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ABSTRACT

Innovative algorithms have been developed during the past decade for simulating
Newtonian physics for macromolecules. A major goal is alleviation of the severe
requirement that the integration timestep be small enough to resolve the fastest
components of the motion and thus guarantee numerical stability. This timestep
problem is challenging if strictly faster methods with the same all-atom resolution
at small timesteps are sought. Mathematical techniques that have worked well in
other multiple-timescale contexts—where the fast motions are rapidly decaying
or largely decoupled from others—have not been as successful for biomolecules,
where vibrational coupling is strong.

This review examines general issues that limit the timestep and describes
available methods (constrained, reduced-variable, implicit, symplectic, multiple-
timestep, and normal-mode-based schemes). A section compares results of se-
lected integrators for a model dipeptide, assessing physical and numerical perfor-
mance. Included is our dual timestep method LN, which relies on an approximate
linearization of the equations of motion every1t interval (5 fs or less), the so-
lution of which is obtained by explicit integration at the inner timestep1τ (e.g.,
0.5 fs). LN is computationally competitive, providing 4–5 speedup factors, and
results are in good agreement, in comparison to 0.5 fs trajectories.

These collective algorithmic efforts help fill the gap between the time range
that can be simulated and the timespans of major biological interest (millisec-
onds and longer). Still, only a hierarchy of models and methods, along with
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experimentational improvements, will ultimately give theoretical modeling the
status of partner with experiment.
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INTRODUCTION

The Time Race
In the world of computation, time is the enemy. Scientists wage a battle of wits to squeeze
as many computations as they can into the shortest possible span of time. The larger and
more complex the problem, the more cunning their techniques must be (82).

The above battle refers to forecasting the weather, where the development
of rapidly converging and computationally tractable large-scale optimization
techniques is key. Yet, the statement rings at least equally true for simulating
biomolecular motion on modern computers (89), where the crucial numerical
techniques for integrating the equations of motion have ranged from brute-
force to ingenious. In molecular dynamics (MD) simulations, insights into
molecular flexibility and activity are sought by numerically following molecular
configurations in time according to Newtonian physics (3, 21, 64). In theory,
MD simulations can bridge spatial and temporal resolution and thus capture
molecular motion over a wide range of thermally accessible states. In practice,
the numerical timestep problem has limited most applications to straightforward
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Table 1 Some typical vibrational modesa

Wavelength of Absorption
absorption [cm−1] frequency [s−1] Period [fs]

Vibrational mode (1/λ) (ν = c/λ) (1/ν) Period/π [fs]

O−−H stretch 3200–3600 1.0× 1014 9.8 3.1
N−−H stretch
C−−H stretch 3000 9.0× 1013 11.1 3.5

O−−C−−O asymmetric stretch 2400 7.2× 1013 13.9 4.5

C≡≡C, C≡≡N stretch 2100 6.3× 1013 15.9 5.1

C==O (carbonyl) stretch 1700 5.1× 1013 19.6 6.2
C==C stretch
H−−O−−H bend 1600 4.8× 1013 20.8 6.4
C−−N−−H bend 1500 4.5× 1013 22.2 7.1
H−−N−−H bend
C==C (aromatic) stretch

C−−N stretch (amines) 1250 3.8× 1013 26.2 8.4

Water Libration 800 2.4× 1013 41.7 13
(rocking)

O−−C−−O bending 700 2.1× 1013 47.6 15
C==C−−H bending (alkenes)
C==C−−H bending (aromatic)
aAll values are approximate; a range is associated with each motion depending on the system. The value ofc =
3.00× 1010 cm s−1. The last column indicates the timestep limit for leap-frog stability for a harmonic oscillator:
1t < 2/ω = 2/(2πν).

integration with very small timesteps compared to the motion of major interest.
Consequently, the total length of current trajectories at atomic resolution is
limited to the nanosecond timescale.

Our battle in the world of biomolecular dynamics is to reliably simulate as
large a timespan as possible in the smallest amount of computational time. The
reliability issue is a separate topic in its own right, since our force fields are ap-
proximate, quantum effects are ignored, and many other model assumptions or
special simulation protocols are applied. In addition to these approximations,
single-trajectory results must be assessed in the framework of statistical me-
chanics. Simulations are computationally taxing because of the typical expense
of computing the Newtonian forces for a system of thousands of atoms—the
solute and solvent—at each 1-fs timestep. Since conformational changes in
macromolecules occur on a continuum of timescales ranging from 10−12 to
102 s (see Table 1 for the high-frequency end), considerable research has fo-
cused on (a) developing algorithms that alleviate the severe stability requirement
dictated by the high-frequency vibrational modes, and (b) exploiting high-speed
parallel computer technology to accelerate MD simulations (16).
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Strong Vibrational Coupling in Biomolecules
A significant finding that emerged from these algorithmic efforts for increas-
ing the timestep in biomolecular simulations (36, 41, 69, 89, 97, 102, 116) is
the unexpected difficulty of this challenge if one strictly seeks faster methods
with the same all-atom resolution of small-timestep trajectories. Vibrational
modes are intricately coupled in biomolecules such as proteins and nucleic
acids. Therefore, mathematical techniques that have worked well in other
multiple-timescale contexts where the fast motions are decaying rapidly rather
than oscillatory (e.g. in chemical reactions with known reactants and products),
or are largely decoupled from the others (e.g. in fullerenes), have not been
directly applicable, or as effective, for biomolecules. For example, standard
high-stability implicit schemes for stiff differential equations, such as implicit-
Euler (IE) (43, 73, 95) and implicit-midpoint (IM) (57), are unsatisfactory for
proteins and nucleic acids at atomic resolution at large timesteps because of
numerical damping (69, 96, 119) and resonance (57) problems, respectively.
Implicit methods are also computationally expensive since solution of a non-
linear system is required at each timestep (48, 49, 120, 121). Algorithms based
on substructuring (110) require substantial tailoring and perhaps relaxation of
goals (i.e. approximate rather than accurate reproduction of small-timestep tra-
jectories) for biomolecular applications, and multiple-timestep (MTS) methods
that achieve a factor of 20 or more speed-up for fullerenes (74) yield much more
modest factors (e.g. 4) for macromolecules (45, 116).

The intricate vibrational coupling of the multiscale modes associated with
globular systems necessitates good resolution of the high end of the spectrum
in order to capture the slower, large-scale motions. Constraining the fast modes
is effective when bond-length stretching is suppressed but not when the bond-
angle flexibility is also eliminated (111). For good resolution of the high-fre-
quency motion, MTS methods often use a very small timestep (0.25 fs) for the
highest-frequency class (122).

Figure 1 illustrates this point. The figure displays the frequency spectrum
for a blocked alanine residue (N-Acetylalanyl N′-Methylamide, 22 atoms),
known commonly as an “alanine dipeptide”, as obtained from MD simulations
using various protocols. These power spectra were obtained from velocity time
series (14), with the Fast Fourier Transform routine (Sande-Tukey FFT) (59).
All MD simulations were performed in the CHARMM program (19) using
the Verlet integrator (113) at a timestep of 1 fs over 214 steps (∼17 ps), but
different constraint procedures were enforced via SHAKE (87) in some cases,
as follows: (a) no constraints, (b) constraints on bonds involving hydrogens
only, (c) constraints on all bonds, and (d) constraints on all bonds and bond
angles involving hydrogens. In partsb andc, bonds were constrained to their
equilibrium values. In partd, constraints were made to the starting values
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Figure 1 The frequency spectrum for a model of alanine dipeptide (top), as obtained from 17-ps
MD simulations with CHARMM (19) using various constraint protocols via SHAKE (87) with an
improved protocol (12), in association with Verlet integration at1t = 1 fs: (a) no constraints; (b)
constraints only on bonds involving hydrogens; (c) constraints on all bonds; and (d) constraints
on all bonds and on bond angles involving hydrogens. The frequency spectra were obtained from
velocity time series (14), with the Fast Fourier Transform routine (Sande-Tukey FFT) (59). The
spectral heights are relative.
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associated with the minimized conformation, and the implementation of bond-
angle constraints was performed with an improved algorithm (12).

The two highest-frequency ranges observed in the unconstrained trajectory
(Figure 1a) can be associated with bond stretches for N–H (periodP = 2π/ω

≈ 10 fs) and C–H (P≈ 11 fs). When the bonds involving hydrogens are
constrained, these two regions of the spectrum are eliminated and a shift to
the beginning range of the angle-bending modes and the lower-frequency bond
stretches results (Figure 1b). The highest frequency now resolved corresponds
to about 20 fs. When all bonds are constrained (Figure 1c), only a slight shift can
be noted in the spectrum, and the fastest period corresponds to 23 fs. This effect
illustrates the very short gap in the vibrational spectrum between the heavy-
atom bond-stretching and light-atom angle-bending modes in biomolecules
(see also Table 1). When the angles involving hydrogens are also constrained
(Figure 1d), the frequency spectrum shifts further, and the highest frequency
has a period of 35 fs; in addition, a marked lowering of the amplitudes of
the resolved frequencies is evident in comparison to partsa–c of Figure 1.
This effect points to the strong vibrational coupling in biomolecules and the
severity of both the numerical integration problem and the difficulty of obtaining
physically meaningful results without resolving the high-frequency modes.

Simulation Classes
Many significant biological problems involving macromolecules can be tackled
on various levels and with algorithms that range from purely stochastic (i.e. by
generating disconnected configurational ensembles) to those that guarantee con-
tinuous dynamics (i.e. by solving deterministic equations). It is essential that the
simulation goal be tightly coupled to the problem at hand. Consequently, it is in-
appropriate (96) to apply methods intended for biomolecules to special systems
such as fluids, and/or to subject these methods to irrelevant questions (118).

Configurational propagators for biomolecules can be divided into three broad
classes: (a) continuous and accurate dynamics, (b) continuous but approximate
dynamics, and (c) sampling. The first group includes schemes for capturing con-
tinuous motion that reproduce the dynamic trajectory as obtained with a small-
timestep method. This small timestep must adequately resolve the highest fre-
quency of the system (e.g. 1/20 the size of the fastest period). For biomolecules
this means1t ≈ 0.5 fs corresponding to the 10-fs period of an O–H or N–H
stretch (see Table 1). From simulations in this first class, reaction pathways can
be deduced and transition rates estimated, though a rigorous global analysis is
also required (i.e. ensemble properties in the framework of statistical mechanics)
(67). Dynamic simulations can also be used for statistical averaging in phase
space, though special care must be exercised for the highly correlated data.

The second group of methods relaxes the accurate reproduction of short-time
processes but seeks to capture essential features of the system over longer times.
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The many schemes in this class range from Brownian dynamics, for example,
where inertial effects are small (39, 46a), to pseudodynamic methods (28, 44,
106), which might combine elements of minimization and dynamics. Informa-
tion extracted from these trajectories involves, for instance, translational and
rotational diffusion constants (46a), the structure of a folded protein (1), or
insights into folding pathways (28, 44).

The third class includes techniques for efficient sampling of the large con-
figuration space accessible to biomolecules in solution (18, 30, 34). Here,
ensemble properties can suggest average behavior as a function of key param-
eters (e.g. the salt concentration effects on supercoiled DNA; 114) and provide
average energetic and structural properties for analysis. Techniques in this class
might also be used to find the global minimum of a given biomolecule or to
refine experimental data (23).

Overview
This review focuses on the computational, physical, and modeling issues in-
volved in designing innovative integrators or configurational propagators for
biomolecules. We describe algorithms based on continuous dynamics and point
to promising directions that will help bridge the gap between the timescales ac-
cessed by computer and those resolved by experimentation. Readers may wish
to refer to three recent reviews on the topic (31, 53, 65).

The next section examines some general issues that limit the timestep in MD
simulations of biomolecules. Various methods in the continuous and accurate
dynamics class that are, or have potential to be, competitive schemes are then
presented.1 These include constrained and torsion (i.e. reduced-variable sim-
ulations) dynamics, implicit and symplectic schemes, and multiple-timestep
and normal-mode-based methods. The last class includes our LN algorithm, so
named for its origin in a Langevin/normal modes scheme. This dual timestep
method (1τ, 1t) is based on a simple idea: explicit subintegration—using an
inner timestep1τ (e.g. 0.5 fs)—of a cheaply constructed linearized model for
the equations of motion—formulated every1t interval (5 fs or less). Since the
subintegration process does not require new force evaluations, as does every
step of standard MD integration, LN can be computationally competitive (13).
Furthermore, since the harmonic approximation is reasonable over the short
interval1t , results are in good agreement with small-timestep simulations. We
also include in this review comparative numerical experiments involving the
various methods presented to highlight the physical and computational facets
discussed throughout. We conclude with a perspective regarding the future of
MD algorithms.

1Development of novel approaches that might initially appear impractical for macromolecules
can lead to unexpected surprises, and their development should not be curtailed on the basis of
computational performance alone (13).
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THE TIMESTEP PROBLEM

Numerical integrators require the timestep to be small enough with respect to
the most rapid component of the motion to guarantee stable numerical behavior
(42, 43, 89). This is especially important for the relatively low-order explicit
methods used in biomolecular MD.2 In MD, we solve the initial-value ordinary
differential equationy′ = f (y), wherey is the collective vector of positions and
velocity ({X, V}) and f is a nonlinear function representing the configuration-
dependent force vector. We can express this relation by the following system
of two first-order differential equations:

M V̇(t) = −∇E(X(t)), (1a)

Ẋ(t) = V(t), (1b)

whereM is the diagonal mass matrix,∇E(X(t)) is the gradient vector of the
potential energyE, and the dot superscripts denote differentiation with respect
to timet . Additional terms can be added to the right side of Equation 1a, such
as in the Langevin framework (described below).

Explicit and Implicit Schemes
In explicit schemes, solutions are simple to propagate since they take the sym-
bolic form yn+1 = g(yn, 1t, . . .), whereg is some nonlinear function andyn

is the difference-equation approximation to the solutiony at timen1t . Thus,
the calculation ofyn+1 depends on previously known quantities (yn, yn−1, . . .).
Implicit integrators, in contrast, define the final solution as a function of both ini-
tial and final variables:yn+1 = h(yn+1, yn, 1t, . . .) and thus generally require
solution of a coupled nonlinear equation at each timestep. This incorpora-
tion of future information helps avoid stability problems associated with purely
extrapolative techniques (35).

For example, the well known (explicit) leap-frog method applied to Sys-
tem 1 propagates positions and velocity on the basis of the following difference
equations (3):

M(Vn+ 1
2 − Vn− 1

2 )/1t = −∇E(Xn), (2a)

(Xn+1 − Xn)/1t = Vn+ 1
2 . (2b)

This formulation is equivalent to Verlet’s scheme (113), but it avoids the insta-
bility arising from rounding errors present in the latter. The leap-frog method
can be started by using the relationV1/2 = V0 − (1t/2)∇E(X0). Whole-step
velocities can be obtained by averagingVn = (Vn+1/2 + Vn−1/2)/2.

2Although higher-order methods have been attempted, low-order (e.g. 2) integrators are adequate
for MD given the inaccuracy in the governing force functions, combined with the goal of simulating
motion reasonably and efficiently over as large a time interval as possible.
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The implicit-midpoint scheme relies on the discretization

M(Vn+1 − Vn)/1t = −∇E

[
1

2
(Xn + Xn+1)

]
, (3a)

(Xn+1 − Xn)/1t = (Vn + Vn+1)/2. (3b)

This nonlinear system can be solved by obtainingXn+1 as a minimum (73) of

8(X) = 1

2

(
X − Xn

0

)T
M
(
X − Xn

0

)+ (1t)2 E

(
X + Xn

2

)
, (3c)

Xn
0 = Xn + 1t Vn (3d)

(where the superscriptT denotes a vector transpose), and then solving forVn+1

via Equation 3b).
The general condition limiting the timestep size for numerical stability is

derived on the basis of a linear reference system. For example, a restriction
1t < 2/ω = P/π applies to the LF method for a harmonic oscillator of nat-
ural frequencyω and periodP (121). Such a condition, however, serves as a
loose upper bound for MD simulations, where the forces are highly nonlinear.
Introduced stochasticity, as in the form of the Langevin equation, further re-
stricts the timestep:1t < (2ω − γ )/ω2 = P/π − (P2γ )/4π2, whereγ is the
damping constant (121). Indeed, with the second-order Verlet method forMD,
a timestep much smaller than 3.2 fs, and much less than 7 fs when all bonds are
constrained (see Table 1 and Figure 1c), must be used to provide good behavior
in practice. Although implicit schemes are unconditionally stable according to
linear analysis (26), nonlinear effects introduce instability (57a).

Culprits of the Timestep Limitation and Instability
The severe timestep limitation observed for biomolecular dynamics stems from
a combination of at least the following three culprits: (a) classic numerical in-
stability, (b) resonance, and (c) van der Waals collisions. In addition, systematic
and random errors introduce inaccuracies and instability into MD simulations.

The first and most common factor—numerical instability resulting from the
timestep size—can be verified by an error pattern that grows steadily and sys-
tematically with the timestep until a threshold is reached (e.g. 89). At that
point, quantities grow uncontrollably from step to step and quickly exceed the
computer’s finite-size capabilities in the course of the simulation. Errors of this
type are scheme and model dependent, aggravated by nonlinearity (121), and
show instability at smaller timesteps for higher-order methods.

In contrast, resonance is an integrator-induced corruption of a system’s dy-
namics (51, 66, 98, 57a). Essentially, resonance occurs at special timesteps that
are related in a complex way to the various timescales of the motion (57). At
those timesteps, a concerted effect stemming from one component of the motion
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(e.g. heating of a bond-stretch vibrational mode) leads to very large energetic
fluctuations or instability (e.g. bond rupture). Thus, resonance problems lead
to erratic, rather than systematic, error patterns as a function of timestep. They
are also method and system dependent (99), occur for both implicit and explicit
schemes [e.g. Verlet and IM (57)], and depend strongly on the fastest frequency
in the system and possibly on the coupling strength to other vibrational modes.

Figure 2 shows an example of bond breaking, as obtained by IM integra-
tion of a deoxycytidine model (90) with a quartic bond potential. (A similar
pattern was also found for a harmonic potential; M Mandziuk & T Schlick, un-
published data). Resonance has been demonstrated for symplectic integrators,
such as Verlet and IM, which are typically associated with favorable properties;
however, methods that are nondamping for linear problems, (e.g. symplectic),
can also have instabilities resulting from nonlinear resonances (57a).

The third possible culprit stems from nonbonded interactions. Van der Waals
collisions may cause numerical problems for macromolecules because of the
stiff and highly nonlinear distance-dependence of the governing potential (r −12,
wherer is an interatomic distance; see Figure 3 for examples of local harmonic
approximations to the Lennard-Jones potential). Unless the timestep is quite
small, atoms in globular systems come into intimate contact, thereby raising the
nonbonded energy sharply. This leads to structural distortion and sudden, lo-
calized addition of kinetic energy. This behavior can be particularly aggravated
by resonance tendencies. These tendencies provide large energies to selected
vibrational modes (i.e. a bond stretch), which in turn can be transferred to other
modes. Such collisional problems should be highly system dependent (i.e. af-
fected by molecular size and solvent modeling) and may be less dependent on
the scheme.

Some suggestions of timestep limitations due to nonlinear interactions come
from demonstrations that smaller timesteps must be used for larger molecu-
lar systems. For example, Gibson & Scheraga found, by application of their
torsion-angle dynamics method with a variable timestep to two blocked amino
acid residues, that timesteps around 30 fs worked well for a smaller model in
contrast to values≤20 fs needed for a larger model peptide (36). Watanabe &
Karplus found the same trend in their MTS applications (116). Results with
our integration approach, based on force linearization and implicit discretiza-
tion (termed LIN for Langevin/implicit integration/normal modes) (119, 120),
showed that timesteps of 30 fs were satisfactory for a model dipeptide but were
far too large for the small protein BPTI (bovine pancreatic trypsin inhibitor),
where1t had to be reduced by half (13). Extreme trajectory sensitivity to the
Lennard-Jones parameters (27) also points to the important role of collisions
on MD integration.

Systematic errors enter biomolecular simulations from various sources, such
as truncated multipole expansions, truncation and/or smoothing procedures



    

December 24, 1997 13:13 Annual Reviews AR031-08 AR31-08

BIOMOLECULAR DYNAMICS AT LONG TIMESTEPS 191

Figure 2 Third and fourth order resonances for a deoxycytidine system integrated by the implicit-
midpoint scheme at various timesteps. Shown is the length of an O–H bond in a model deoxycytidine
system (90) as obtained in simulations at various timestep values. The bond-length potential is
quartic, with force constants adapted from the AMBER potential, making resonance tendencies
much more pronounced in relation to the standard harmonic potential.
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Figure 3 Harmonic approximations to various Lennard-Jones functions.

(101), and computer roundoff (finite precision arithmetic). Random or spuri-
ous errors, including inconsistency problems, can creep in from a variety of
sources, such as the simulation protocol (e.g. equilibration procedure, starting
structure, minimizer, treatment of energy fluctuations), the finite length of the
trajectory (e.g. finite ensemble averages), finite length of the pseudorandom
number generator, or program errors.

Systematic and random errors are both common and specific to the various
molecular mechanics and dynamics programs available today. They also de-
pend on the computer precision, architecture, and compiler. Although such
problems are well known to practitioners, little has been written about them.
Recent exceptions include Elofsson & Nilsson (32) who investigated the con-
sistency of MD simulations by comparing 30 protein simulations differing in
solvent representation and protocols; they found great sensitivity of overall
fluctuations to the starting structure and suggested that several shorter sim-
ulations span conformation space better than one long one. Auffinger et al
(8) demonstrated the divergence of ten 100-ps trajectories of tRNA in sol-
vent and salt—from the initial X-ray structure as well as from one another—
when initial conditions and parameters were varied. Consistency problems also
emerged: For example, the divergence was faster when the equilibration time
was extended.
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This divergence was later attributed to a short (8Å) cutoff radius for the long-
range solvent interactions, since doubling the value improved the consistency
between two MD trajectories (9). Van Gunsteren and coworkers (46) showed
that, depending on the computational procedure used to induce an unfolding
process for lysozyme, different qualitative behavior could be observed. More
recently, Daura et al (27) demonstrated the sensitivity of solvated protein dy-
namics to the van der Waals parameters describing water-protein and protein-
protein interactions. This sensitivity further points to the role of the van der
Waals interactions in limiting the timestep, as suggested above. These reports
also illustrate the need for an error or assessment framework for MD simula-
tions. Such a framework has been described in the linear case, for explicit (72)
and implicit (67) integration, but extensions to the nonlinear case are difficult.

LARGE-TIMESTEP TECHNIQUES
FOR CONTINUOUS DYNAMICS

Constrained Dynamics
In overcoming the timestep problem in MD simulations, any successful al-
gorithm must decrease the ratio of force calculations per time unit from the
Verlet standard of about two per femtosecond. One possibility is to replace the
highest-frequency interactions, typically modeled in biomolecular potentials
by:

Ebond = κ

2
(ri j − ri j )

2,

whereri j is an interatomic distance of equilibrium valueri j andκ is a force
constant, by algebraic constraints:

gi = r 2
jk − r jk

2 = 0.

Using the formalism of Lagrange multipliers, we have:

M V̇(t) = −∇E(X(t)) − g′(X(t))Tλ,

Ẋ(t) = V(t), (4)

g(X(t)) = 0,

whereg(X(t)) is a vector with entriesgi containing the individual constraints,
and the vector of Lagrange multipliers,λ, is proportional to the constraint
force.

In 1977, Ryckaert et al (87) introduced the SHAKE method, based on
the leap-frog/Verlet scheme of System 2, for discretization of the constrained
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equations:

(Vn+ 1
2 − Vn− 1

2 )/1t = −∇E(Xn) − g′(Xn)Tλn,

(Xn+1 − Xn)/(1t) = Vn+ 1
2 , (5)

g(Xn+1) = 0.

Like the Verlet method, the forces−∇E must be computed only once per step.
However, them constraints also require, at each timestep, the solution of a
nonlinear system ofm equations in them unknowns{λi }. Thus, the SHAKE
method is semi-explicit. RATTLE is a self-starting version of SHAKE (6).
Similar techniques have been proposed for constraining other internal degrees
of freedom (104), and direct methods have been developed for the special case
of rigid water molecules (68). Recently, Leimkuhler & Skeel (52) showed that
the RATTLE method is symplectic and that SHAKE, while not symplectic,
yields identical positions and only slightly perturbed velocities.

With the fastest vibrations removed from the model, the integration timestep
can be lengthened, resulting in a typical force calculation per time ratio of 0.5
per femtosecond. This computational advantage must be balanced against the
additional work required to solve the nonlinear equations of constraints. Each
proposed constrained model is thus accompanied by a practical numerical algo-
rithm. For the time discretization of Equation 5, an iterative scheme for solving
the nonlinear equations was presented (87), where the individual constraints are
imposed sequentially to reset the coordinates that result from an unconstrained
Verlet step. This iterative scheme is used widely because it is simple and re-
quires modest computer memory. However, the SHAKE iteration can converge
very slowly, or even fail to converge, for complex bond geometries (12). Barth
et al (12) proposed enhancements that do not suffer significant performance
degradation in the presence of highly coupled bond structures and that can re-
duce the computational cost by 50% for typical cases. They reported that the
improved solution process of the constraint equations requires only about 10%
of the total computation time, a modest price to pay for the twofold decrease in
the force-evaluation-per-time ratio.

The computational advantage of constrained models is clear, but the agree-
ment between the constrained and unconstrained trajectories depends on the
formulation details of the constrained scheme. As mentioned above, van Gun-
steren & Karplus (112) showed through simulations of the protein BPTI in a
vacuum that the use of fixed bond lengths does not significantly alter the dy-
namical properties of the system, whereas fixing bond angles does. Similar
conclusions for decane molecules were reported (105). Still, the former study
reported suboptimal data for the angle constraints as a result of the slow (or lack
of) convergence in the SHAKE iteration. The latter work encountered no such
difficulty because a simpler carbon chain molecule was considered. In general,
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angle constraints must be imposed with care to avoid overdetermination and sin-
gularities in the constraint equations. Our data for Figure 1 came from trajecto-
ries computed using SHAKE enhancements (12), implemented into CHARMM
version 23f4. We found that the traditional SHAKE iteration required thousands
of iterations when angles involving hydrogen atoms were constrained, unlike
the approximate Newton methods, which showed no significant degradation in
performance. In addition, constraining all bond angles can restrict torsion-angle
motion, which in turn changes the overall dynamics. Such models are closely
related to the reduced-variable and torsion-space formulations discussed below.

The power spectrum presented in Figure 1 suggests two effective constrained
formulations among the three attempted: fixed light-atom bonds, or fixed bonds
plus fixed light-atom angles. Results presented here suggest that the latter
procedure might not provide an acceptable balance between efficiency and
modeling accuracy. More sophisticated constrained dynamic formulations,
which include corrections for coupling among modes, such as on the basis of
the Fixman potential used in statistical mechanics, might be necessary, as was
shown in for the torsion dynamics of a butane molecule (81). These results
showed close agreement with unconstrained Langevin simulations; however,
the increased complexity is substantial (78, 80). A different potential, the
Rubin-Unger form (84), has also been suggested (17).

Torsion Dynamics
The number of independent variables can be reduced more naturally by mod-
eling the system in generalized coordinates (86, 62, 2, 36, 56). Usually, bond
lengths and bond angles are kept rigid, and dynamic simulations are performed
in torsion space. The time evolution of the system is obtained by integrating
Lagrange’s equations of motion in generalized coordinates. Since the rigorous
derivation of these equations is complex, approximations must be introduced
in practice.

Ryckaert & Bellemans (86) used a generalized coordinate approach to study
n-alkanes, in which only linear terms were retained, limiting the feasible
timestep. Mazur and Abagyan (2, 62) extended this formulation to include
nonlinear terms, using1t ≈ 9 fs in an all-atom representation of an alanine
nonapeptide (63). Resorting to an extended-atom representation (i.e. remov-
ing methyl group rotations), and fixing the torsion angle of the hydroxyl group
at the C-terminus, they increased the timestep to 13 fs, while keeping the en-
ergy fluctuations in the same range of unconstrained, all-atom trajectory at
1t = 1 fs (63). Although this timestep increase is significant, a matrix inver-
sion is required at every timestep, limiting applications to large biomolecules.
Implementation details can also be system dependent (63).

In Gibson & Scheraga’s (36) variant of the generalized coordinate app-
roach, Lagrange’s equations are solved with a quadratic approximation to the
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generalized force, and the variable timestep is determined on the basis of the rel-
ative magnitude of the neglected third derivative of the potential. This approach
allows the timestep to be extended to 15–30 fs for small model systems.

Another formulation for torsion-angle dynamics is based on recursive algo-
rithms for rigid body dynamics (10). Due to the nonseparability of the equations
of motion, nonsymplectic integrators are used. The feasible timestep, however,
is shorter than in the above approaches: 2 fs (83) and 2–4 fs (109). This obser-
vation may also be related to the higher temperature used in these simulations.

A major drawback of torsion dynamics is its distortion of the effective poten-
tial. Because barriers among configurational states are elevated, transitions are
less probable. Therefore, torsion-angle dynamics schemes are probably most
useful at higher temperatures, for sampling purposes.

Symplectic Schemes
Symplectic methods form a special class of numerical integrators for conserva-
tive systems that possess favorable theoretical and numerical properties (88).
Development of symplectic integrators has involved significant interplay among
mathematicians, physicists, and chemists. Seminal work (50) was done by
physicists and mathematicians, both on explicit (85) and implicit (25) schemes,
and these ideas have quickly filtered into the chemistry community (38).

In applications of symplectic schemes to classical Hamiltonian systems, the
time evolution corresponds to a canonical transformation (37). This transfor-
mation implies strong conservation properties, such as preservation of areas in
phase space (Liouville’s operator). As a consequence of such conservation laws,
symplectic schemes cannot conserve energy exactly, but they exhibit long-time
stability (e.g. small energy fluctuations when the timestep is small) and often
better performance than nonsymplectic methods of the same order of accuracy
and timestep. Symplectic integrators often possess a time reversibility property.

The performance observed for the widely used Verlet integrator, for exam-
ple, can be explained by its symplecticness (85). Other integrators for MD that
seek reversibility and symplecticness include multiple-timestep (41, 108) and
predictor-corrector (60) methods,3 as well as techniques for extended systems
generating canonical and isothermal-isobatic ensembles (61). The symplec-
ticness of the impulse MTS method has been noted (15). These integrators
may also be used for quantum dynamical applications, such as for solving the
Schrödinger equation in the multichannel radial form (58).

Although symplecticness produces good results in the small-timestep regime,
improved behavior in the larger-timestep range is not guaranteed. For example,
the strong conservation property of integral invariants can lead to undesirable
global coupling of energy components, such as opposing trends for the kinetic

3The predictor-corrector method (60) is symplectic, but only in phase space of double the
dimension.
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Figure 4 Harmonic oscillator average energy trends (top) and phase diagrams (bottom) as a
function of timestep for two second-order, symplectic implicit integrators: LIM2 (121) (left) and
IM ( right) for Newtonian dynamics. The oscillator has unit mass, unit angular frequencyω,
and initial total energy corresponding to 0.5 units. The governing propagation schemes are, for
LIM2: xn+1 − 2xn + xn−1 = −ω2 1t2(xn+1 + xn−1)/2, and IM:(vn+1 − vn) = −1t ω2(xn +
xn+1)/2, with (xn+1 − xn) = 1t (vn + vn+1)/2. The smallest timestep, 0.2, is roughly 1/30 of a
period, and the largest value is 1.95, about 1/3 the period. The symbols Et, Ep, and Ek correspond
to the total, potential, and kinetic energy components.

and potential energy components (67). This coupling has been observed for
the implicit symplectic method LIM2 (121), but it may also be the result of an
error constant five times greater than leap-frog/Verlet (57a). Shown in Figure 4
are average energy trends and phase diagrams as a function of timestep for a
harmonic oscillator, as obtained by the two second-order implicit symplectic
schemes LIM2 and IM for Newtonian dynamics. Figure 5 shows the analogous
picture for Langevin dynamics, with the damping constantγ = 0.005, and
illustrates some mitigating effects of stochasticity.
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Figure 5 Harmonic oscillator average energy trends (top) and phase diagrams (bottom) as a
function of timestep for two second-order, symplectic implicit integrators: LIM2 (121) (left) and
IM ( right) for Langevin dynamics,γ = 0.005. See Figure 4 legend, the Newtonian dynamics
analogue, for other details.

We see from Figure 4 that the phase space diagrams (position, momentum)
from LIM2 diverge from the expected circular shapes, and the potential energy
increases while the kinetic energy decreases, as the timestep increases. In
contrast, IM exhibits much better behavior for this system. The Langevin
formulation (Figure 5) helps maintain better total energies for LIM2 and also
reveals a spreading of the phase-space sampling for both methods.

Although IM better preserves the ratio between the potential and kinetic en-
ergy components as the timestep increases, it can accentuate resonance effects
(57, 99). The analysis of a family of symplectic schemes showed that for a
harmonic oscillator, IM and LIM2 display rapid divergence, as the timestep is
increased, for the effective rotation in phase space (timestep and frequency
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dependent) in comparison to the actual rotation value (99). This artificial,
integrator-induced corruption of physical behavior was discussed above in
connection with resonance. Indeed, resonance trends are most pronounced
for IM.

Intrigued by resonance, Mandziuk & Schlick (57) studied resonance patterns
in a nonlinear Morse oscillator. By analyzing the effective1t-dependent IM
rotation, they derived the following formula for the resonant timesteps:

1tn,m = (2/ωE0
t
) tan(mπ/n), n/m > 2. (6)

In this formula, ωE0
t

is a known energy-dependent angular frequency, and
n andm are integers. Thus, resonance is expected for1t ≈ P/2, P/3, P/4,

P/5, . . . , whereP is the period (57). The first case (third-order resonance,
n = 3, m = 1) leads to instability, and the higher-order resonances (n ≥ 4) lead
to large energetic fluctuations and/or corrupted phase diagrams. At timesteps
1tn,m the oscillator samplesn phase-space points inm revolutions and, sub-
sequently, exhibits disconnected phase diagrams (57). Resonance patterns are
illustrated in Figure 2, where according to Equation 6, withωE0

t
= 0.65 fs−1, the

fourth-order resonance (n = 4, m = 1) appears near 3.1 fs and the third-order
resonance near 5.3 fs. Four main branches in the former, and three branches
and instability in the latter can be seen. Note also the decreasing frequency of
the curve oscillation as the resonant timesteps are approached.

The usefulness of this predictive formula for the resonant timesteps for non-
linear systems has not been explored thoroughly. However, current work on a
dipeptide and other model systems indicates that it provides a reasonable ap-
proximation for the timestep range where resonance is expected; at the same
time, it appears that nonlinear effects (e.g. van der Waals, vibrational coup-
ling) spread the resonant regions, making it difficult to avoid them (57a). This
question of resonance in symplectic integrators deserves careful attention since
resonance is of general concern, particularly for symplectic integrators such as
Verlet (57), and may lead to problems in MTS schemes that incorporate large
timesteps for the soft interactions, close to half the period of the fastest mo-
tions. Alternatives to symplectic formulations, such as energy- and momentum-
conserving schemes might work better (79), but these integrators are not yet
computationally competitive.

Implicit Schemes
The implicit-Euler (IE) scheme was introduced into MD (73, 95) to maintain
numerical stability for large timesteps. Since the damping of this high-stability
scheme is well known, we found it necessary to use the Langevin framework
to replenish the system with energy. In its simplest form, the continuous form
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of the Langevin equation is given by:

M V̇(t) = −∇E(X(t)) − γ M V(t) + R(t), (7a)

Ẋ(t) = V(t), (7b)

whereγ is the collision parameter and the other symbols are used as in previous
equations. The random-force vector,R, is a stationary, Gaussian process with
statistical properties (mean and covariances matrix) given by:

〈R(t)〉 = 0, 〈R(t)R(t ′)T 〉 = 2γ kBTMδ(t − t ′), (7c)

wherekB is the Boltzmann constant, andδ is the usual Dirac symbol. The IE
discretization of the above system was reformulated as a minimization problem
for the function8, which contains a kinetic and potential energy term, and was
then solved via a truncated-Newton minimization package (92). The resulting
method was termed LI (Langevin/IE).

The energy put back via the Langevin random force in LI counteracts two
damping effects: numerical—dependent on both frequency and timestep, and
physical—due to friction, proportional toγ . This feature results in severe damp-
ing of the high-frequency modes, which in turn alters global motion (119, 28).
However, for macroscopic models—where the high-frequency motion is absent
or largely decoupled from the others—the LI method is efficient in comparison
to Verlet (75, 76), allowing large-scale insights into the dynamics of supercoiled
DNA modeled as an elastic material using the B-spline curve-fitting technique
(77, 93).

For all-atom models, the LI framework may be used to enhance sampling
and to suggest pathway information by putting back energy into the system
in an ad hoc fashion. Hao et al (44) devised such a procedure based on LI
and applied it to BPTI to suggest a folding pathway. Derreumaux & Schlick
later developed a dynamics driver approach (DA) (28), which combines the
8 minimization of LI with configurational perturbations and incorporation of
acceptance/rejection criteria in the spirit of Monte Carlo. The application of DA
to a dipeptide, tetrapeptide, and an oligoalanine model demonstrated enhanced
sampling and near-Boltzmann statistics for the small systems, and suggested
unfolding/folding pathways for the oligoalanine (28). Current applications of
DA involve the large-scale lid motion in the enzyme triosephosphate isomerase
(P Derreumaux, T Schlick, & M Karplus, unpublished data).

A natural way to exploit the greater stability of implicit schemes without
the damping effects of IE is to resort to a symplectic integrator. However, our
applications of the IM scheme (57) revealed intriguing problems of resonance,
diminishing hope for the effectiveness of related implicit symplectic methods
at large timesteps (57a). Implicit methods are also costly because of the non-
linear minimization or linear-system subproblem at each timestep (121), and
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they are not likely to be competitive in general. Janeˇzič and coworkers reported
such substantial increases in complexity with their implicit symplectic Runge-
Kutta integrator (48), even with an efficient solution process for the resulting
nonlinear system. They subsequently sought greater efficiency in parallel im-
plementations (49) [see (55) for comments].

Currently, implicit methods do not appear competitive with other existing
approaches in terms of CPU time because of the substantial cost increase of
each timestep. Perhaps semi-implicit (65) or cheaper implementations of im-
plicit schemes (RD Skeel, unpublished data) will better handle this problem by
treating the local terms in an implicit manner but the nonlocal terms explicitly.
This might improve the balance between the cost per timestep with the timestep
increase in comparison to explicit methods. Exploitation of parallel machine
architecture may provide further speed-up opportunities, though results on par-
allelization of linear algebra codes suggest that parallel computers may favor
explicit methods.

Multiple Timestep (MTS) Methods
Even though biomolecules have a wide range of relevant timescales and motion,
their potential energy can be divided into two distinct classes: internal terms—
bond stretches, bond angle bends, and dihedral angles, which model the effects
of covalent bonding; and external terms—van der Waals and Coulomb, which
model nonbonded effects. The former class has linear complexity while the
latter has an associated cost that grows quadratically with the number of atoms.
The expense of calculating the external components (energy and forces) is thus
especially severe when the timestep is small. This problem has stimulated more
efficient approaches that exploit the more slowly varying nature of the external,
in comparison to the internal, interactions.

Streett et al (102) first proposed an MTS method in which the forces were
divided into fast and slow components, each of which was resolved with an
appropriate timestep. The first applications of MTS used a Taylor-series extrap-
olation of the slow forces over a relatively long time interval, and the fast forces
were evaluated at suitable (shorter) subintervals. For monoatomic molecular
fluids, where no internal terms are present, distance provided the basis for the
force division: nearest neighbor interactions were treated with smaller steps
than distant interactions. This splitting of the external terms was continued
(103) in the presence of internal terms for the simulation of chain molecules.
Efficiency gains reported in the latter two works range from factors of 1.5 to 8.
A group at Columbia (107) developed and applied MTS methods in a number
of contexts. The work of Scully & Hermans (97) is unique in that it tests the
limits of an MTS method for systems in an aqueous solution.

The modern era of MTS methods for biomolecular simulations began with
the introduction of MTS variants that shared the time reversal symmetry of
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the Verlet scheme. Schulten and coworkers (41) introduced the method they
termed Verlet–I and, independently, Tuckerman et al (107) derived an equivalent
method,r-Respa,by applying a Verlet variant to the Trotter factorization of the
Liouville operator.

Watanabe & Karplus (115, 116) applied time reversible MTS methods to
a variety of systems, including the protein BPTI, using an internal/external
force splitting based on bonding topology. The Columbia group (45, 74, 122)
expanded on this treatment by splitting the external forces into fast and slow
parts based on distance. Since interatomic distances change over the course of a
simulation, especially in aqueous environments, implementation of a switching
mechanism for continuous transitions between fast- and slow-treatment zones
is required.

All these studies report remarkably similar findings compared to Verlet inte-
gration with timestep1t = 0.5 fs: MTS methods can reduce the computational
work by a factor of four to five for biomolecules in vacuum while reproducing
important properties of the dynamics, such as energy fluctuations and spec-
tral densities. Reports of greater efficiency, however, should be placed more
clearly in their special context. The speed-up factors of 20 or more in simula-
tions of flexible C60 molecules (74) result from the succinct division of relevant
timescales (i.e. intramolecular vibrations, intermolecular vibrations, and libra-
tions), allowing timesteps of up to 25 fs for the soft forces. This is not the
case in biomolecules, as extensively discussed in this article. Furthermore, the
speed-up factor of 20 (122) reflects the use of fast electrostatic algorithms; such
schemes also apply to single-timestep methods, which should instead form the
basis for MTS comparisons. Indeed, when Forester & Smith (33) incorporated
a fast electrostatic treatment via Ewald sums into an MTS algorithm, they re-
ported speed-up factors of only two to three for liquid water and a solvated
protein system, in comparison to single-timestep simulations with Ewald.

Normal-Mode-Based Schemes
Normal-mode studies are useful for local analysis of protein motions (64), and
much work has gone into developing efficient methods for large systems and
for quasi-harmonic extensions (20, 24). The notion that essential features of
macromolecules might be described by the low-frequency, high-amplitude vi-
brational modes has also led to the development of several interesting simulation
techniques for dynamics.

Our experience with the LI scheme, which damps the high-frequency modes,
led to incorporation of a normal-mode component to remedy this effect. The
resulting method, termed LIN (119, 120), consists of a linearization part (a har-
monic approximation to the equations of motion) and a correction part (to re-
solve anharmonic effects) by implicit discretization (see details in Appendix A).
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The first part can be solved analytically (119), or much faster numerically (13).
In (13), we showed very good agreement for dipeptide and BPTI systems sim-
ulated by LIN (1t = 30 fs and 15 fs, respectively) in comparison with explicit
Langevin simulations at the much smaller timestep of 0.5 fs. In addition, mod-
est speed-up was realized for LIN: a factor of about 1.4 in both cases. Our
variant LN emerged as a significantly more competitive method (13) since it
eliminates LIN’s correction step. It also gave good agreement for the systems
above at 5-fs timesteps. LN is described in detail in the next subsection.

Space et al later described a subspace dynamics method (see also Reference
4) in which the low-frequency motion is propagated via a projected formula-
tion of Newton’s equations (100). The success of such a method relies on the
definition and efficient computation of the low-frequency subspace. In their
applications to a Lennard-Jones crystal and a glass system, Space et al found
updating unnecessary, and thus the subspace was fixed at the onset of the dy-
namic simulation. With a sufficiently large subspace basis, results converged to
the values of the reference MD trajectory, but notable deviations also emerged.
Speed-up was close to the factors of timestep increases, namely 2–5, with re-
spect to the 25-fs value used in the reference MD simulation for these systems
(i.e. force calculations dominate CPU cost). In a follow-up work (7), appli-
cations to a 32-atom chain without Lennard-Jones interactions indicated that
subspace calculations produce reasonable approximations. Still, results from
the subspace calculation of 24 modes (out of 96) revealed significant energy
damping. In general, an algorithm is needed for determining a portion of the
spectrum; this is a challenging linear-algebra task in its own right. Further-
more, because of the strong vibrational coupling in biomolecules, updating the
low-dimension normal-mode subspace will become necessary, and the cost of
the scheme is expected to increase steeply.

A similar idea was described in a very different formalism by Janeˇzič &
Merzel (47). The same splitting mechanism of LIN (119) is employed—
linearization and correction—with the high-frequency modes treated analyt-
ically by normal-mode analysis and the remaining part solved explicitly, but
the symplectic implementation follows the work of Wisdom & Holman (117).
From applications to the linear system H−−(C≡≡C)n−−H, these researchers (47)
reported an order of magnitude speed-up for the case of one harmonic approx-
imation (held fixed throughout the simulation). For the same reasons stated
above, general biomolecular applications demand frequent decomposition up-
dating and hence increase the cost of such methods substantially. Indeed, we
showed that deviations from the harmonic approximation can already occur
within 15 fs (13). Only for special systems, such as those above and perhaps
liquid water, clever applications of rigid-body transformations may be devised
if all intermolecular and intramolecular vibrations are known a priori.
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Schulten and coworkers (11) demonstrated that the principal component anal-
ysis method—related to the above notion of subspace of essential motion [see
(4) and references cited in (11)]—is not suitable for describing long-time pro-
tein dynamics resulting from current simulation timespans. Essentially, al-
though a small low-frequency subspace describes well a large fraction of the
large-amplitude motions, this subspace keeps changing during the course of
the simulation. Since our current nanosecond timespans are much too short
relative to the longest relaxation time for proteins in aqueous environments, it
is not possible to identify the essential subspace reliably. Possibly, as Amadei
et al have later amended (5) their original formulation (4), enhanced sampling
techniques might increase the utility of such propagation schemes.

Turner et al’s (110) substructuring approach relies in part on normal modes.
Hon Chun and coworkers are applying to molecular systems a technique that
has been successful in aerospace dynamics: propagation of multibody dynam-
ics modeled as a collection of rigid and flexible particles. The motion of the
atoms within these bodies is propagated via their normal-mode components, of
which only the lowest-frequency modes are included. The dynamics between
bodies is modeled rigorously. Large overall computational gains might be pos-
sible because the number of variables is reduced dramatically (by modeling the
system as a collection of large flexible bodies), and larger timesteps can be used
for the flexible substructures (since the fast oscillations are absent). However,
system-dependent substructuring strategies are necessary, and it is difficult to
show agreement with small timestep dynamic simulations. Ultimately, such
methods may succeed in capturing the slow-scale motions in biomolecules that
are observed experimentally. Researchers may be able to predict slow events in
macromolecules by applying artificial potentials that enhance configurational
transitions (40).

The LN Algorithm
The LN method was actually formulated for diagnostic purposes, that is, to
assess the range of validity of LIN’s harmonic solution (13), but it emerged as
a reasonable scheme on its own. Indeed, trajectories for BPTI and a dipeptide
agreed with small-timestep analogues (0.5 fs) in terms of structural and energetic
properties (13). Furthermore, the computational gain was promising for LN: a
factor of four for BPTI (904 atoms).

The idea of LN is simple: Construct an approximation to the linearized
model for the equations of motion every1t interval (5 fs or less), and explicitly
integrate this linearized system using an inner timestep1τ (e.g. 0.5 fs). Since
the subintegration process does not require new force evaluations, as in every
step of standard MD integration, LN can be computationally efficient. To
describe LN, we start from a linear approximation to the Langevin equations
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(System 7) at some reference positionXr (e.g. the previous position,Xn, or
the midpoint,Xn+1/2). The resulting system of equations for the harmonic
approximationsX andV is given by:

M V̇ = −∇E(Xr ) − H̃(Xr )(X − Xr ) − γ M V + R, (8a)

Ẋ = V, (8b)

where the matrix̃H is a sparse approximation to the Hessian ofE at Xr (13),
such as the Hessian resulting from the internal energy terms or from short (e.g.
4.5Å) cutoffs. System 8 can be solved by standard NM techniques (119, 120)
or alternatively can be solved numerically, at a small inner timestep1τ (0.5
or 1 fs). Although in theory instability can result from vibrational modes with
negative eigenvalues [complex solutions of form exp(−i

√
λt)], we did not find

this a problem in practice over the relatively small interval of1t used (13).
There are several possibilities for the explicit integration of System 8. If

we useXn as a reference point, an appropriate method is the second-order
partitioned Runge-Kutta method (Lobatto IIIa,b) (43), which reduces to the
velocity Verlet method whenγ = 0. This yields the following iteration process
for {Xn+1, Vn+1} from the initial conditionsX(0) = Xn, V(0) = Vn:

Vi + 1
2

= Vi + 1τ

2
M−1[−∇E(Xr ) − H̃(Xr )(Xi − Xr ) − γ M Vi + 1

2
+ R],

Xi +1 = Xi + 1τ Vi + 1
2
, (9)

Vi +1 = Vi + 1
2
+ 1τ

2
M−1[−∇E(Xr ) − H̃(Xr )(Xi +1 − Xr ) − γ M Vi + 1

2
+ R].

The first equation above is implicit forVi + 1
2

(the third is not forVi +1), but the
linear dependency in the former allows solution forVi + 1

2
in closed form. Note

the Hessian/vector products in the first and third equations. The random force
R is updated according to Equation 7c at every1τ substep, so the problem of
thermal equilibrium is nonexistent here (120).

Alternatively, takingXr as the midpoint (Xn + 1t
2 Vn), we can define the

inner iteration process of LN by:

Xi + 1
2

= Xi + 1τ

2
Vi ,

Vi +1 = Vi + 1τM−1

× [−∇E(Xr ) − H̃(Xr ) (Xi + 1
2
− Xr ) − γ M Vi +1 + R], (10)

Xi +1 = Xi + 1
2
+ 1τ

2
Vi +1.
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Table 2 CPU timings for BBK (1t = 0.5 fs) and LN (1t = 3 fs,1τ = 0.5 fs)a

Atoms/ H̃ LN BBK LN
Model variables sparsity TH̃+∇E Tlin T∇E T/fs T/fs speed-up

BPTI 904/2712 0.012 0.48 0.03 0.38 0.177 0.76 4.29
Lysozyme 2030/6090 0.005 2.44 0.08 1.98 0.846 3.96 4.68

aAll CPU times are given in seconds. The matrixH̃ is formed from bond-length, bond-angle, dihedral-angle, and
1–4 electrostatic interactions.TH̃+∇E is the cost per step of evaluating both the sparse LN Hessian and the full
gradient;Tlin is the cost per step of integrating the linear system in LN; andT∇E is the cost per step of evaluating
the gradient. The CPU cost per femtosecond (T /fs) for BBK and LN is also given along with the ratio of the two
(speed-up).

Therefore, the LN procedure is a dual timestep ({1τ, 1t}) scheme consisting
of two practical tasks: (a) constructing the HessiañH in Equation 8a at every
1t interval, and (b) solving System 8, whereR is given by Equation 7c, at the
timestep1τ by Procedures 9 or 10. LIN continues to a correction part, detailed
in Appendix A.

The cost of LN depends on several factors: the ratior = 1t/1τ ; the CPU
time of evaluatingH̃ at Xr , TH̃ ; the time for evaluating the matrix/vector
productH̃d, TH̃d; and the time for evaluating a gradient,T∇E. Specifically,
let us approximate the CPU times required to cover each1t interval by LN
versus an explicit Langevin integrator, such as BBK (22). The cost of LN is
dominated by (T∇E + TH̃ + rTH̃d) as opposed torT∇E for BBK. Our
results previously showed that a sparseH̃ resulting from 4.5-̊A cutoffs eval-
uated every 5 fs provides similar results in comparison with explicit trajectories
at 0.5 fs (13). As we show here, an even more sparseH̃ with only bonded
interactions—bond lengths, bond angles, dihedral angles, and the 1–4 electro-
static interactions—can also be used together with a 3-fs outer timestep for
similar computational gains (a factor of four or more).

Table 2 shows results for the two proteins BPTI and lysozyme. The reference
timestep for the explicit Langevin integrator BBK (22) is1t = 0.5 fs, and for
LN we use1τ = 0.5 fs and1t = 3 fs4. The Langevin bath temperature was
set to T= 300 K with the collision parameterγ = 20 ps−1. The CHARMM
program was used for all computations (19). The initial structures were ob-
tained from the Brookhaven Protein Data Bank. After placement of hydrogen
atoms and minimization, the systems were equilibrated with 10 ps of Langevin
dynamics. The LN subintegration of System 10 was used (midpoint reference),
but because the gradient and Hessian of the potential energy are computed at the

4The reference timestep for comparisons of MTS to single-timestep methods is always the
innermost timestep used; it is now generally accepted that 0.5-fs timesteps with Verlet are needed
to resolve with reasonable accuracy the dynamics of biomolecules.
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Table 3 Langevin dynamics averages (mean/variance) for BPTI and lysozyme simulations over
6 ps with BBK (1t = 0.5 fs) and LN (1τ = 0.5 fs, 1t = 3 fs) at = 20 ps−1a

BPTI Lysozyme
BBK LN BBK LN

Eb 1622.5 33.7 1629.7 34.2 3660.3 43.8 3676.7 44.0
Ek 803.9 22.5 807.4 22.6 1818.6 32.2 1826.8 32.1
Ep

c 818.6 23.5 822.4 23.9 1841.7 32.1 1849.9 32.3
Ebond 321.4 14.9 321.2 14.9 714.2 21.7 714.1 21.5
Eangle 453.9 15.8 452.6 15.7 1009.0 24.3 1006.0 24.1
Etor 352.1 8.51 354.1 8.59 725.1 11.3 729.3 11.4
Evdw −120.4 13.4 −118.7 13.6 −466.2 19.5 −462.4 19.8
Eelec −1944.1 15.0 −1943.6 15.3 −4994.2 23.5 −4993.4 24.0
Td 298.3 8.34 299.6 8.39 300.6 5.32 301.9 5.30

aThe sparse approximate Hessian was constructed using bond-length, bond-angle, dihedral-angle, and 1–4
electrostatics terms.
bEnergy is given in kcal/mol for total, kinetic, potential, bond-length, bond-angle, torsion, van der Waals, and
electrostatic terms.
cThe potential energy is given with respect to the initial values −1664.96 for BPTI and −4637.85 kcal/mol for
lysozyme, corresponding to local minima near the initial configurations.
dTemperature is given in degrees.

ggG
γ

H̃

point Xn+1/2, we also computed the bond and angle energy at eachXn point for
reporting purposes. The added cost involved is negligible. The sparsity ofH̃ (as
described above) is the relative number of nonzeros.TH̃+∇E, Tlin , andT∇E in the
table give the cost per1t step, respectively, of: (a) evaluating both the sparse
Hessian and full gradient in LN, (b) integrating the linear system in LN, and (c)
evaluating the full gradient in BBK. Also given is the CPU cost per fs (T /fs)
for BBK and LN, and the ratio of the two (speed-up). All times are taken from
6-ps simulations in serial mode on a 194-MHz SGI R10000 Power Challenge.

We note that as system size increases (lysozyme has 2.5 times more atoms
than BPTI), the number of entries in the approximate HessianH̃ grows linearly,
and so does the computational cost of solving the linearized equations of motion.
In principle, the cost of evaluating the Hessian should also increase linearly with
the number of entries. However, the current CHARMM implementation does
not exploit the increased sparsity in the second-derivative calculations because
of dense Hessian data structures. Still, we see an increase in the efficiency gain
for larger systems, with an LN speed-up greater than a factor of four. Table 3
compares the results of LN and BBK for lysozyme and BPTI in terms of energy
averages and variances. The agreement for both average energy values and
variances is excellent (see (13) for further analyses).

Unlike the 4.5-̊A cutoff case, the approximate HessianH̃ used here does not
include contributions from short-range nonbonded interactions. As a result,
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all such interactions are treated as constant over the1t interval (as is the case
with traditional integrators). Smaller outer LN timesteps than those used in
Reference (13) are required, but the decreased computational cost associated
with the very sparse matrix yields CPU gains that compare favorably with those
reported earlier. The bonded̃H leads to increased efficiency in three important
ways: First, the number of nonzero matrix entries is small, as is the num-
ber of operations required for matrix operations (e.g. matrix/vector products).
Second, the pattern of the nonzero matrix entries, dictated by the molecular
bonding topology, remains unchanged throughout the simulation, in contrast
to the interaction topology for the nonbonded terms within a certain distance
range, which changes dynamically. Third, the constant bonding topology also
allows for simple and efficient parallel evaluation ofH̃, which we plan to ex-
ploit in the future. We conclude that efficient Hessian treatments make possible,
without sacrificing CPU gain, smaller outer timesteps in LN, which result in
more accurate trajectories.

Several important issues remain to be explored in connection with LN. These
involve the best general choices forH̃ that balance both physical and compu-
tational performance; the best choice for the LN outer timestep value (prob-
ably system dependent and smaller for larger systems, but the incorporation
of adaptive timestep selection or extrapolation techniques might allow larger
timesteps); implementation of clever sorting and computational tricks to im-
prove the efficient handling of sparse Hessians; applications to biomolecules
in solution, where intermolecular collisions (when water is modeled explicitly)
might cause problems; a more general assessment of the Langevin vs Newtonian
dynamics approach and examination of LN’s configurational sampling capabil-
ities. Currently, we are combining the force linearization idea of LN with the
force splitting idea of MTS methods; the speed-ups are significant (E Barth &
T Schlick, in preparation).

SOME COMPARATIVE NUMERICAL EXPERIMENTS

To gain insight into the behavior of the various MD algorithms described in
the previous section, we performed comparative experiments on the alanine
dipeptide system (shown in Figure 1) within the CHARMM program (19).
The dipeptide is sufficiently small for algorithmic experimentation yet is also
interesting physically because of its flexibility. We compared methods in two
classes: Newtonian dynamics and Langevin dynamics. For the first, we used the
following four integration schemes and associated timesteps: leap-frog/Verlet
(LF) with 1t = 0.5 fs; a dual-timestep MTS method with1t1 = 0.5 fs and
1t2 =2.5 fs (116); a SHAKE model with constraints only on bonds to hydro-
gen atoms (CON1) with1t = 2 fs; and a SHAKE model with all bonds plus
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Figure 6 Alanine dipeptide distributions of the torsion angles{φ, ψ}, in degrees, for various
methods as obtained from 3-ns trajectories. Thick lines give results for LF in each view. For BBK
and LN, results for threeγ (in ps−1) are also shown:γ = 5 (thin line), γ = 20 (line with large
dots), andγ = 50 (dots). For the constrained methods, results are given for CON1 (thin line) and
CON2 (dots).

bond angles involving hydrogen atoms constrained (CON2) with1t =4 fs. In
CON1, constraints were made to the equilibrium values, and in CON2 variables
were constrained to the initial simulation values. For Langevin dynamics, we
compared, at threeγ values, BBK to LN results. BBK is the Verlet generaliza-
tion to stochastic dynamics (22). For BBK, we used1t = 0.5 fs, and for LN
1τ = 0.5 fs and1t = 5 fs. Each trajectory was started from the same initial
conditions—obtained following a 160-ps equilibration at 300 K beginning at
the C7 equatorial minimum (54)—and, for the stochastic methods, the same
random seed was used in all cases. The dihedral-angle data were generated
from points along the trajectory at 60-fs intervals.

Results are summarized byφ andψ distributions in Figure 6 and{φ, ψ}
phase diagrams in Figure 7. Each window of Figure 6 shows the LF results as
a reference (solid lines). For the stochastic simulations, three additional curves
correspond to theγ used: 5, 20, and 50 ps−1. Overall, the Langevin simulations
give distributions similar to LF. More rigid behavior (sharper peaks) is observed
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Figure 7 Alanine dipeptide{φ, ψ} phase diagrams, in degrees, for the various methods generated
from coordinates taken every 60 fs from 3-ns trajectories. The numbers following the method name
indicate theγ value used for BBK and LN.
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for both BBK and LN for the largestγ . The MTS method and the procedure of
constraints CON1 also match the results of LF well, though larger differences
are evident for MTS (see sparser phase diagram). A substantial difference is
evident for CON2 resulting from the additional constraints used (heavy-atom
bond stretches and light-atom bends). The results of LN agree excellently with
BBK, as seen from both the distributions and phase diagrams.

Langevin vs Newtonian Dynamics
The Langevin framework can be used both for numerical stabilization (121)
and enhanced sampling (28, 54). Recall that figures 4 and 5 reveal the energy-
stabilizing influence of the stochastic terms for the symplectic integrator LIM2
(121) and the spreading of phase diagrams in the Langevin framework. For the
alanine dipeptide, a nonzeroγ can be chosen for optimal sampling, although
too large a value can inhibit sampling due to the smaller relative contribution of
the inertial terms (71). We did not observe any significant advantages in sam-
pling for the dipeptide over the 3-ns interval sampled here, but a much quicker
equilibration time was found to be advantageous in the Langevin simulations.

The size of fluctuations in total energy has been used widely in the literature
to assess the quality of MD methods. This concept is meaningful only in
the constant-energy Newtonian simulations. From Table 4, we see that the
fluctuations in total energy for the stochastic methods are larger than for the
Verlet and the constrained methods, but significantly, fluctuations of the internal
variables are nearly identical. Averages and fluctuations of the individual energy
components agree well.

Constraints
We noted in our discussion of Figure 1 that constraining bonds to hydrogen
atoms eliminates the fastest regions of the vibrational spectrum and that adding
heavy-atom bond constraints achieves small gains. The smaller number of
bonds with light atoms for the dipeptide (12 out of 21) and the simple bond
topology ensure rapid convergence when solving the constrained formulation
for the light bonds only. However, constraining all bonds is inefficient because
computations increase at each timestep, while the timestep cannot be increased
because of the overlap of frequencies associated with light-atom bends and
heavy-atom stretches (Figure 1).

Constraining all bonds plus light-atom angles can eliminate another fre-
quency peak (Figure 1) and hence increases the feasible timestep. Indeed, a
timestep of 4 fs is used in CON2 as opposed to 2 fs in CON1. However, as
results from the corresponding CON2 procedure indicate in Figures 6 and 7
and Table 4, the overall motion of the molecule is more restricted. Further,
from the CPU timings in Table 4 (last row), we see that although the timestep
is increased by a factor of eight (from 0.5 fs) in reference to LF, the overall
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gain in efficiency is only about a factor of two (40 constraints used: 21 bonds
and 25 bond angles). More generally, even though the computational overhead
of solving for the constraints would likely decrease with larger systems, the
decreased flexibility is a drawback to this approach. The CON1 procedure
appears to be the winner on both physical and computational grounds.

Performance of LN
The LN method emerges well from these comparisons. Table 4 shows that LN
agrees well with BBK. Since it is a Langevin dynamics method, LN also offers
the possibility of faster conformational sampling than Newtonian dynamics.
The linearization approximation over each 5-fs interval appears reasonable,
and the subintegration process is fast.

Computational Efficiency
The last row of Table 4 reports for the dipeptide simulations the observed cost
per unit time for each method relative to the cost of LF (or BBK) at1t = 0.5 fs,
which requires one force evaluation per step. For LN, the timing was performed
using CHARMM version 24b1 on an SGI Indigo2 workstation; for CON2,
CHARMM version 23f4 was used on the Indigo2; all other timings were taken
from simulations using CHARMM 24b1 on an SGI Power Challenge running
in serial mode. Timing data for LF/BBK were obtained on each machine
and for each CHARMM version as well, so that fair comparisons could be
made independent of implementation. For the constrained CON1 method,
since the timestep is 2 fs (four times larger than the reference simulation), the
asymptotic speed-up is four and corresponds to the relative time of 0.25; thus,
near-peak speed-up is already observed for the dipeptide, and similar speed-ups
should be obtained for larger systems if the constraints are handled efficiently.
For the constrained CON2 method, the asymptotic speed-up of eight (from
the 4 fs timestep) is not observed because of the relatively large number of
constraints for this small system. However, CON2 is not recommended for
physical considerations, as shown by the effects of these constraints on the
torsion-angle motion (Figures 6 and 7).

The LN and MTS methods gain efficiency for large systems, as the ratio
of nonbonded to bonded interactions increases. Since the small dipeptide has
approximately 25% bonded interactions, the MTS scheme cannot reach its
expected speed-up of five with the outer timestep of 2.5 fs (i.e. relative CPU
value of 0.2) and LN cannot reach its asymptotic (but not expected) speed-up of
ten (CPU value of 0.1). The LN speed-up here of about two, as demonstrated in
(13) can be improved for larger systems when a sparseH̃ is used (as discussed
in the last section and in Table 2), since sparsity increases rapidly with system
size (29). For larger systems, a speed-up factor of four or more is possible
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for both methods (see (45) for MTS, and Table 2 and (13) for LN), and LN
combined with force splitting improves on this factor (E Barth & T Schlick, in
preparation).

PERSPECTIVES

This review has surveyed some of the exciting algorithmic activities focusing
on increasing the timestep and hence the timespan of all-atom biomolecular
simulations. Many innovative techniques ranging from brute force to approx-
imate dynamics propagators have been developed. Long-timestep integration
is particularly challenging when strictly faster methods with the same all-atom
resolution of small-timestep trajectories are sought. Because of the strong
vibrational coupling in biomolecules, mathematical techniques that exploit
mode separation or the rapid decay of the fast motions in multiple-timescale
systems have not been directly applicable to molecular dynamics. Indeed,
progress in increasing the timespan covered by all-atom biomolecular simula-
tions has been slow relative to improvements in computer power during the past
decade.

The approaches described here (constrained and torsion dynamics, implicit
and symplectic schemes, MTS methods, and normal-mode-based schemes)
aim at generating continuous dynamics and attempt to balance reliability of
the results—as compared to small-timestep simulations—with computational
advantages. This task is more difficult for methods that substantially increase
the timestep, since the work per step generally increases and some local motion
is approximated. Constrained formulations combined with explicit integration
presently yield modest computational gains and, as shown here, constraining the
light-atom bonds can yield the near-asymptotic speed-up corresponding to the
timestep increase. Other methods that yield modest speed-up but are somewhat
more complex to implement are MTS methods and the LN scheme. Both require
careful testing and possible further development in aqueous environments and
in the presence of fast electrostatic treatments; the inclusion of explicit water
molecules increases the ratio of fast interactions and also increases intermolec-
ular collisions, which influence numerical behavior. Straightforward implicit
discretization schemes are probably too costly, though parallel implementations
may help reduce the added costs per step. Torsion-angle dynamics approaches
appear most useful for enhanced sampling at elevated temperatures, and various
methods based on the essential subspace concept are likely to be useful only in
combination with efficient sampling techniques.

A broader view should also lead to a heightened appreciation of methods
that approximate dynamical fluctuations but that can cover much more config-
urational space. These methods include hybrid Monte Carlo/MD techniques,
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simulations with macroscopic models, incorporation of available experimental
data, and possibly artificial potential terms to guide the system along a certain
path.

An interesting new approach is a path optimization algorithm based on the
stochastic path integral of Onsager and Machlup (31, 70). Trajectories be-
tween two given end points are generated at a relatively large timestep by an
optimization procedure (conjugate gradient, simulated annealing, or multigrid
techniques). Numerical stability is achieved because the high-frequency mo-
tions that cannot be resolved at the chosen timestep are filtered out automatically.
In addition, an error estimate of the filtered motions can be obtained. Numerical
experiments on a double-well potential and an alanine dipeptide system (70)
reveal the stability and filtering capabilities of the method, as well as its ability
to find paths between two states of biological interest. The method is expensive
at present, and techniques for complete relaxation along the pathway require
further development; however, the suggestion of long-time dynamics behavior
is encouraging.

Another area of great potential that is natural for macromolecular simula-
tions involves multigrid (or multiscale) techniques, well-known tools in applied
mathematics (91). These methods solve large and complex problems efficiently
by dividing the solution process among various levels of spatial and temporal
resolution recursively so as to minimize computations on the the finest scale
without an overall sacrifice in accuracy. MTS schemes and fast multipole treat-
ments are two examples of multiscale techniques, and others will undoubtedly
emerge.

Overall, a hierarchy of models and methods for continuous dynamics as
well as conformational sampling, combined with accelerated performance on
parallel architectures and improvements in experimentational resolution, are
essential to give theoretical modeling the status of partner with experiment. An
exciting era of association between theory and experiment is on the horizon.
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APPENDIX A: OUTLINE OF LIN

To define the LIN algorithm, we express the collective position vector of the
system asX(t) = Xh(t) + Z(t). (In LN, Z(t) is zero.) The first part of LIN is
the solution of the linearized Langevin equation for the harmonic component
of the motion,Xh(t) by Systems 9 or 10. The second part relies on implicit
integration to compute the residual component,Z(t), with a large timestep.

Specifically, onceXh(t) is obtained numerically as a solution to System 8,
the residual motion component,Z(t), can be determined by solving the new
set of equations thatZ satisfies. These equations are determined by using
Z = X − Xh and the origin ofX and Xh as solutions of Systems 7 and 8,
respectively (119). This leads to:

MẆ(t) = −∇E(Xh + Z(t)) − γ MW(t)

+ ∇E(Xr (t)) + H̃(Xh − Xr ), (A.1a)

Ż(t) = W(t). (A.1b)

HereW denotes the time derivative ofZ, and the initial conditions for System
A.1 are: Z(0) = 0 andW(0) = 0.

To solve System A.1, we apply to it the second-order midpoint scheme
(see System 3) and follow the same algebraic manipulation outlined in Ref-
erences 119 and 120 to produce a nonlinear system∇8(Y) = 0, where
Y = (X + Xn)/2. This system can be solved by reformulating the problem as
a minimization one for the dynamics function8:

8(Y) = 2

(
1 + γ1t

2

)(
Y − Yn

0

)T
M
(
Y − Yn

0

)+ (1t)2 E(Y), (A.2)

Yn
0 = (Xn+1

h + Xn)

2
+ (1t)2

4(1 + γ1t
2 )

M−1

×
[
∇E(Xr ) + Hh

(
Xn+1

h + Xn

2
− Xr

)]
. (A.3)

Thus, each correction step of LIN requires nonlinear minimization of8, which
can be accomplished efficiently using our truncated Newton package (29, 92,
94). The initial approximate minimizer of8 can beXn+1

h or (Xn+1
h + Xn)/2

(we use the latter). The new coordinate and velocity vectors for timestepn + 1
are then obtained from the relations

Xn+1 = 2Y − Xn, Vn+1 = Vn+1
h + 2

(
Xn+1 − Xn+1

h

)
/1t . (A.4)
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1995. Harmonic analysis of large sys-
tems. I. Methodology.J. Comput. Chem.
16:1522–42

21. Brooks CL III, Karplus M, Pettitt BM.
1988. Proteins: A Theoretical Perspec-
tive of Dynamics, Structure, and Thermo-
dynamics, Advances in Chemical Physics
LXXI. New York: Wiley
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Methods.Englewood Cliffs, NJ: Prentice
Hall

27. Daura X, Oliva B, Querol E, Avil´es FX,
Tapia O. 1996. On the sensitivity of MD
trajectories to changes in water-protein
interaction parameters: the potato car-
boxypeptidase inhibitor in water as a test
case for the GROMOS force field.Pro-
teins Struct. Funct. Gen.25:89–103

28. Derreumaux P, Schlick T. 1995. Long-
time integration for peptides by the dy-
namics driver approach.Proteins Struct.
Funct. Gen.21:282–302

29. Derreumaux P, Zhang G, Brooks B,
Schlick T. 1994. A truncated-Newton
method adapted for CHARMM and
biomolecular applications.J. Comput.
Chem.15:532–52

30. Duane S, Kennedy AD, Pendleton BJ,
Roweth D. 1987. Hybrid Monte Carlo.
Phys. Lett. B195:216–22

31. Elber R. 1996. Novel methods for molec-
ular dynamics simulations.Curr. Opin.
Struct. Biol.6:232–35

32. Elofsson A, Nilsson L. 1991. How con-
sistent are molecular dynamics simula-
tions? Comparing structure and dynam-
ics in reduced and oxidizedEscherichia
coli thioredoxin.J. Mol. Biol. 233:766–
80

33. Forester T, Smith W. 1994. On multiple
time-step algorithms and the Ewald sum.
Mol. Simul.13:195–204

34. Forrest BM, Suter UW. 1994. Hybrid
Monte Carlo simulations of dense poly-
mer systems.J. Chem. Phys.101:2616–
19

35. Gear CW. 1971.Numerical Initial Value
Problems in Ordinary Differential Equa-
tions.Englewood Cliffs, NJ: Prentice Hall

36. Gibson KD, Scheraga H. 1990. Variable
step molecular dynamics: an exploratory
technique for peptides with fixed geome-
try. J. Comput. Chem.11:468–86

37. Goldstein H. 1980.Classical Mechanics.
Reading MA, Addison-Wesley

38. Gray SK, Noid DW, Sumpter BG. 1994.
Symplectic integrators for large scale
molecular dynamics simulations: a com-
parison of several explicit methods.J.
Chem. Phys.101:4062–72

39. Grønbech-Jensen N, Doniach S. 1994.
Long time overdamped Langevin dynam-
ics of molecular chains.J. Comput. Chem.
15:997–1012

40. Grubmüller H. 1995. Predicting slow
structural transitions in macromolecular
systems: conformational flooding.Phys.
Rev. E52:2893–906

41. Grubmüller H, Heller H, Windemuth A,

Schulten K. 1991. Generalized Verlet al-
gorithm for efficient molecular dynamics
simulations with long-range interactions.
Mol. Simul.6:121–42

42. Hairer E, Nørsett SP, Wanner G. 1993.
Solving Ordinary Differential Equations.
I. Nonstiff Problems. Springer Ser. Com-
put. Math.8. New York: Springer-Verlag

43. Hairer E, Wanner G. 1991.Solving
Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems.
Springer Ser. Comput. Math.14. New
York: Springer-Verlag

44. Hao MH, Pincus MR, Rackovsky S,
Scheraga HA. 1993. Unfolding and
refolding of the native structure of bovine
pancreatic trypsin inhibitor studied by
computer simulations. Biochemistry
32:9614–31

45. Humphreys DE, Friesner RA, Berne BJ.
1994. A multiple-time-step molecular
dynamics algorithm for macromolecules.
J. Phys. Chem.98:6885–92

46. Hünenberger PH, Mark AE, van
Gunsteren WF. 1995. Computational
approaches to study protein unfolding:
hen egg white lysozyme as a case study.
Proteins Struct. Funct. Gen.21:196–213

46a. Jian H, Vologodskii A, Schlick T. 1996.
A combined wormlike chain and bead
model for dynamic simulations of long
DNA. J. Comp. Phys.Submitted
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