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The notion of error in practical molecular and Langevin dynamics simulations of large biomolecules
is far from understood because of the relatively large value of the timestep used, the short simulation
length, and the low-order methods employed. We begin to examine this issue with respect to
equilibrium and dynamic time-correlation functions by analyzing the behavior of selected implicit
and explicit finite-difference algorithms for the Langevin equation. We derive: local stability criteria
for these integrators; analytical expressions for the averages of the potential, kinetic, and total
energy; and various limiting casés.g., timestep and damping constant approaching) zésoa

system of coupled harmonic oscillators. These results are then compared to the corresponding exact
solutions for the continuous problem, and their implications to molecular dynamics simulations are
discussed. New concepts of practical and theoretical importance are introduced: scheme-dependent
perturbative damping and perturbative frequency functions. Interesting differences in the asymptotic
behavior among the algorithms become apparent through this analysis, and two symplectic
algorithms, “LIM2” (implicit) and “BBK” (explicit), appear most promising on theoretical
grounds. One result of theoretical interest is that for the Langevin/implicit-Euler algofithit )

there exist timesteps for which there is neither numerical damping nor shift in frequency for a
harmonic oscillator. However, this idea is not practical for more complex systems because these
special timesteps can account only for one frequency of the system, and a large damping constant
is required. We therefore devise a more practical, delay-function approach to remove the artificial
damping and frequency perturbation from LI. Indeed, a simple MD implementation for a system of
coupled harmonic oscillators demonstrates very satisfactory results in comparison with the
velocity-Verlet scheme. We also define a probability measure to estimate individual trajectory error.
This framework might be useful in practice for estimating rare events, such as barrier crossing. To
illustrate, this concept is applied to a transition-rate calculation, and transmission coefficients for the
five schemes are derived. @96 American Institute of PhysidsS0021-960606)50224-2

I. INTRODUCTION systems that began over 50 years®agoproteins in solution
and complex membrane systems.
Molecular dynamic§MD) simulations have become a In canonical ensembles, the target system is coupled to a

powerful tool for analyzing the properties of many molecularsurrounding heat bath with which the system is free to ex-
systems. Besides providing insight into kinetic pathwaysgchange energy, thereby maintaining a state of equilibrium. In
such simulations can often sample the energetically acceshe Langevin dynamics formalism, the explicit solvent de-
sible configurations of a system more efficiently in compari-grees of freedom are eliminated from the nonequilibrium
son to the commonly used Metropolis/Monte Carlo algo-thermodynamic description with the help of Mori—Zwanzig
rithms. From these configurational ensembles, variouprojection operator techniqde. The result is a set of sto-
transport coefficients and dynamic correlation functions carchastic differential equations describing the dynamic state of
be calculated. the solute. For example, for a molecular system whose
Often, the equations of motion are modified by couplingphase-space coordinates at@) and p(t), the Langevin

the system to an additional degree of freeddmr to a heat equation(in its simplest form can be written as

batt? in the form of Langevin equation. This makes possible

the study of a system’s dynamics in a suitable statistical %:M—lp,

framework. Such a modified framework of the governing t

equations of motion can also serve a different purpose, such dp (1)
as overcoming the inherent instabilitg.g., drifts in energy i —ge(X)—yp+r(t),

of microcanonical MD algorithms due to the truncation er-
rors induced by a nonzero _timest’i—:'ﬂihis problem is particu-  whereM is the diagonal mass matrige(x) is the gradient
larly severe for systems with long relaxation times. Applica-of the potential energ#(x), vy is the damping constant, and
tions of MD today extend from liquid and small molecular r(t) is the random force vector.

The Langevin equation, like most coupled nonlinear dif-
¥Howard Hughes Medical Institute. Author to whom all correspondenceferen.tlal equations, mUSt be solved numencaHY- There has
should be addressed. certainly been considerable mathematical analysis on nu-
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merical solution of the Langevin equatfbi®with regards to  appropriate, though special care must be exercised for highly
accuracy and stability, but the results are often of little praccorrelated data. When detailed kinetics, such as transition
tical use to simulators of biomolecular dynamics. This ispathways and rates are of interest, global aspe&s en-
because the available mathematical theory focuses on tleemble properties in the framework of statistical mechanics
limit At—0 (whereAt is the timestep whereas large-scale are also required.
MD simulations today use rather large timesteps with respect How can we know whether a simulated trajectory is
to the fastest period of the systefe.g., one ninth to one “representative” in some sense? Elofsson and Nil¢3on
quartej. Furthermore, such simulations are rather short inasked how “consistent” MD simulations are by comparing
total time with respect to relaxation times of the slowest30 protein simulations differing in solvent representation and
modes, and they use low-order algorithfesg., 2. protocols; they found great sensitivity of overall fluctuations
Clearly, in stochastic dynamics, there is no unique trato the starting structure and suggested that several shorter
jectory but rather an ensemble of trajectories. Even in MDsimulations span conformation space better than one long
(y=0), different trajectories result from using: various algo- one. More recently, Auffingeet al'* demonstrated the di-
rithms, same algorithms but different timesteps, differentvergence of ten 100 ps trajectories of tRNA in solvent and
starting points! and different pseudorandom-number gen-salt—from the initial x-ray structure as well as from one
erators or seeds. An important question that arises is how tanother—when initial conditions and parameters were var-
evaluate a generated trajectory. This question has long beéed. Consistency problems emergéslg., results could be
realized in the chemical dynamics community of smallworse surprisingly, when equilibration time wasxtended
systems? For biomolecules, in the absence of direct experi-In addition, the authors emphasized tinadequacyof en-
mental data for comparison, the convention to date has beesrgy conservation and root-mean-square fluctuatidmsnm
to compare results to a simulation at a small timestep. But isne available experimental structui@one; they suggested
this comparison adequate? How can it be supplemented? Atbat multiple MD simulations be generated to evaluate the
there rigorous mathematical tests that can be performedfnsistency of results in general. While it is likely that the
These are difficult questions, and it is clear that the answerspecific problems above are aggravated by the complexity of
must be based on statistical considerations. However, botdlectrostatics in nucleic acids, they are still typical of biomo-
ways to evaluate static means as well as dynamic functionlecular dynamics, as practitioners well know. Adequate
must be constructed. evaluation of biomolecular simulations will undoubtedly in-
In Langevin dynamics simulations, we have two majorcrease in urgency in the coming years as longer simulations
sources of error: systematic and random. The first arises fromof larger systems will be possible. Commensurate refinement
the limited accuracy of the integration algoritidiscretiza-  of algorithmic and simulation protocols is expected.
tion errop, the finite precision of the computéroundoff To begin an investigation of the notion of error, we
erron, the errors in the energy and force evaluatides)., present a comparative study of selected finite-differencing
approximations to trigopnometric expressions, truncated mulalgorithms for Langevin dynamics simulations. The basic
tipole expansions and so on. The “random” error compo- themes we explore are twofold: the effect of different inte-
nent comes from the finite length of the trajectéirg., finite  grators on the physical properties of interest, and the general
ensemble averagesand many other aspects of the calcula-notion of error in this stochastic framework. The concept of

tion that can lead to spurious resulesg., different equili- error in finite dynamic simulations using various algorithms
bration procedures, finite length of the pseudorandom numis particularly important, especially when one is interested in
ber generatgr long-time processes of complex systems. Different algo-

Many of the above considerations must be tested heurigithms can be used for different purposes, and obvious evalu-
tically, e.g., by running a simulation five times longer andation criteria are not availabé.
varying parameters, conditions, and protocols. While these Over the last 20 years, a variety of integration algorithms
requests may seem trivial, the high cost of biomoleculahave been proposed and their relative merits and accuracies
simulations in terms of computer tin@e., months to gen- discussed® *° However, much of these analyses focused on
erate a nanosecond trajectory of a protein in solytives  explicit methods, since they are easier to implement for com-
limited these checks in practice. plex nonlinear forces, as well as on local error only. It is well

The problem of trajectory assessment arises in this corknown that explicit methods are stable only for small
text because the nonequilibrium processes simulated in bidimesteps; they become unstable at some critical valugt of
molecular MD are associated with large, chaotic systemsand are thus problematic for systems with multiple
there are bothleterministicand stochasticfeatures; simula- timescale$® We emphasize, though, that “small” in our
tion time is relativelyshort, the force fields arapproximate  context of explicit integrators is rather large in mathematical
and experimental data aliemited. Furthermore, we are inter- analysis.
ested in both localdetailed kineticsand global(sampling Implicit algorithms, on the other hand, tend to be mostly
features. Therefore, one can imagine that different models, innconditionally stablg/A-stable.?’° Roughly speaking, this
combination with different integration or propagation meth-means that there are no stability restrictions on the model
ods, could be designed to address different aspects of dproblem y’=\y (whose solution isAe') as long as
namics problems for macromolecules. Using dynamic simuRe(\)<<0 for nonnegative timesteps. Implicit algorithms can,
lations for statistical averaging in phase space is certainljiowever, introduce numerical dampfigand are computa-

J. Chem. Phys., Vol. 105, No. 1, 1 July 1996



B. Mishra and T. Schlick: Error in Langevin dynamics 301

tionally very demanding® Symplectic methods have re- ing nonstochastic differential equation. In practice, the analy-
cently gained favorable attention for their good performancesis of long-time behavior of numerical methods for initial
but resonance problems have been nétédThus, in order value problems starts with the study of a linear reference
to adequately apply a particular algorithm to a specific probproblem. This is because, unfortunately, there is no general
lem at hand, a comparative study of local stability, accuracyglobal method for analysis of a nonlinear system. However,
and statistical behavior is required for the range of timestepmany insights can already be gained from the linear analysis.
used in molecular and Langevin simulations. This paper be-
gins an examination in this direction. A. The Langevin equation for coupled harmonic

For illustration of these concepts, we consider five finite-oscillators
differencing algorithms. Three of them have been discussed
by Zhang and Schlick in detdif. “LI", for Langevin/ . _
implicit-Euler; and “LIM2” and “MID1” which are semi- MX+ge(X) + yMx=r(t), 2
implicit. The other two are explicit: “BBK”, a VerIeBt-Ilke where the dot superscripts denote differentiation with respect
algorithm presented by Brooks, Brger, and Karplus?and {5 time. The random force(t) is a stationary, Gaussian

an explicit-Euler version, “LE"; their statistical properties \,nite noise characterized by mean and covariance matrix,
and various limiting cases have been analyzed by PaSt‘?éspectively

et al?* The analysis offered here extends to new questions
and also presents a unified approach for examining many (r())=0
properties of interest, particularly for MD applications. Ex- gng
tensions to other algorithms and more complex potentials are T
natural in this framework. (r(Or(ty) )=2ykgTMo(t—ty).
In Sec. Il, we discuss the issue of stability and accuracyHere, T is the temperature of the heat bakty is Boltz-
by deriving general solution expressions in the linear forcemann’s constant, and is the Dirac delta function.

case. We define two concepfeerturbed frequencandper- If the force is linearized, the governing potential has the
turbed damping both of which are scheme dependent. Inpijlinear form

particular, for algorithms where numerical damping is im- . ot
portant, we show that a choice of timestep, as a function ofa M~ "ge(X) = (X AX)’ =AX,
frequency and a damping constant, can be n{ati&east for

the case of quadratic potentiats yield no numerical damp- o nrime superscript denotes differentiation with respect to

ing as well as no shift in frequency. This formula is possible, s js the case for a system of coupled harmonic oscilla-
only for LI, but has limited practical use because of the large o

damping constant required, and the restriction to a single
frequency. Therefore, we also propose a “deIay—function”B_ Mass scaling and unitary transformation
approach to remove artificial damping and frequency pertur-

Let us consider the Langevin equation for the position

where A is a symmetric positive definitaXxXn matrix, and

bation from LI which also works for M@y=0). Application Let us apply the following transformations to simplify
to a system of coupled oscillators demonstrates very satisfatde Langevin equation further:
tory results in comparison to velocity Verlet. x=M 127

In Sec. lll, the concept of stationary states is introduced,
and we derive for each algorithm selected averages for a G=M""7,
harmonic oscillator system. In Sec. 1V, the diffusion constant B=M-12a M- 12
is calculated for each algorithm as a limiting cdgero fre- '
guency. The possible ways of estimating a trajectory errorThe Langevin equation then becomes
are discussed in Sec. V by introducing a probability measure. : -~
For an illustration, this measure is applied to rate-constant ZO)+yzO)+BZH=C(), ©
calculations in barrier crossing events. We conclude with avhereG(t) has the statistical properties:
brief summary of the findings and discussion of future work. (G(1))=0

and

_ o _ (G(OG(t)T)=27kgTS(t—ty).

When applying numerical integrators to a nonlinear setW db i , ¢ . W
of equations, it is important to know their region of stability. € now froceﬁ y a%p'ylng ucr;.ltary trlans or)rgatlonﬁ. €
Stability of numerical methods is strongly related to thegan_tra?shorm the matrll '”tOYaTTE‘g‘iqa matlr)l on the
“stiffness” of the problem. Intuitively, this characteristic asis of the orthogonal matrik(T" = ), to obtain
means that the system’s dynamics is governed by at leasttwo D=TBT 1.
g(r)?scssirfirsw;h;tocc)ﬁ;i;igrlggéyéggﬂr:é)rﬁ(?a?gsalfnsét;l—eﬁg :j(gsltence E)ander this transformation, the coordinates and the random
for example, Fig. 1 in Ref. 25since it adds other physical force become
and numerical considerations not present in the correspond- Q=TZ

II. ANALYSIS OF STABILITY AND ACCURACY
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TABLE |. The five discretizations for Langevin dynamics. The first data damping which is well understodd:?®but is unconditionally

column gives expression fdp,Q,Q for each integration scheme. For the le. “LIM2” and “MID1"
origin of these definitions, see Ref. 19 for LI, LIM2, and MID1; and Ref. 24 stable. and
for BBK and LE. In the second data column, we list the corresponding

values ofu, v, ando [see Eq(10) of the texi. To simplify the expressions,
we use the definitions=yAt and e=wAt, wherey is the damping coeffi-
cient, w is the frequency, andt is the timestep.

Q. Q. Q

Algorithm m, v, &
LI Qe 1+ 5+€?,
[Q"-Q"1/At, —2-4,
[Qn+l_2Qn+Qn71]/At2 1

S €

LIM2 [Q""*+Q" 12, It5+5,
[Q""* Q" 1/2At, -2,
5 €
[Qn+1—2Qn+Qn_1]/At2 17§+?

s €

MID1 [Q"*+Q"/2, 15+ 7,
2

[Vn+1+Vn]/2=[Q”+1—Qn]/At, —o+ %’
5 €
n+1__y\/n —_— J—

[v V/At 1 5t 2

BBK Q" 143,
[Q"F1-Q" Y/24At, —2+é,
)
[Qn+1—2Qn+Qn_1]/At2 1— E

LE Qn, 1+6,
[Q"1-Q"/At, —2-6+€,
[Qn+1_2Qn+Qn_l]/At2 1
and
F=TG.

We have now converted Eq3) into a system ofN un-
coupled independent equations for each normal n@ge

Qj+7Qj+wj2Qj:Fj(t)- (4)
The corresponding random force characteristics are
(Fj)=0
and

<Fj(t)Fk(tl)>: zkaT(Sjk(S(t—tl).

For notational simplicity, we drop the subscriptn future
discussions.

C. Discretizations of the normal-mode equation

Consider now a numerical discretization of E4). We
denote byQ" the difference-equation approximation@at

are second-ordersymplecti¢?’
semi-implicit algorithms. The implicit-midpoint algorithm,
“MID1"”, in particular, was found to perform well at larger
timesteps but exhibit resonanteVerlet, other symplectic
algorithms, and possibly other integrators exhibit resonance
also?® “BBK” is a second-order, explicit algorithm that re-
duces to well known symplectic Verlet algorithm when
y—024 “LE” is first-order explicit-Euler algorithm, differ-
ing from “BBK” in the definition of the velocity.

The recursion relations for each algorithm are given be-
low (we sets=vyAt, not to be confused with delta functipn

LI: (14 8)x"T1—(2+8)x"+x" 1
=AM - ge(x" )+, (5)
LIM2: (14 8/2)x""1—2x"+(1—8)x" 1

Xn+1+xnfl
A2 -1
At“M { gE< 5

Xn+l_xnfl Un+l+vnfl

MID1: AL = > ,

+r"

, (6)

Unfl M,]_ Xn+l+Xn71

At B e 2
Xn+1_Xn
LARY:

(14 8/2)x" 1 —2x"+ (1— 8/2)x" 1

+r", (7)

BBK:
=AM ge(x) +17, ®

LE: (1+8)x" 1= (2+6)x"+x" 1

=AM —ge(xM)+r"]. 9

Note thatx" ! appears in both sides of the equations for
LI, LIM2, and MID1. This implicit relation can be solved by
reformulating the solution of the nonlinear equation X8i *
into a minimization subproblem; see details in Ref. 19. Note
also that MID1 differs from the other algorithms in that the
position and velocity are coupled by a matrix relation; for the
other integrators, the propagation formulae involve positions
only. Finally, note that all right-hand sides except for
MID1 reduce to the same discretization for
x=(x""1—2x"+x""1)/At? when y=0. The systematic
forces are evaluated at the previous point for the explicit
algorithms(BBK and LE), at the new point for LI, and at
midpoint for MID1 and LIM2.

The discretizations listed in Table | for the normalized
position, velocity, and acceleration for each algorithm can be
considered within a unified representation for the dynamics.

time nAt. This approximation is integrator dependent. Namely, by assuming a three-step method, either explicit or
Therefore, we are interested in examining the differenimplicit, we write Eq.(4) with the exception of MID1(see
propagation patterns. For each of the algorithms consideredppendix A as

we define the variable®, Q, andQ in a unified framework
(Table ). See Appendix A for details regarding MID1.
Very briefly, “LI" is the first-order implicit-Euler algo-

pQ" 1+ pQ"+ o Q"= AR (10)

Here u, v, ando depend on the choice of finite-differencing

rithm applied to the Langevin equation; it exhibits numericalscheme and are listed in Table I. Note that these coefficients
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are functions ofAt, y, and w. The random forcd=" above Analysis of these equations determines the regions of stabil-
follows the Gaussian statistics with mean and variance, reity for each algorithm. There are two possibilities for the
spectively, given by above relations to hold(i) sin(8,At)=0, pertaining to the
overdamped oscillator caséy>2w) and (i) uefrA!

(F"=0, (F"FM= zykAﬂ‘ — ge PrRA = 0, the underdamped caég<2w). We discuss
t each case in turn.
The solution of Eq(10) and derivation of long-time values  Case i(overdamped oscillatar
for a free particle were already published by Pastor, BrooksSincesAt=mm for m=0,+1,%2,..., the value of cdg,At)
and SzabdRef. 24, appendix is —1 for m odd and+1 for m even. Wherm is even, from
Eqg. (14) we have
D. Solution of the discretized Langevin equation pefrA G gemBrAty =,

Equation (10) is a linear, inhomogeneous difference 4 quadratic equation ig®=*t. We arrive at
equation with specified initial condition®® and Q2. It can

readily be solved by the method of variation of parameters. 8 _1 inl = vV —duo
Briefly, this method first determines solution of the homoge- R=TAL 2u '

neous equatioh (y) =0, whereL is the difference operator.
For example, for a second-order difference equation, the s
lution might look likey=A, a7+ A,a3, whereA; andA, are

Since B is a real number, stability requires the following
YWo conditions:

functions to be determined. The method of variation of pa-  v*—4uo>0, (15
rameters folL(y) =f determinesA; andA;, after whichA; ————
_andAz are obtained by integration. That system of equations _“"— V" —*~% vENY _4'u0> 0. (16
is 2u

Ala+Abay,=0, Alaj+ALay=f. Whenm is odd, we obtain from Eq.14) the relation

The second equation is obtained by imposing the former con- pefrA+ oo Frit— 1y =0,
dition, applying the operatok to y, and setting the result \hijch gives the value ofg,

equal tof.
For the homogeneous analog of E@0), we assume a B :i In v\ —4uo
solution of formQ"=«a", wherea is the function to be de- RETAL 2u '
termined. We then obtain a quadratic equatioran The first stability criterion is identical to the above case
pal+vato=0, u#0. (11)  (*—4uo>0) and the second is
The solution,a, has at most two roots: v’ —4uo
—F—>0 17
LN 12 2
Y=Tou Top VU TR (12) Case ii(underdamped oscillatpr

Note that if we writta as a complex numbeag+ia; In the second possible scenario, we requimestead of

wherei = \/— 1, we must know the sigh af—4uo for each sin(,A1)=0]
scheme? pefRAM_ e RAt=(

The form of « is an important characteristic of each . . . .
. . ; : . The solution of this equation yields
integration scheme because it determines how the solution
evolves in time Q"=A,a" +A,a"). For example, for the 1 o
homogeneous case, writingg as ag+ia,, we obtain BR:E In w (18)
la"|=(ad+a?)™2. For the implicit-Euler discretization,
la|=[1+ yAt+ w?At2)] Y2 which is less than or equal to 1 With this value of 8z, we can solve Eq(14) for 3, to get

(for v and At positive for an underdamped oscillator; 1 —
hence the scheme is unconditionally stable. For B':E cos ! \/_ . (19
BBK, |a|=[(1—yAt/2)/(1+yAt/2)]*2 as long as At 2Npo

< (2/w)y1—(y/l2w)*. This is the timestep constraint for Since 8; must be negative for asymptotic convergence, we

stability. required/u in Eq. (18) to be positive and less than 1. In Eq.
In general,a is a complex number. Writing=e”*' and  (19), the argument of the inverse cosine function must lie

B=Br+iB, and substituting these expressions in Efl),  between—1 and +1. Taken together, we arrive at the fol-

we obtain the following system of equations {85 and3,:  lowing two stability criteria for the underdamped case:
[/J«eBRAt—Ue_ﬁRAt]Sin(BlAt)zo (13) V2_4M0,<0’ (20)
and o
[nelrA+ ge™ ArAcog B AL) + v=0. (14) O<;<1' (21)
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TABLE Il. Accuracy and stability criteria for the five integratorg<2w case. The stability conditions are
derived from Eqgs(20) and (21) of the text. The second data column shows the expressions for the perturbed
damping constartEq. (27)] and the effective normalized frequenidyqg. (29)] for each algorithm. In the third

data column, we list the nonperturbative solution of E4) and(32) relevant only for LI. As in Table I, we

useds=yAt and e=wAt.

Algorithm Stability Condition

Vet

(At), we(At) NonperturbativeAt(y)

LI A-Stable

1
At

— cos
At

1

LIM2 A-Stable

At

At 608
1

MID1 _
At

A-Stable

1 —
—cos

2
BBK At< A /1_(1)
® 2w

1

At

LE ¥

2
At<—+
<ot

1

Kt cos

At

At

In[1+ 5+ €7, e*5’2(1+ g) =

F) 2
o_
CO{ e 2 }

1+
At

2+6

21+ 5+ €

2+5+€
2-5+€
2

J2+e)?=¢&
4+25+€
4-26+€

4-é
1 [2+6
2-4)
2-¢
4

— 1]

0

In

1

In

1

In

cos™}

1
: In[1+ 4],

2+6-€

2V1+6

1

In Table I, we present the corresponding stability con-
dition for each algorithm. Note that LI, LIM2 and MID1 are
unconditionally stable. BBK requires

2 Y
At<= ~[1-| =], (22)
w 2w
and LE requires
A<=+ 23)
0 o

See Table Il for relevant limits for MD simulations. Bad
behavior in practice, however, is realized for smaller
timesteps than those dictated analyticaiiipove due to non-
linearity and other errorésee Sec. Y. Both explicit algo-
rithms requireAt<2/w for the zero-damping case=0).

TABLE lll. Limiting timesteps for stability of the explicit algorithms. The
stability criteria of Egqs(20) and (21) in the text are used to illustrate the
upper bounds for the timestefgiven in f9 corresponding to threg values
andw=0.7 fs'%, characteristic of an O—H bond stretgberiod of 9 f3.

Algorithm y=0 v=0.05 fs'! y=05fs!
BBK 2.86 2.85 2.46
LE 2.86 2.96 3.88

Having found the solution for the homogeneous part, we
can determine the solution to the inhomogeneous equation
[Eqg. (10)] by the method of variation of parameters. This is
outlined in Appendix B.

E. Perturbed frequency and damping constant for the
underdamped oscillator

Having derived the stability criteria from the solution of
the linear inhomogeneous difference equation for various al-
gorithms, we can now examine another interesting aspect of
these solutions. The exponential solutions of fafrexhibit
a time dependence on functionsyand w. For example, for
LI |o|"~exp{[ — y/2+ (0?At)/2]t}  while for BBK
la"~exp{[ — y/2+ (y*At?)/24]t}. The /2 term corresponds
to physical damping due to friction. THe?At)/2 term in the
LI exponent corresponds to numerical damping. This damp-
ing, as we see, is both timestep and frequency depefti&ht.
As w and/orAt increase, numerical damping becomes more
severe. For BBK, the numerical damping term is of second
order inAt and isy® dependent.

More generally, we can express this asymptotic behavior
for each scheme by the following analysis. For the homoge-
neous solution of the corresponding differential equation
[Eq. (4)], assuming @Q(nAt) = e"o type of solution, we
obtain a quadratic equation B,

B3+ yBo+ w?=0. (24
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Solutions(at most two distinct roojsthus correspond to the Therefore,

following:
im yer(At)=1y. (28)
B :—_’y+ y_z_w2 At—0 of
0+ =5 =Nz
Note that the special cage=0 yields B,=*iw. From the imaginary part of g [Eq. (19)],

g2 1R
The solution to the inhomogeneous equati@y. (4)]  'M(Bo)=2(4w ¥)'% we have
can be found similarly as for discrete equations. We write the

solution in terms of the coordinate and velocity(t), at 1 4| TV
t=0: weﬁ(At)—,fg’,—At cos 2\/@ , (29
ﬂ0+e'80t_,30—eﬁo+t)
nAt =( 0
Q(nAt) Bor—fo_ Q(0) so
+(eﬂo+t—eﬁf>t)v(0) lim wer(At)=3 V4w?— 2. (30)
Bo+— Bo- a0
N f““dT efor7—gfo-7 FnA—n. (25 We refer to the functiong,s and we defined above as
0 Bo+— Bo- ' the effective damping constaand theeffective frequencegf

the difference-equation solution, respectively. For a discus-
sion of wek for the implicit-midpoint scheme, for example,
see Ref. 23. These expressions for each algorithm are given

Since the difference-equation solutid@!, converges to the
analytic solution,Q(nAt), as At—0, the following limit

holds: in Table Il and illustrated in Figs. 1 and(#8iscussed below
lim B.(At)=Bg= - (26) Interestingly, all the algorithms exhibit a perturbed fric-
At—0 tion. For the implicit algorithms, the numerical damping is

Thus, our solutions from Eq$13) and (14) for B and frequency dependent, whereas for explicit methods, it is not.
f, contain the effective values of the damping constant and? LI, numerical damping exists even wher0 (thatis why
frequency as a function of thAt. These are obtained by the mfthOd has been proposed only for the Langevin
applying the above limifEq. (26)] to the real and imaginary modef ), _but for largey numerical damping increases only
parts of 8. Since the real part o, is — /2, we have from 0garithmically.

Eq. (19 An intriguing question immediately arises from the
above findings. Is it possible for the effective frequency and
1 u the effective damping constant to be equal to their associated
yeﬁ(At)_ZBR_E n @7) asymptotic(true) values at some nonzemt? This is pos-
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FIG. 1. Products of the effective frequen@ and damping coefficier(b) with the timestep for a harmonic oscillator of frequeney0.7 fs™* and damping
coefficienty=0.05 fs'* for the five schemes. The frequency used here corresponds approximately to an O—Hjsérichof 9.0 f$. The formulas forwggy
and y¢ given in Egs.(27) and (29), respectively.
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y=05fs1 w=07fs""

FIG. 2. Products of the effective frequen@,(b) and damping coefficier(t),(d) with the timestep for a harmonic oscillator of frequeney0.7 fs™* and
damping coefficienty=0.5 fs* for the five schemes. See Fig. 1 caption. The explicit and implicit algorithms are shown separately for clarity. Note the
different scales used and the more complex behavior of the explicit algorithms in comparison to a grtfatierd).

sible if there existsAt>0 for which both of the following 1 — 1
equations inw, vy, and, At are satisfied for the algorithm- At cos ! =3 \/4(1)?—;/2
dependenty.; and we; EXPressions: 2\po
or
Yer(At) —y=0, (31
1 —
wei(At) — 3 VAw?— y?=0. (32 cos{— VA(wAt)?—(yAt)?|= :
2 2\uo

From the above two equations, we can eliminatéo get a
relation betweem\t and vy, which may have zeros at values
of At other than zero. If such nonzero solutions exist, the
given a value ofy, we can choose a certain timest&p so
that the algorithm will exhibit neither numerical damping nor COS\/eym— 2
perturbation of frequency! Indeed, the frequency perturba-
tion is a serious artifact since it can lead to reson&nead Thus, Eqs(33) and(34) are satisfied by infinitely many
the numerical damping alters the overall motion of a system{@At, YAt} pairs. In Table IV, we show the first few pairs.
even for a large biomolecule with an enormous range of
vibrational mode$?

In the case of LI, from Eq(31), Eq. (27), and Table I,

We now use the expression fow(t)? above and the ex-
rpression foru, o, andv (Table ) to obtain the final relation:
1+ —

2
YAUT Gaor

yAt
1+ T} . (34

TABLE IV. Nonperturbative timesteps for LI. The first fefwAt, yAt}
pairs are listed as solutions to the E(33) and (34).

we write

= eyma', wAt yAt
5.496 53 3.548 476
or (sinceo=1) 11.560 42 4.938 652
14.132 42 5.328 136
1+ yAt+ (wAt)?=e?At, 17.73373 5.772 243
20.449 01 6.052 594
This relation implies 23.948 71 6.364 588
26.746 55 6.583 356
wAt=/e"A— (1+ vyAt). (33 30.184 59 6.823 213
33.036 61 7.002 538

Combining Eq.(29) with Eq. (32) yields
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Similar manipulations can be performed for MID1 and For molecular dynamics using the Backward-Euler method

LIM2. It turns out, however, that for these algorithms the (y=0 in LI), the above equations can be simplified consid-

cosine function becomes hyperbolic for nonnegative valuegrably. If one further imposes nondamping condition with

of At, implying no solutions for nonzerdt. For BBK and  frequency correction up to ordart® only, the delay function

LE, the first equation does not contain so for these algo- is simply

rithm.s the deriyation is not possible. Thus, there are nonzero W=~ AX" =XM1y (40)

solutions only in the case of LI.

To implement this idea of nondamping, nonperturbativeThis procedure can intuitively be interpreted as an addition

timesteps for LI, one would use a knownto getAt, from  of energy to the system at each timestep. To test this idea, we

which y would be specified. However, this approach cannoperformed MD simulations with LI using Eq&35), (36), and

be used for a system with more than one frequency, and eveg#0) on a system of 50 coupled harmonic chains, each made

for a single-frequency systemturns out to be rather large. of four carbon atoms. This type of system is chosen to im-

In order to overcome these difficulties in performing nonper-prove statistics, which are poor for a small molecular model.

turbative simulations with LI, we devise a different approachEach oscillator is assigned four frequencies: 0, 2:88),

in the next subsection which, in principle, can be applied forand 2 siti7/4), and 2 sii37/8), and we setAt to 0.2. The

all timesteps and damping constants. results are compared to those from the velocity-Verlet
scheme in Fig. 3. From the total and kinetic energy plots
generated by the two schemes, we see that the delay-function

F. Delay-function approach to LI method conserves energy very well. The fluctuation in total

The artificial damping and frequency-perturbation of LI €nergy in the case of MD is larger with LI. This may be due

can be removed, at least in the case of coupled harmoni® the symplecticness of Verlet as opposed to the LI variant
OscnlatorS’ by introducing a |inear functio‘ﬂ into the LI above and a|SO because the Velocity in Vel’|e'[ SCheme iS cor-

discretization[see Eq.(5) with M ~'gg(x) = Ax]: rect to a higher order, in comparison with LI. The overall
. N1 nil o agreement between the two methods is satisfactory for the
XTI 2xTHX L TX + AT L (X0 x0T kinetic energy as well. Without thé& addition, the LI energy
At? YAt ' would be much lower, especially in the=0 case, where the
—M-Ln (35) energy would decay to zero rapidly with time.
' In the nonzeroy case, formulation o is more difficult,
Here, the delay function requiring higher order corrections in frequencies to avoid
W (X" X"~ )= Px+ Qx" L (36) instability. The extent of correction iR can be determined

from the following matrix inequality:
is expressed in terms of symmetric matridgesP, andQ. As 5 o (yADR2
done earlier, we recast the above equation in the general AUP<[(2+yAt)—2e (1+yAD]l. (42)
form However, in energetic terms, the Backward-Euler scheme
37) above with simple¥ structure[Eq. (40)] appears to be a

X" x4 ox" =M, : - . ) .
# viable approach. Indeed, it is possible to generalize this

with method to a general nonlinear potential in a straightforward
u=1+yAt+At2A, way: replace the term\x by M “1ge(x) in_the _a_bov_e deri-
vations. The resulting solution to the implicit difference
v=—(2+yAt—At?P), (88  equation can be found by transforming the nonlinear equa-

o=1+At2Q tion into a local .optirrjization propleﬁﬁ as dong for L'I.

' However, fluctuations in energy might be large if the eigen-
If we impose the following two conditions on, v, ando: structure changes rapidly. Preliminary experiments on the
nucleic acid component deoxycytidine suggest that the fluc-

Ve AU=7, tuations are quite large in practice, and that the delay-
and function method requires some modifications. Such applica-
1 tions of the delay function and suitable variations for

wer(AD)= 5 Vaw?— v, nonlinear potentials are in progress.

using Eqs(27) and(29), the forms ofP andQ are obtained:

— vyAt
2

G. lllustration of the five schemes
P

In Figs. 1 and 2, we illustrate the expected behavior of
the five integration algorithms analyzed here with respect to
the effective frequency and the effective damping constant.
In Fig. 1, we show for two sets of and w the products

(39) werAt and y¢At, where we; and y.4 are defined by Egs.
(27) and (29), respectively, and expressed in Table Il. To
make the illustrations relevant to MD simulations, we show

:W 2|+’yAt|—2 ex;{

211/2
Y
X CO{ At{A— Z}

Q= %2 [exp(— yAt)(1+ yAtl + At2A)—1].

(I+yAtI+At2A)},
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FIG. 3. MD simulations of a molecular model composed of 50 four-carbon systems using the backward-Euler scheme with the delay-function modification
(LI with y=0) (a) and velocity-Verlet schemegg). The timestep used is 0.2, and the four frequencies assigned to each four-atom system are: 0, 0.76, 1.41,
and 1.85. The lower curve shows the kinetic energy, and the upper curve gives the total(eeer§gc. Il F for details

the timestep in units of femtoseconds fs=10"° s) and o , .

choosew [in Eq. (4)] to correspond to the fastest oscillation  Note also that ther limit for MID1 might explain the

present in biomolecular system, such as an O—H stretch. Thi§ird-order resonance of the implicit-midpoint schefhés _

vibrational mode has a characteristic period of 9 fs, whichScheme Ol'ke_ LIMZ or possibly another symplectic

corresponds tas=(2m)/T=0.7 s For the damping con- a_lg0r|thm3_ might overcome _th_|s order o_f resonariééand-

stant y [Eq. (4)] we use two values: 0.05 1§ (Fig. 1), a ziuk, schllck, Skeel, and Srinivgsinpublished. _

typical setting in all-atom Langevin simulations, ame0.5 With respect to the produckAt, we see again better

fs! (Fig. 2), closer to the diffusive(i.e., random-force agreement at small timesteps. However, while _LIM2 and

driver) regime. Note that for the former case, the critical MID1 reproduceyAt closely for At<1.0 fs, LI diverges

damping for the oscillator is ag=2w=1.4 fs . very rapidly .Wlth mcregsmgAt and exh|b|t§ a dlffe_rent
From Fig. 1, we see that all algorithms give good agree:m?n,d' In partlculgr_, the flrst-order_EgIer algorithith im-

ment with wAt (straight ling but depart from the expected Plicit and expliciy show no finite upper bound for

value at larger timesteps. The implicit algorithrttashed  Yer(At)AL, but the others have a zero limit:

and dotted line patterhgproduce a smaller value for larger lim (At)At=c for LI and LE

timesteps, and the explicit schemesgcles give larger val- AHx?’eﬁ '

ues within the stability regiorfTable Il). There is a limit

associated with each algorithm. For the effective frequency, =0 for LIM2, MID1, and BBK.

we see that (43

lim wer(At)At=cos * Y for LI, The behavior for the explicit algorithms is more complex

Atmoo 20 and appreciated by comparing the twaases in Figs. 1 and
2. For largery, the bifurcation of the product curves at cer-

N LIM2, tain values of timesteps is particularly evident. For $hend

2 o chosen herdunderdamped capéor Fig. 1, the timestep
— 7 for MID1 limits for stability areAt<2.85 fs for BBK andAt<2.96 fs

’ for LE. For Fig. 2(larger ), the corresponding limits are

=+ for BBK, 2.46 and 3.88 fs. It is evident that for the underdamped case,

—%m for LE. (42) the upper bound decreases with increasipgfor BBK

whereas for LE, it increasdsee also Table [Jl We see from

In particular, this behavior implies a troubling scenario forthe figure that there are two branches fogzAt for both
biomolecules since many disparate frequencies may bBBK and LE at all timesteps and that one of them matches
mapped onto one effective frequency at large discretizatiothe expected value at small timesteps. BBK diverges from
steps. In case of LI, this can happen only wher0 (a case this product at smaller timestefs.g.,At=2 fs as opposed to
when LI is not relevant 4 fs for LE).

J. Chem. Phys., Vol. 105, No. 1, 1 July 1996



B. Mishra and T. Schlick: Error in Langevin dynamics 309

IIl. THE FRAMEWORK FOR STATIONARY We multiply Eq.(10) by Q" andQ" "}, respectively, and
CALCULATIONS: EXPECTED KINETIC AND then take the stationary average to obtain the following pair
POTENTIAL ENERGIES AND CROSS CORRELATION of equations:
FUNCTIONS

m(Q"Q)+1(Q*)+0o(Q"Q)=0, (44

Though valuable for many kinetic aspects, MD simula- o N e
tions can also be used to obtain thermodynamic averages mQTQ )+ 1QTQ)+a(Q%)=0. (45
from the generated configurational ensembles. Certainly, thRote here that we have used the stationarity assumption to
integrator will affect dynamic properties of the system; for write
example, we have shown that the effective friction and fre- R,
guency depart from the theoretical values at finite timesteps. (Q"QH=(Q%),
But what about stationary properties? How will the integra- (Q"1QM=(Q"Q" 1)=(Q*Q),
tor affect mean kinetic and potential energies, for example?
How will those expected quantities depend on the model (Q""'Q"™1)=(Q*Q").

parametergy,w) and the timestep? To examine these MeafRye have three unknown quantities in Edqé4) and (45):
values, we develop in this section the necessary mathema .Q+Q_>, (Q?), and(Q* Q). To obtain a third relationship
cal tools to answer those questions, and additional ones, su ong those quantities, we square Exp) to arrive at the
as expected cross correlation functions. The latter can bgation
used, for example, to compute the expected translational dif-
fusion constants and other physical properties of interestu’+ ¥+ 0?)(Q?)+2v(u+0)(Q Q) +2ua(Q Q™)
(next section A2

According to classical statistical mechanics, equiparti- =AT(FY). (46)
tion among all vibrational modes is assumed at thermal equiSolution to the above system of equatidiEsys. (44), (45),
librium. Although valid only for quadratic Hamiltonians, the and(46)] leads to

equipartition theorem gives a general reference for the dis- AE?) (ot o)

tribution of energy among all vibrational modes. Clearly, the  (Q?)= , 47)
governing Newtonian equations are classical, but quantum (u=o)(uto—v)(utoty)
effects may be important in many cases for biomolecules, v
certainly for processes involving electronic rearrangements. (Q Q)= — (it o) (Q?%), (49
The stationary approximation computed below can thus be »
compared to the expected energies according to classical me- e [V —o(ut+o)] 5
chanics. (Q Q7 )=——7"——(Q. (49)
: - : u(pto)
We now define what we mean by a statistically station- , _ 5
ary process! A real processX(t)] is a statistically station- ~ The value okF<) above is known{F*)=2ykgT/At.
ary processn the wide sense if the following two conditions Many important quantities can now be computed from
hold: these expressions for each discretization scheme. For ex-
(i) (x(t))=constant, ample, oncéQ?) is computed according to E¢47) from the

(i) ([x(t+ 7) = (x(t+ 7)) ][X(t) = (x(1))])="F(7) only. c_orrespondinq,u,v,(r} triplet (Table ), th_e expected poten-
Using condition(i), we can simplify the expression in t|_al energy for each mode can be obtained from the expres-
the left hand-side ofii), since(x(t+ 7))=(x(t)), to obtain ~ SloNn

<Epot> = %w2<Q2>- (50
X(t+7) = (X(t+ X(t) —(x(t
(x4 m) = (4 DX = XO)D For the system of coupled harmonic oscillators, the mean
_ n _ n _ n L {x)2 total energy is obtained as a sum over all mean energies for
(A mX(0) = (XU D)) = X 1)+ each modg [see Eq(4)]. According to classical mechanics,
=(X(t+ 7)X(1)) — 2(x)2+ (x)2=(x(t+ 7)x(t)) — (x)2. (Epop for each mode should be equal #gT. Table V

shows in the first data column the resulting expressions in

Therefore, the autocorrelation functiox(t+ 7)x(t)) de-  kgT units for the potential energy. Note that whes 0, all
pends onr only; this implies that the first two moments are potential energies converge $;T, as expected, asdt—0
invariant with respect to translation on the time afisec- (see also middle data column in Table VI, which shows vari-
ond order stationarity}. In particular(x(t+ 7)x(t)) is sym-  ous limiting cases Note also that theE,,p values for LIM2
metric with respect to time. and BBK arey independent while the others are ris¢e also

Assuming that the discretized equatiffag. (10)] gov-  first data column in Table VI Thus, only these two algo-
erns a statistically stationary process, we now proceed tathms give the desired result for the Langevin equation. This
derive useful expressions for the mean average energies arglbecausey describes the strength at which the system is
cross correlation functions. We first restrict ourselves to theoupled to the heat bath. Whatever the valueyofs, it
algorithms that describe a coordinate propagation onlyshould not affect the equilibrium reached, only the rate at
MID1, which involves a dependent velocity propagation, iswhich equilibrium is attained. For MID1, for example, the
treated separately in Appendix A. larger they the lower the mean potential energy.
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TABLE V. Stationary values of the potential, kinetic, and the total energy. Energies are gikgh imits. See
Egs.(50) and (51) with Egs.(47), (48), and(49) of the text. See Tables | and VI for further information.

Algorithm (Epo (Exin) (Eop
U N2+5+€&) 25 §4+5+€)
(5+H(A+25+&) (5+A)(4+25+8) (6+A)(4+25+&)
2+ 1 2+ 1
LIM2 - — —t—
4+¢& 2+6+¢€ 172 55
MIDL 8+2¢ 2(4+46+ 8+ € 2(8+46+8+26)
(4+25+¢€)? (4+25+¢€)° (4+25+¢€)?
2 1 2 1
BBK — _—
2 276 =2 25
4+6
2+6 2
LE sy
4+25-& 4+25-& 4+2o

To derive the expected kinetic energy for each algo- 1 2
rithm, we use the difference formula for the velocity of each  (V'V")= 1 (Q"-Q"hH2)= ING [(Q*)—(Q"Q)].
algorithm in terms of the positior®"**, Q", andQ"* (as (52)
defined byQ in Table ). We then obtain expressions for
(V3 in terms of(Q?, (Q*Q), and(Q*Q") and calculate For LIM2 and BBK, V"=(Q""*~Q""*)/2At, leading to
the corresponding energy from the expression: 1

(Eiiny=%V?). (51) (VN =102 [(Q*)—(Q"Q7)]. (53
For LI and LE,V"=(Q"— Q" 1)/At, and we obtain

The symmetric velocity definition for the second-order
algorithms LIM2 and BBK implies a zero cross correlation

TABLE VI. Limiting cases of the stationary potential and kinetic energy. for the position and VeIOCIty:

Energies are given ikgT units. See Table V caption. “NR” denotes not

relevant(in a strict sense, the stability breaks down for explicit schemes <ann>: 2%“ <[Qn+1_ Qn—l]Qn>
<Ep0t> 1
i N N oo _ + _ + _
Algorithm y—0 At—0 At = AT [(Q Q) <Q Q>]_0'
LI &62) E[l— 5+é_2 é . . .
24+ > ( 5) 2 in agreement with exact calculatons. For MID1, siteand
24 &2 1] & 17 2 Q" are defined interdependently, we must formulate a differ-
LIM2 ) 5117 5{1‘ Zz} ent linear system and then solve fiv")? and (Q"Q").
MIDL 2 45 1-68 2 Details are collected in Appendix A.
w2t re 2 2 From the values of the expected kinetic enefgable
BBK 2 1 1+§ NR V), we see again that the energy convergeskiT for y=0
4-& 2 2 as At—0 for all methods(see also Table VI The kinetic
LE 2 [ B 25} 1, 1 3732} NR energy in all cases depends gnand w, expect for BBK
el e 2|13l ) where the kinetic energy depends gmnly (i.e., not onw).
E) In Figs. 4—6, we plot the resulting curves for the kinetic,
i potential, and total energies for the various algorithms for
r—0 At—0 At—x one vibrational mode. Two cases are illustratee:0 [Figs.
05 R P 05 4, @) and @b)] and y=0.05 fs ! [Figs. 5, Gc) and Gd)].
LI P 5[1—(2&—5) = For these examples, we again use=0.7 fs %, corre-
1 ) 1 sponding to the fastest period expected for biomolecules
LimM2 532 5 [1— 5 3 (O—H stretch, around 9 ¥sRecall that the timestep limits for
5 1282 1 &2 2 stability of both the BBK and LE schemes are 2.857 fs for
MID1 =2\ arar 5 [1— 7 p y=0; and 2.855 f§BBK) and 2.959 f¢LE) for y=0.05 fs ™.
1 s 1 s We plot the energy means for the implicit and explicit algo-
BBK 5[1—5 5[1— 5} NR rithms on separate curves to illustrate the patterns of the
2 28 1 s explicit algorithms; these exhibit large values at certain
LE 2|1 m} 5 [1* 5} NR timesteps and sharp discontinuities and are plotted on differ-

ent scales. The scale in the abscissa ikgh units.
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FIG. 4. Stationary kineti¢a),(b) and potentialc),(d) energy components for a harmonic oscillator of frequeney0.7 fs'* and damping coefficieny=0 for
the five schemes. See E@50) and(51) of the text and Table V. The potential energy curves for BBK and LE coincide wkeh

We observe from the plots that the potential energy foE,, for BBK and LE is the same At that timestep, the
the explicit algorithms rises sharply from the expected valueeffective frequency becomes purely imaginary and decreases
(0.5 inkgT units) with At, decreasing very sharply from the in magnitude, so the potential energy approaches zero for
point whereAt is roughly one third the periodfor y=0, large timesteps. The kinetic energy for LE exhibits a very

v=005f" w=071fs""

T

v=005fs1 =07fs"!

. . . of . . . :
of st ]
A A
S of 1 %9
L w  5r W 1
v v
-10¢ ] 1ob —e— BBK | |
—O0— LE
sf ] A5f ]
0 ] ) 6 3 10 0 2 4 3 8 10
(b) At (fs) (d) At (fs)

FIG. 5. Stationary kineti¢a),(b) and potentialc),(d) energy components for a harmonic oscillator of frequeney0.7 fs™* and damping coefficieny=0.05
fs71 for the five schemes.
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FIG. 6. Stationary total energy for a harmonic oscillator of frequeney0.7 fs'* and damping coefficieny=0 (a),(b) and y=0.05 fs'* (c),(d) for the five
schemes. See Table V also.

similar pattern for nonzerg. In contrast, for BBK theki- pears that for stationary mean square of coordinate calcula-
netic energy decays exponentialiynonotonically, whereas tions LIM2 and BBK are the only suitable candidates, as the
the potentialenergy departs from the 0.5 value rapidly. As aaverages calculated from them are independent of the damp-
consequence, the total energy of both explicit algorithms diing constant. Also, for these two algorithms, since the veloci-
verges from the expected value of 1.0 rapidigs. 6b) and  ties are defined symmetric, the cross-averé@¥®) has the
6(d)], with the divergence much sharper for LE, and sharpetrue value zero.
for both algorithms whery+0. Another point warrants emphasis. The stationary curves
The implicit algorithms exhibit very different and inter- shown in the figures above serve only as reference, but most
esting trends. The kinetic energies decay to zero with inlikely they have little relevance to practical MD calculations
creasingAt for MID1, LIM2, and LI (LI is shown only for at a constant timestep for systems of many coupled vibra-
nonzeroy as intendell As expected from the asymptotic tional modes. This is because equipartition is reached very
results forAt—o (Table VI) the rate of decay is fastest for slowly, namely at a rate inversely proportionaloln prac-
LI, followed by MID1, and then LIM2(rates proportional to tice, a symplectic scheme at relatively small timesteps is
1/At3, 1/At? and 1At, respectively. However, the potential likely to exhibit reasonable energy-conservation behavior if
energy of LIM2 increases withht as opposed to the decreas- started at expected energy values. For harmonic oscillators,
ing trend for MID1 and LI. As a result, the total energy for the conservation is exact even at large timesteps for such
LIM2 stays much closer to the expected value, relativelyschemes. Thus, one might see far less severe energy devia-
speaking, than LI and MID1. Furthermore, the critical dip in tions in practice.
the LIM2 total energy curve suggests a critical timestep to be  For frequencies small compared to the damping coeffi-
tested. cient(i.e., slower motions the potential energy is very close
The trends above are consistent with the findings oto the equipartition value and the kinetic energy varies
Zhang and SchlicR (see Fig. 3 of Ref. 19 in particulaand  roughly as(2+yAt) ! (see Table Y for all five algorithms.
also extend beyond those results. Clearly, we see that: BBRhus, at small timestegsompared to the periods of the slow
is preferred over LE, implicit algorithms achieve stability at motiong, the qualitative, as well as the quantitative features
the cost of some damping, and total energy conservation magf the corresponding energy graphs for coupled normal
be an inadequate criterion for evaluation when dynamianodes are mostly governed by the highest frequencies.
properties are of interest. This fact is highlighted by the com-
pensating trends of the kinetic and potential-energy compos .
nents of LIM2. While the total energy may be reasonable,lv' ZERO FREQUENCY LIMIT: FREE PARTICLE
the dynamics may be very differefe.g., litle momentum We now show how to apply the constructs of the previ-
but overstretched bonds and angleBy comparison, it ap- ous section, namely correlation functions, to analyze quanti-
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ties of physical interest. In the limit of zero frequency, we velocity dependent force and the random force. However, at
have a free particle subject to Brownian motion. In this caselarge v, the error associated with the stationary coordinate-

the translational diffusion constard,, is related to the co-
ordinate autocorrelation function in the largémit. Specifi-
cally, for a Brownian particle of unit mass, we have

autocorrelation functiorisee Eq.(47)] may be very large.
We saw that LIM2 and BBK do not seem to have this prob-
lem, since for them{QQ) is independent of. Indeed, it can
be seen that for large, the difference equation for LIM2

kgT
lim(Q?)=2Dt=2——t. (54  [Eq.(6)] reduces to
t—o Y N+l yn—1 ] t i N+l yn—1
From the discretized equation, we expect to see similar be- > X~ y M~ ge 2
havior for largen. We can test this by formulating the time- A
. ) . . t
dependent coordinate-correlation function M YE (57)
4 n-1n-1 Y
(Q" Q")— ~dn0) 21 E (a P—aP) which is a Brownian algorithm if we assume
p s=

X (" 5— a" %) (FPFS)

| 29kgTA S

2, (af—al)?

(v —4duo) 5= (55

for each algorithm.

For the implicit and explicit Euler(first-orde) algo-
rithms, LI and LE, respectively, we get two solutions &om
the limit w—0:

_ 1
S 1+ yAt”

a+:11

The denominatory?—4uc, for Eq. (55) is equal to (At)?
for these schemes. Thus, in the lamgdimit (for finite At),
ignoring terms independent of and noting thak” —0, we
have
2ykgTALS ")
nAnN\ — 2
Q=" xp7 2, (aD)

_ZeTAt's kT

Y p=1
kBT

-nAt

=2t (56)

We therefore recover the exact diffusion coefficient.
Similarly, in the case of BBK, LIM2, and MID1, we find

for =0,
yAt yAt
(1‘7) /(“T)’
and

2 —4uo=(yAt)2.

a+:11

The same expression for the diffusion coefficient is obtained:

lim (Q"QM=2- -NAt.

nAt—oo

Thus, all five algorithms considered predict the exact diffu-
sion coefficient. In practice, one observes diffusive motion

(x"" 1+ x"" Y /2~x"*"1 In case of LI and LE, we recover in
the largevy limit the corresponding implicit and explicit ver-
sions of diffusive algorithms. For BBK, in the largelimit,
we find

2

2At
XN Fl=xn=1_ ™+ 5 rn. (59)

Note, however, that BBK was derived in the lowlimit.

This equation could be viewed as a propagation scheme with
twice the timestep, sincge(x") can be considered an inter-
mediate point in the"**,x"~1] range. However, the above
iteration is not a recommended procedure in practice for nu-
merical reasons.

V. TRAJECTORY ERROR ESTIMATION

In stochastic dynamics, there is no unique trajectory but
rather an ensemble of trajectories. Even in MD, different
trajectories result from using: various algorithms, same algo-
rithms but different timesteps, different starting poihtsnd
different pseudorandom-number generators or seeds. An im-
portant question that must be addressed is how to evaluate a
generated trajectory. In the absence of direct experimental
data for comparison, the convention to date has been to com-
pare results to a simulation at a small timesteps. But is this
comparison adequate? How can it be supplemented? Are
there rigorous mathematical tests that can be performed?
These are difficult questions, and it is clear that the answers
must be based on statistical considerations. However, both
ways to evaluate static means as well as dynamic functions
must be constructed.

Below, we begin to formulate certain statistical tests that
could be performed for a given simulation. We then investi-
gate theoretically the behavior of our five integrators in two
relevant limits: largeAt and largey. For these limits, theo-
retical references exist.

The precise question we wish first to address is: given a
certain algorithm, set of parameters, etc., how does one par-
ticular resulting trajectory deviate from an exact, or mean,
trajectory? Loosely speaking, this is a notion of convergence.
However, there is a more rigorous way to quantify this time-
dependent statistical behavior of such a deviation.

Let us define the quantity

when (ym)/(w?At) is very large; the inertial effects become
relatively small and the motion is mainly governed by the

5Q"=Q"-Q(nAt),
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whereQ" andQ(nAt) are the positions at timeAt for the  the algorithm is said to be convergent in the mean square
discrete and the continuous case, respectively. By definitiorimit. %
the probability of havinggQ"=x at timenAt is For a nonlinear system, the above simple statistical de-
Camn . _  eAn scription ofx(t) is generally not possible. For such a system,
P(x=4Q" t=nAt)=(a(x—4Q"), we can still use this criteria of trajectory error to determine

where the functiony(x) is defined by the stochastic effects as a function of time, as follows.
Let A andB be two trajectories starting at timg=nyAt
S5(x)= 1 fw dk gk separated by a distance
27 J-w '

| 6Q3l=1Q°— Qg

where the norm used here corresponds to the standard Eu-
clidean norm. This difference has an upper bound of

|6Q0— 8Qp°| <[ 6Q°| + | 6Qg°

At any given timet=nAt, the expression fo6Qjg is di-
rectly related to the maximum Lyapunov exponent for the
dynamics\. If the time evolution is written as a linear com-
bination of exponentials, for smalt,, we can approxi-

We can now write the above probability as
1 (= :
_ n. ¢+_ — ik(x—6Q™M
P(x=38Q"% t=nAt)=—— f_mdk<e ).

To separate the err@@"—Q(nAt) into systematic and ran-
dom components, we 1e¥Q" represent the former, namely
the average value oR"—Q(nAt), and SR" represent the

latter, sothats — 6Q" = x — Q" — 6R",i.e.,

(e‘k(xfﬁ* 5Rn)):e‘k(xfﬁke*ik'mn). mate it with the fastest growing term:
n__ N0\ _ aMAt(n—ng)
Thus, our probability of having the err@"—Q(nAt) (0Qnp— dQup) =€ o (59
of the specified valu& becomes The maximum Lyapunov exponektreflects the rate of the
P(x=6Q", t=nAt) fastest event in the dynamics of a system making multiple

jumps among energy wells. This exponent is found to be a

1 (= K 5T/ ik 5RO function of the system siz&. From Eq. (59), the rate of
=5 fﬁwdk e (e )- divergenceA ((SQRg))/At can be defined as
n+1_ n
In general, the random component is a nonlinear func- (6Qae — 9Qns) — At
. : . i e, (60)
tion of Gaussians, and may have very complicated distribu- At

tion. For harmonic oscillators, however, it is a linear combi- ¢ v trajectories start from the same energy well, the rate at
nation of the independent Gaussian random variables witlich they diverge depends upon the rate at which they
time-dependent coefficients. In that case, the expectatiommp across a barrier. The more rare an event is, the slower
vglue in the above integral can be simplified to the expresg,q divergence rate. So, roughly speaking, there is close re-
sion lation between these two quantities, nameland the tran-
(e 5R“> — e (12)((8RM?). sition rate.
Then, our probability of having the err@"— Q(nAt) of the A. Application: Barrier crossing
specified valuex becomes Let us consider a one-dimensional concave potential sur-
face [ge(Q) = — 302Q? in Eq. (4)]. Then it is possible to

— n —
P(x=46Q" t=nAt) calculate the transmission coefficient associated with the

1 (o = X o transition state rate of barrier crossing using Kramer's rate
=5 J dk gkx—oQN g (K72{(oRD%), theory. The transmission coefficiertis defined in terms of
- the rate constank and the corresponding transition-state-
Upon integration, we obtain the result theory valuekrgr:
P(x=6Q", t=nAt) k=klkrst. (61)
1 [x—é_Q”]Z It is closely related to the way trajectories diver§df the
= exp( — —nZ_) . trajectory starts at positioQ (0)=0, the continuous Langevin
vam((6R")?) 4((6R"?) equation can be used to derive the transmission coefficient in

We clearly see that(t) too is a Gaussian random vari- the low-to-intermediatey regime:

able with mean and variance given, respectively, by
(xX(1))=58Q", (X(1)2=((sRM?).
Thus, for any algorithm, if the following limit holds:

lim ((6R™)?)=0,
At—>0< ) N2+ YN\, — wi=0,

—12
=—. (62

Wp

K=

1 = 2
1+kB—T<F(>\r) )

Here E(Ar) is the Laplace transform of the random force
evaluated at the larger root of the quadratic equation:
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and wy, is the barrier frequency. The value can be identi-  which cross the barrier and normalizatidivision by kg7,
fied with the Lyapunov coefficient for a nonlinear concavewhich assume®°>0 in Eq. (63)] is required:

region. Correspondingly, we can derive the transmission co- " (QY)2
efficient for the discrete case following exactly the same line < f _dQt Qlex;{ Q — >
of analysis. (At/w)F 2((QY)%)

Recall that in Sec. | we have derived the solution to the = (Q1)? ' 67)
discrete equation foQ" [Eqg. (B6)] for real positive fre- f dQ" Q - 2((QH7)
quency. If the initial velocityV° is specified instead o®?, _ _
we can evaluat&®® either exactly or numerically using an Solving the integral, we get
explicit method: < p( At2E2 )>

exp — == ——=1o
Q'=a;(At)VO+ay(At), (63) 2u*((QY)?) 69)
K— 2 .

wherea;(At) anda,(At) (a linear combination of Gauss- exp( a;
iang are functions of the method chosen. Above, we as- 2((QH%)

sumed the initial positio°=0, as in the continuous case.

: - . ) As the linear transform of a Gaussian distribution is Gauss-
The expression foQ" with w=iw, can now be written as

ian, F(,6’+) is also a Gaussian, having zero me@*(,&)) 0,

P ] . t2n-1 - and variance given bf{Fz(ﬂg) 2ykgTIB, . The latter is
Q"zz— (ay—al)Q +— E (a P obtained using convolution theorem from the autocorrelation
Vvi—duo Kop=1 function of the random force. Als@,, in Eq. (63) is a linear
combination of Gaussians. Thus, the transmission coefficient
—a" P)FP|. (64) is
[ QYY) +(a3) 1"
The rootsa.., and u, v, and o here correspond te=iwy, . K=| —————————>%
Now, long-time behavior is governed by the divergent terms <(Q1)2>+ L4
in the expression above, so we can write
pa'l 20 o
Q=———— | Q4+ — D, a PFP r 2 1/2
\/V2—4MO' Hop=1 ’ 1+ <(<(§lz)>2>
+ Nondivergent terms. (65) K= L keTAL | (69
The summation term above can be simplified using the con- L~ w28, (QHY)

volution theorem for the discrete Laplace transform; thus w

1)2\ _ 22/ (\/0)2 2
have for the first part 0" Swhere from Eq.(63), ((Q))=ai((V"))+(a3). In the

limit of At—0, the expression above farbecomes identical

pah At — to the one obtained by Gertnet al®
Q~——— Q'+ —F(B4)|, (66)
Vvi—dpo K B. Transmission coefficient for the five schemes
whereF (B, ) is the discrete Laplace transform of the random  |n order to study the comparative performance of various
force, integrators, we examine the term containjfig [denomina-
o tor in Eqg. (69)], since the terms in the numerator will stay
F(s)= D AtF™ exg —msAt), approximately the same for all schemes. Recall thaand
m=0 a, define the initial condition$Eq. (63)]. These initial con-

ditions are the same for LI and LE, as well as for BBK and
LIM2. For MID1, the initial velocity V° is specified instead
of QL therefore, the expression far for MID1 does not
contain theu? factor in the denominator. Both and 3, in
the denominator of Eq69) are scheme dependgiitable ).

evaluation as=8,=(1/At)In a, (see Sec.)| There are two
ways for Q" to be positive (i.e., cross the barrigr
wl\Jv’—4uo can be positive or negative, but not zero. This
means thaf?! is required to satisfy either:

L At If we further assume((Q')?)~kgTAt?, we can roughly
Q >_FF(ﬂ+) write
—-1/2
or ~[1+ —2—7 , (70)
At MoP+
Q< - " F(B+), where we have disregarded the factor determined by the ini-

tial conditions.
respectively. In both cases we nevertheless arrive at the same In Fig. 7, we illustratex as a function ofAt and y for
expression fork, valid in the low-to-intermediate friction our five schemes. The barrier frequengy=1.0 fs * and the
regime. To determing, integration over all the trajectories damping-constant settings examined are50, 500, and
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many concave and convex regions, and in such cases, the

s~ -1 : - e
Y =005fs o =10fs expression for the rate will be more intricate.

1.0

X1 . E
____________ m;'ll’z‘ VI. CONCLUSION
08| N
° I'B‘:BK \“\..\ This work was motivated by the problem of developing
w O7F O LE \ a framework for error analysis for practical simulations _of
06| em—  K_exact 1 macromolecules today by molecular and Langevin dynamics.
osh ‘a_r This problem is a difficult one for chaotic, multiple-time-
' [ scale systems, such as biomolecules, typically simulated at

(@ %400 o4 05 08 07 08 09 1.0 relatively large timesteps for relatively short times. Trajec-
tory assessment is likely to increase in importance in the
coming years with improvements in computer hardware and
software.

As a start, we have analyzed the behavior of five inte-
gration algorithms for the Langevin equation with respect to
accuracy, stability, and statistical properties. Two concepts
of practical and theoretical importance, namely perturbative
damping and perturbative frequency, were introduced. The
model considered is a very simple and exactly solvable one.
Still, in absence of a general framework for analysis of non-
linear systems, this simple example already provides impor-
tant theoretical insights with regards to choosing a particular
algorithm for a given problem, appreciating algorithmic dif-
ferences, and quantifying error.

If stochastic dynamics is used for searching the configu-
rational landscape of a molecule for low energy conforma-
tions, large timesteps are preferred. In this case, the implicit
algorithms are recommended due to their unconditional sta-
bility. These algorithms are feasible computationally with an
efficient nonlinear minimizet®® The symplectic implicit al-
gorithm LIM2 is an excellent candidate for moderate
timesteps(with respect to the period of fastest oscillation
since it has many good statistical propertigg®an energigs
and small numerical damping. For larger timesteps, however,
severe departures from the assigned damping coefficient and
the original frequency are realized. Both quantities approach
FIG. 7. Transmission coefficient as a function of timestep for a concavezero in the infiniteAt limit. In the case of MID1(implicit
B e ot oo il sy PO, We observe silar behiavir, However, numerical
are 0.975, 0.781, 0.618, .correspondi:z{/a)) (b): and(c), respectively. See V_Vo_rk is needed _to assess these trends su_w_easl;b_enptotl_c
Egs. (62 and (70) of the text. limits may have little practical relevance to finite simulations

of complex systems. In addition to this limiting behavior,

distortion of the phase-space picture and occurrence of reso-
1000 ps?. For largerAt, unlike the exact cased, can be nances have also been reported at timesteps that are rela-
complex for some schemes leading to compteXVhenyis tively large with respect to the fastest perfddThe pertur-
small, the behavior ok is simply correlated to the loss in bative damping and frequency functions introduced here can
kinetic energy for all schemes. This is most prominent forhelp in devising cures for these probleffis.
LI, where at smallery there is little counteracting mecha- For the implicit-Euler/Langevin algorithm, LI, theory
nism to numerical damping. BBK and LE show systematicsuggested existence of timesteps for which there is no nu-
divergent drifts withAt for larger vy, whereas the implicit merical damping nor shift in original frequenc¢g.g., Table
schemes show a batter overall balance in their behavior fdV) to overcome these difficulties. However, since the value
the range ofAt examined. For example, the implicit mid- of the corresponding damping constant is large, the use of
point scheme does quite well in the intermediateegime. such special timesteps in LI is probably not of practical

For an ideal scheme, the rate will be independent of theralue. Our delay-function approach, in contrast, appears
timestep used. However, this will not be the case in practicemore promising, as demonstrated on a system of linear os-
The differences in transition rates can be considered as d@llators. Extensions to nonlinear systems were outlined here
global estimate of how the individual trajectories diverge.and will be tested in further works.

For biomolecules, the complex potential is composed of When the detailed dynamic behavior of a molecular sys-
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tem is of central interest, the implicit algorithms cannot gainwith the definitions:
advantage over the explicit algorithms because resolution
cannot be as good with larger timesteps. The implicit algo-
rithms are also computationally expensiVes long as one  The matrixU has two eigenvalues which satisfy a quadratic
chooses timesteps sufficiently smaller than the limiting valugquation:

for linear stability(e.g., Table I}, BBK appears to have the
desirable properties on theoretical grounds with respect to
stationary processes. The mean potential energy is indepen-
dent of y and the correlation between position and velocity is . ] . )
zero. Furthermore, the upper bound® for the effective Comparing this form with the general expression of Eq.
rotation in spaceeffective frequency might dampen low- (11), we obtain the values qf, », ando (shown in Table )
order resonances in comparison to the implicit midpoint al-and use local stability and accuracy analysis of Sec. Il. The
gorithm, which can have maximal rotation within a family of WO eigenvalues ot are

=yAt, e=wAt.

¢a2—2[1——

symplectic integrator’ In the limit y—0, BBK becomes the &2 52
favored Verlet algorithm. 1— —+ \[—— €2
Certainly, our conclusions regarding harmonic oscilla- .= 4 4

tors cannot be extrapolated automatically to more complex - 1424 _2

systems. Both extended analysis and practical simulations 2 4
are required. In a subsequent paper, we plan to extend and ) ,
apply the mathematical constructs developed here for analy-n€ homogeneous part of the solution can be written as

sis of simulations proper for nonlinear systems. The intrigu- n n
) . : C1 Cy|lay
ing problems of resonance and perturbed effective Hamilto- o = ol
nians might also be investigated. @ C3 Cajla-

For example, with the values @" specified an=0 and 1,
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APPENDIX A: ANALYSIS FOR MID1 To calculate the stationary averages corresponding to
For the implicit-midpoint algorithm, MID1, the coordi- L\/IID; we multiply on the right by the transpose of H\1)
nate and velocity for each normal mode satisfy the following O obtain
equations:
g k ) (VW) o(VQ) (VW) o(VQ) |
n+1_ n =
Y e taum s & [Qreie QU= oQV) wAQQ)] | @(QV) «*QQ)
and AtXF?) 0
+ .
Vn+1+vn Qn+l_Qn 0 0
2 - At ' We then obtain three simultaneous linear equations in three
In a matrix form, this can be written as a single equation: upknO\t/)vns. The solution for the three stationary averages are
vt AR\ e
©Q"+1 :U[an + o } (A1) [4+46+ 5%+ €]
(W) =3keT i o577
where
2
S 62 2 _ [4+ € ]
1 -5 € ©AQQ)=4KeT [ 2 sats 27
. e o~ AkeToE?
4 A= 7525+ 22
=1+ f+ 6_2 Thus, the stationary values of energies can be written in
2 4’ terms of the above averages:
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1, [4+ €] The constants can be determined by the given initial condi-

(Epop = 5 @(Q%)=2kgT [A+20+ 27 tions for Q° and Q% Q°=A,+B, andQ*=a,Ay+a_B,.
This leads to the final analytical expression for the solution:
(Eu) 1 (VW)= 2k T [4+ 46+ 6%+ €] L
kin/ = 5 —<Kg 272 _ _
2 [4+26+ €] e [—o(aT = a"HQ% u(a —a")Q?r
and
2

(Etop) = (Exin) T (Epop- I At 2 (" P—a"P)FP, (B6)

V2= 4po p=1 -
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