.med.unc.edu
/SIGMA/

Nonlinear CG (FR version)

X-PLOR http://xplor.csb.yale.edu Nonlinear CG (from IMSL library)

aFR and PR refer to the Fletcher-Reeves and Polark-Ribi�ere nonlinear CG versions
bDFP is a rank-1 QN method, credited to Davidon, Fletcher, and Powell
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Table 3: Performance among three CHARMM minimizers on two molecular systems

Minimizer Final f Final kgk Iterations f & g Evals CPU Time
Alanine dipeptide (66 variables)

CG �15:24501 9:83� 10�7 882 2507 2.34 sec.
ABNR �15:24501 9:96� 10�8 16466 16467 7.47 sec.

TNPACK �15:24501 7:67 � 10�11 29 (210 PCG) 44 1.32 sec.

Lysozyme (6090 variables)
CG �4628:362 9:89� 10�5 9231 24064 19.63 hrs.

ABNR �4631:584 9:97� 10�6 7637 7638 6.11 hrs.
TNPACK �4631:380 1:45� 10�6 78 (1848 PCG) 218 1.49 hrs.
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