
The notion of error in Langevin dynamics. I. Linear analysis
Bimal Mishra and Tamar Schlicka)
Department of Chemistry and the Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012

~Received 28 September 1995; accepted 18 March 1996!

The notion of error in practical molecular and Langevin dynamics simulations of large biomolecules
is far from understood because of the relatively large value of the timestep used, the short simulation
length, and the low-order methods employed. We begin to examine this issue with respect to
equilibrium and dynamic time-correlation functions by analyzing the behavior of selected implicit
and explicit finite-difference algorithms for the Langevin equation. We derive: local stability criteria
for these integrators; analytical expressions for the averages of the potential, kinetic, and total
energy; and various limiting cases~e.g., timestep and damping constant approaching zero!, for a
system of coupled harmonic oscillators. These results are then compared to the corresponding exact
solutions for the continuous problem, and their implications to molecular dynamics simulations are
discussed. New concepts of practical and theoretical importance are introduced: scheme-dependent
perturbative damping and perturbative frequency functions. Interesting differences in the asymptotic
behavior among the algorithms become apparent through this analysis, and two symplectic
algorithms, ‘‘LIM2’’ ~implicit! and ‘‘BBK’’ ~explicit!, appear most promising on theoretical
grounds. One result of theoretical interest is that for the Langevin/implicit-Euler algorithm~‘‘LI’’ !
there exist timesteps for which there is neither numerical damping nor shift in frequency for a
harmonic oscillator. However, this idea is not practical for more complex systems because these
special timesteps can account only for one frequency of the system, and a large damping constant
is required. We therefore devise a more practical, delay-function approach to remove the artificial
damping and frequency perturbation from LI. Indeed, a simple MD implementation for a system of
coupled harmonic oscillators demonstrates very satisfactory results in comparison with the
velocity-Verlet scheme. We also define a probability measure to estimate individual trajectory error.
This framework might be useful in practice for estimating rare events, such as barrier crossing. To
illustrate, this concept is applied to a transition-rate calculation, and transmission coefficients for the
five schemes are derived. ©1996 American Institute of Physics.@S0021-9606~96!50224-2#

I. INTRODUCTION

Molecular dynamics~MD! simulations have become a
powerful tool for analyzing the properties of many molecular
systems. Besides providing insight into kinetic pathways,
such simulations can often sample the energetically acces-
sible configurations of a system more efficiently in compari-
son to the commonly used Metropolis/Monte Carlo algo-
rithms. From these configurational ensembles, various
transport coefficients and dynamic correlation functions can
be calculated.

Often, the equations of motion are modified by coupling
the system to an additional degree of freedom1,2 or to a heat
bath3 in the form of Langevin equation. This makes possible
the study of a system’s dynamics in a suitable statistical
framework. Such a modified framework of the governing
equations of motion can also serve a different purpose, such
as overcoming the inherent instability~e.g., drifts in energy!
of microcanonical MD algorithms due to the truncation er-
rors induced by a nonzero timestep.4 This problem is particu-
larly severe for systems with long relaxation times. Applica-
tions of MD today extend from liquid and small molecular

systems that began over 50 years ago5 to proteins in solution
and complex membrane systems.

In canonical ensembles, the target system is coupled to a
surrounding heat bath with which the system is free to ex-
change energy, thereby maintaining a state of equilibrium. In
the Langevin dynamics formalism, the explicit solvent de-
grees of freedom are eliminated from the nonequilibrium
thermodynamic description with the help of Mori–Zwanzig
projection operator technique.6,7 The result is a set of sto-
chastic differential equations describing the dynamic state of
the solute. For example, for a molecular system whose
phase-space coordinates arex(t) and p(t), the Langevin
equation~in its simplest form! can be written as

dx

dt
5M21p,

~1!
dp

dt
52gE~x!2gp1r ~ t !,

whereM is the diagonal mass matrix,gE(x) is the gradient
of the potential energyE(x), g is the damping constant, and
r (t) is the random force vector.

The Langevin equation, like most coupled nonlinear dif-
ferential equations, must be solved numerically. There has
certainly been considerable mathematical analysis on nu-
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merical solution of the Langevin equation8–10with regards to
accuracy and stability, but the results are often of little prac-
tical use to simulators of biomolecular dynamics. This is
because the available mathematical theory focuses on the
limit Dt→0 ~whereDt is the timestep!, whereas large-scale
MD simulations today use rather large timesteps with respect
to the fastest period of the system.~e.g., one ninth to one
quarter!. Furthermore, such simulations are rather short in
total time with respect to relaxation times of the slowest
modes, and they use low-order algorithms~e.g., 2!.

Clearly, in stochastic dynamics, there is no unique tra-
jectory but rather an ensemble of trajectories. Even in MD
~g50!, different trajectories result from using: various algo-
rithms, same algorithms but different timesteps, different
starting points,11 and different pseudorandom-number gen-
erators or seeds. An important question that arises is how to
evaluate a generated trajectory. This question has long been
realized in the chemical dynamics community of small
systems.12 For biomolecules, in the absence of direct experi-
mental data for comparison, the convention to date has been
to compare results to a simulation at a small timestep. But is
this comparison adequate? How can it be supplemented? Are
there rigorous mathematical tests that can be performed?
These are difficult questions, and it is clear that the answers
must be based on statistical considerations. However, both
ways to evaluate static means as well as dynamic functions
must be constructed.

In Langevin dynamics simulations, we have two major
sources of error: systematic and random. The first arises from
the limited accuracy of the integration algorithm~discretiza-
tion error!, the finite precision of the computer~roundoff
error!, the errors in the energy and force evaluations~e.g.,
approximations to trigonometric expressions, truncated mul-
tipole expansions!, and so on. The ‘‘random’’ error compo-
nent comes from the finite length of the trajectory~i.e., finite
ensemble averages!, and many other aspects of the calcula-
tion that can lead to spurious results~e.g., different equili-
bration procedures, finite length of the pseudorandom num-
ber generator!.

Many of the above considerations must be tested heuris-
tically, e.g., by running a simulation five times longer and
varying parameters, conditions, and protocols. While these
requests may seem trivial, the high cost of biomolecular
simulations in terms of computer time~i.e., months to gen-
erate a nanosecond trajectory of a protein in solution! has
limited these checks in practice.

The problem of trajectory assessment arises in this con-
text because the nonequilibrium processes simulated in bio-
molecular MD are associated with large, chaotic systems;
there are bothdeterministicandstochasticfeatures; simula-
tion time is relativelyshort; the force fields areapproximate;
and experimental data arelimited. Furthermore, we are inter-
ested in both local~detailed kinetics! and global~sampling!
features. Therefore, one can imagine that different models, in
combination with different integration or propagation meth-
ods, could be designed to address different aspects of dy-
namics problems for macromolecules. Using dynamic simu-
lations for statistical averaging in phase space is certainly

appropriate, though special care must be exercised for highly
correlated data. When detailed kinetics, such as transition
pathways and rates are of interest, global aspects~i.e., en-
semble properties in the framework of statistical mechanics!
are also required.

How can we know whether a simulated trajectory is
‘‘representative’’ in some sense? Elofsson and Nilsson13

asked how ‘‘consistent’’ MD simulations are by comparing
30 protein simulations differing in solvent representation and
protocols; they found great sensitivity of overall fluctuations
to the starting structure and suggested that several shorter
simulations span conformation space better than one long
one. More recently, Auffingeret al.11 demonstrated the di-
vergence of ten 100 ps trajectories of tRNA in solvent and
salt—from the initial x-ray structure as well as from one
another—when initial conditions and parameters were var-
ied. Consistency problems emerged~e.g., results could be
worse, surprisingly, when equilibration time wasextended.!
In addition, the authors emphasized theinadequacyof en-
ergy conservation and root-mean-square fluctuations~from
one available experimental structure! alone; they suggested
that multiple MD simulations be generated to evaluate the
consistency of results in general. While it is likely that the
specific problems above are aggravated by the complexity of
electrostatics in nucleic acids, they are still typical of biomo-
lecular dynamics, as practitioners well know. Adequate
evaluation of biomolecular simulations will undoubtedly in-
crease in urgency in the coming years as longer simulations
of larger systems will be possible. Commensurate refinement
of algorithmic and simulation protocols is expected.

To begin an investigation of the notion of error, we
present a comparative study of selected finite-differencing
algorithms for Langevin dynamics simulations. The basic
themes we explore are twofold: the effect of different inte-
grators on the physical properties of interest, and the general
notion of error in this stochastic framework. The concept of
error in finite dynamic simulations using various algorithms
is particularly important, especially when one is interested in
long-time processes of complex systems. Different algo-
rithms can be used for different purposes, and obvious evalu-
ation criteria are not available.14

Over the last 20 years, a variety of integration algorithms
have been proposed and their relative merits and accuracies
discussed.15–19However, much of these analyses focused on
explicit methods, since they are easier to implement for com-
plex nonlinear forces, as well as on local error only. It is well
known that explicit methods are stable only for small
timesteps; they become unstable at some critical value ofDt
and are thus problematic for systems with multiple
timescales.20 We emphasize, though, that ‘‘small’’ in our
context of explicit integrators is rather large in mathematical
analysis.

Implicit algorithms, on the other hand, tend to be mostly
unconditionally stable~A-stable!.20 Roughly speaking, this
means that there are no stability restrictions on the model
problem y85ly ~whose solution isAelt! as long as
Re~l!,0 for nonnegative timesteps. Implicit algorithms can,
however, introduce numerical damping21 and are computa-
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tionally very demanding.19 Symplectic methods have re-
cently gained favorable attention for their good performance,
but resonance problems have been noted.22,23 Thus, in order
to adequately apply a particular algorithm to a specific prob-
lem at hand, a comparative study of local stability, accuracy,
and statistical behavior is required for the range of timesteps
used in molecular and Langevin simulations. This paper be-
gins an examination in this direction.

For illustration of these concepts, we consider five finite-
differencing algorithms. Three of them have been discussed
by Zhang and Schlick in detail.19 ‘‘LI’’, for Langevin/
implicit-Euler; and ‘‘LIM2’’ and ‘‘MID1’’ which are semi-
implicit. The other two are explicit: ‘‘BBK’’, a Verlet-like
algorithm presented by Brooks, Bru¨nger, and Karplus;18 and
an explicit-Euler version, ‘‘LE’’; their statistical properties
and various limiting cases have been analyzed by Pastor
et al.24 The analysis offered here extends to new questions
and also presents a unified approach for examining many
properties of interest, particularly for MD applications. Ex-
tensions to other algorithms and more complex potentials are
natural in this framework.

In Sec. II, we discuss the issue of stability and accuracy
by deriving general solution expressions in the linear force
case. We define two concepts:perturbed frequencyandper-
turbed damping, both of which are scheme dependent. In
particular, for algorithms where numerical damping is im-
portant, we show that a choice of timestep, as a function of a
frequency and a damping constant, can be made~at least for
the case of quadratic potentials! to yield no numerical damp-
ing as well as no shift in frequency. This formula is possible
only for LI, but has limited practical use because of the large
damping constant required, and the restriction to a single
frequency. Therefore, we also propose a ‘‘delay-function’’
approach to remove artificial damping and frequency pertur-
bation from LI which also works for MD~g50!. Application
to a system of coupled oscillators demonstrates very satisfac-
tory results in comparison to velocity Verlet.

In Sec. III, the concept of stationary states is introduced,
and we derive for each algorithm selected averages for a
harmonic oscillator system. In Sec. IV, the diffusion constant
is calculated for each algorithm as a limiting case~zero fre-
quency!. The possible ways of estimating a trajectory error
are discussed in Sec. V by introducing a probability measure.
For an illustration, this measure is applied to rate-constant
calculations in barrier crossing events. We conclude with a
brief summary of the findings and discussion of future work.

II. ANALYSIS OF STABILITY AND ACCURACY

When applying numerical integrators to a nonlinear set
of equations, it is important to know their region of stability.
Stability of numerical methods is strongly related to the
‘‘stiffness’’ of the problem. Intuitively, this characteristic
means that the system’s dynamics is governed by at least two
processes that occur on varying time scales. The existence of
noise in the stochastic case complicates matters further~see,
for example, Fig. 1 in Ref. 25!, since it adds other physical
and numerical considerations not present in the correspond-

ing nonstochastic differential equation. In practice, the analy-
sis of long-time behavior of numerical methods for initial
value problems starts with the study of a linear reference
problem. This is because, unfortunately, there is no general
global method for analysis of a nonlinear system. However,
many insights can already be gained from the linear analysis.

A. The Langevin equation for coupled harmonic
oscillators

Let us consider the Langevin equation for the positionx:

Mẍ1gE~x!1gMẋ5r ~ t !, ~2!

where the dot superscripts denote differentiation with respect
to time. The random forcer (t) is a stationary, Gaussian
white noise characterized by mean and covariance matrix,
respectively,

^r ~ t !&50

and

^r ~ t !r ~ t1!
T&52gkBTMd~ t2t1!.

Here, T is the temperature of the heat bath,kB is Boltz-
mann’s constant, andd is the Dirac delta function.

If the force is linearized, the governing potential has the
bilinear form

M21gE~x!5~ 1
2x

TAx!85Ax,

whereA is a symmetric positive definiten3n matrix, and
the prime superscript denotes differentiation with respect to
x. This is the case for a system of coupled harmonic oscilla-
tors.

B. Mass scaling and unitary transformation

Let us apply the following transformations to simplify
the Langevin equation further:

x5M21/2Z,

G5M21/2r ,

B5M21/2AM21/2.

The Langevin equation then becomes

Z̈~ t !1gŻ~ t !1BZ~ t !5G~ t !, ~3!

whereG(t) has the statistical properties:

^G~ t !&50

and

^G~ t !G~ t1!
T&52gkBTd~ t2t1!.

We now proceed by applying unitary transformations. We
can transform the matrixB into a diagonal matrixD on the
basis of the orthogonal matrixT(TT5T21), to obtain

D5TBT21.

Under this transformation, the coordinates and the random
force become

Q5TZ
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and

F5TG.

We have now converted Eq.~3! into a system ofN un-
coupled independent equations for each normal modeQj :

Q̈j1gQ̇j1v j
2Qj5F j~ t !. ~4!

The corresponding random force characteristics are

^F j&50

and

^F j~ t !Fk~ t1!&52gkBTd jkd~ t2t1!.

For notational simplicity, we drop the subscriptj in future
discussions.

C. Discretizations of the normal-mode equation

Consider now a numerical discretization of Eq.~4!. We
denote byQn the difference-equation approximation toQ at
time nDt. This approximation is integrator dependent.
Therefore, we are interested in examining the different
propagation patterns. For each of the algorithms considered,
we define the variablesQ, Q̇, andQ̈ in a unified framework
~Table I!. See Appendix A for details regarding MID1.

Very briefly, ‘‘LI’’ is the first-order implicit-Euler algo-
rithm applied to the Langevin equation; it exhibits numerical

damping which is well understood,19,26but is unconditionally
stable. ‘‘LIM2’’ and ‘‘MID1’’ are second-ordersymplectic,27

semi-implicit algorithms. The implicit-midpoint algorithm,
‘‘MID1’’, in particular, was found to perform well at larger
timesteps but exhibit resonance.23 Verlet, other symplectic
algorithms, and possibly other integrators exhibit resonance
also.23 ‘‘BBK’’ is a second-order, explicit algorithm that re-
duces to well known symplectic Verlet algorithm when
g→0.24 ‘‘LE’’ is first-order explicit-Euler algorithm, differ-
ing from ‘‘BBK’’ in the definition of the velocity.

The recursion relations for each algorithm are given be-
low ~we setd5gDt, not to be confused with delta function!:

LI: ~11d!xn112~21d!xn1xn21

5Dt2M21@2gE~xn11!1r n#, ~5!

LIM2: ~11d/2!xn1122xn1~12d!xn21

5Dt2M21F2gES xn111xn21

2 D1r nG , ~6!

MID1:
xn112xn21

Dt
5
vn111vn21

2
,

vn112vn21

Dt
5M21gES xn111xn21

2 D
2gS xn112xn

Dt D1r n, ~7!

BBK: ~11d/2!xn1122xn1~12d/2!xn21

5Dt2M21@2gE~xn!1r n#, ~8!

LE: ~11d!xn112~21d!xn1xn21

5Dt2M21@2gE~xn!1r n#. ~9!

Note thatxn11 appears in both sides of the equations for
LI, LIM2, and MID1. This implicit relation can be solved by
reformulating the solution of the nonlinear equation forxn11

into a minimization subproblem; see details in Ref. 19. Note
also that MID1 differs from the other algorithms in that the
position and velocity are coupled by a matrix relation; for the
other integrators, the propagation formulae involve positions
only. Finally, note that all right-hand sides except for
MID1 reduce to the same discretization for
ẍ5(xn1122xn1xn21)/Dt2 when g50. The systematic
forces are evaluated at the previous point for the explicit
algorithms~BBK and LE!, at the new point for LI, and at
midpoint for MID1 and LIM2.

The discretizations listed in Table I for the normalized
position, velocity, and acceleration for each algorithm can be
considered within a unified representation for the dynamics.
Namely, by assuming a three-step method, either explicit or
implicit, we write Eq.~4! with the exception of MID1~see
Appendix A! as

mQn111nQn1sQn215Dt2Fn. ~10!

Herem, n, ands depend on the choice of finite-differencing
scheme and are listed in Table I. Note that these coefficients

TABLE I. The five discretizations for Langevin dynamics. The first data
column gives expression forQ,Q̇,Q̈ for each integration scheme. For the
origin of these definitions, see Ref. 19 for LI, LIM2, and MID1; and Ref. 24
for BBK and LE. In the second data column, we list the corresponding
values ofm, n, ands @see Eq.~10! of the text#. To simplify the expressions,
we use the definitionsd5gDt ande5vDt, whereg is the damping coeffi-
cient,v is the frequency, andDt is the timestep.

Algorithm Q, Q̇, Q̈ m, n, s

LI Qn11 11d1e2,

[Qn2Qn21]/Dt, 222d,

[Qn1122Qn1Qn21]/Dt2 1

LIM2 @Qn111Qn21#/2, 11
d
2

1
e2

2
,

[Qn112Qn21]/2Dt, 22,

@Qn1122Qn1Qn21#/Dt2 12
d
2

1
e2

2

MID1 @Qn111Qn#/2, 11
d
2

1
e2

4
,

@Vn111Vn#/25@Qn112Qn#/Dt, 221
e2

2
,

@Vn112Vn#/Dt 12
d
2

1
e2

4

BBK Qn, 11
d
2
,

[Qn112Qn21]/2Dt, 221e2,

@Qn1122Qn1Qn21#/Dt2 12
d
2

LE Qn, 11d,

[Qn112Qn]/Dt, 222d1e2,

[Qn1122Qn1Qn21]/Dt2 1
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are functions ofDt, g, andv. The random forceFn above
follows the Gaussian statistics with mean and variance, re-
spectively, given by

^Fn&50, ^FnFm&5
2gkTdnm

Dt
.

The solution of Eq.~10! and derivation of long-time values
for a free particle were already published by Pastor, Brooks,
and Szabo~Ref. 24, appendix!.

D. Solution of the discretized Langevin equation

Equation ~10! is a linear, inhomogeneous difference
equation with specified initial conditionsQ0 andQ1. It can
readily be solved by the method of variation of parameters.28

Briefly, this method first determines solution of the homoge-
neous equationL(y)50, whereL is the difference operator.
For example, for a second-order difference equation, the so-
lution might look likey5A1a1

n1A2a2
n, whereA1 andA2 are

functions to be determined. The method of variation of pa-
rameters forL(y)5 f determinesA18 andA28 , after whichA1
andA2 are obtained by integration. That system of equations
is

A18a11A28a250, A18a181A28a285 f .

The second equation is obtained by imposing the former con-
dition, applying the operatorL to y, and setting the result
equal tof .

For the homogeneous analog of Eq.~10!, we assume a
solution of formQn5an, wherea is the function to be de-
termined. We then obtain a quadratic equation ina,

ma21na1s50, mÞ0. ~11!

The solution,a, has at most two roots:

a65
2n

2m
6

1

2m
An224ms. ~12!

Note that if we writea as a complex numberaR1 ia I ,
wherei 5 A21, we must know the sign ofn224ms for each
scheme.25

The form of a is an important characteristic of each
integration scheme because it determines how the solution
evolves in time (Qn5A1a1

n 1A2a2
n ). For example, for the

homogeneous case, writinga as aR1 ia I , we obtain
uanu5(aR

21a I
2)n/2. For the implicit-Euler discretization,

uau5@11gDt1v2Dt2!#21/2, which is less than or equal to 1
~for g and Dt positive! for an underdamped oscillator;
hence the scheme is unconditionally stable. For
BBK, uau5[(12gDt/2)/(11gDt/2)]1/2 as long as Dt
< (2/v)A12(g/2v)2. This is the timestep constraint for
stability.

In general,a is a complex number. Writinga5ebDt and
b5bR1 ib I and substituting these expressions in Eq.~11!,
we obtain the following system of equations forbR andbI :

@mebRDt2se2bRDt#sin~b IDt !50 ~13!

and

@mebRDt1se2bRDt#cos~b IDt !1n50. ~14!

Analysis of these equations determines the regions of stabil-
ity for each algorithm. There are two possibilities for the
above relations to hold:~i! sin~bIDt!50, pertaining to the
overdamped oscillator case~g.2v! and ~ii ! mebRDt

2 se2bRDt 5 0, the underdamped case~g,2v!. We discuss
each case in turn.

Case i~overdamped oscillator!:
Sinceb IDt5mp for m50,61,62,..., the value of cos~bIDt!
is 21 for m odd and11 for m even. Whenm is even, from
Eq. ~14! we have

mebRDt1se2bRDt1n50,

a quadratic equation inebRDt. We arrive at

bR65
1

Dt
lnF2n6An224ms

2m G .
SincebR is a real number, stability requires the following
two conditions:

n224ms.0, ~15!

2n6An224ms

2m
.0. ~16!

Whenm is odd, we obtain from Eq.~14! the relation

mebRDt1se2bRDt2n50,

which gives the value ofbR ,

bR65
1

Dt
lnFn6An224ms

2m G .
The first stability criterion is identical to the above case
~n224ms.0! and the second is

n6An224ms

2m
.0. ~17!

Case ii~underdamped oscillator!:
In the second possible scenario, we require@instead of
sin~bIDt!50#

mebRDt2se2bRDt50.

The solution of this equation yields

bR5
1

2Dt
ln

s

m
. ~18!

With this value ofbR , we can solve Eq.~14! for bI to get

b I5
1

Dt
cos21F 2n

2Ams
G . ~19!

SincebR must be negative for asymptotic convergence, we
requires/m in Eq. ~18! to be positive and less than 1. In Eq.
~19!, the argument of the inverse cosine function must lie
between21 and11. Taken together, we arrive at the fol-
lowing two stability criteria for the underdamped case:

n224ms,0, ~20!

0,
s

m
,1. ~21!
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In Table II, we present the corresponding stability con-
dition for each algorithm. Note that LI, LIM2 and MID1 are
unconditionally stable. BBK requires

Dt,
2

v
A12S g

2v D 2, ~22!

and LE requires

Dt,
2

v
1

g

v2 . ~23!

See Table III for relevant limits for MD simulations. Bad
behavior in practice, however, is realized for smaller
timesteps than those dictated analytically~above! due to non-
linearity and other errors~see Sec. V!. Both explicit algo-
rithms requireDt,2/v for the zero-damping case~g50!.

Having found the solution for the homogeneous part, we
can determine the solution to the inhomogeneous equation
@Eq. ~10!# by the method of variation of parameters. This is
outlined in Appendix B.

E. Perturbed frequency and damping constant for the
underdamped oscillator

Having derived the stability criteria from the solution of
the linear inhomogeneous difference equation for various al-
gorithms, we can now examine another interesting aspect of
these solutions. The exponential solutions of forman exhibit
a time dependence on functions ing andv. For example, for
LI uaun'exp$[2g/21(v2Dt)/2]t% while for BBK
uaun'exp$[2g/21(g3Dt2)/24]t%. Theg/2 term corresponds
to physical damping due to friction. The~v2Dt!/2 term in the
LI exponent corresponds to numerical damping. This damp-
ing, as we see, is both timestep and frequency dependent.19,26

As v and/orDt increase, numerical damping becomes more
severe. For BBK, the numerical damping term is of second
order inDt and isg3 dependent.

More generally, we can express this asymptotic behavior
for each scheme by the following analysis. For the homoge-
neous solution of the corresponding differential equation
@Eq. ~4!#, assuming aQ(nDt) 5 enDtb0 type of solution, we
obtain a quadratic equation inb0,

b0
21gb01v250. ~24!

TABLE II. Accuracy and stability criteria for the five integrators,g,2v case. The stability conditions are
derived from Eqs.~20! and ~21! of the text. The second data column shows the expressions for the perturbed
damping constant@Eq. ~27!# and the effective normalized frequency@Eq. ~29!# for each algorithm. In the third
data column, we list the nonperturbative solution of Eqs.~31! and~32! relevant only for LI. As in Table I, we
usedd5gDt ande5vDt.

Algorithm Stability Condition geff(Dt), veff(Dt) NonperturbativeDt(g)

LI A-Stable 1

Dt
ln@11d1e2#, e2d/2S 11

d

2D5

1

Dt
cos21F 21d

2A11d1e2
G cosFAed2S 11

d

2D
2G

LIM2 A-Stable
1

Dt
lnF21d1e2

22d1e2G, Dt50

1

Dt
cos21F 2

A~21e2!22d2G
MID1 A-Stable

1

Dt
lnF412d1e2

422d1e2G, Dt50

1

Dt
cos21F 42e2

A~41e2!224d2G
BBK Dt,

2

v
A12S g

2v D 2 1

Dt
lnF21d

22dG, Dt50

1

Dt
cos21F22e2

42d2
G

LE
Dt,

2

v
1

g

v2

1

Dt
ln@11d#,

Dt50

1

Dt
cos21F21d2e2

2A11d
G

TABLE III. Limiting timesteps for stability of the explicit algorithms. The
stability criteria of Eqs.~20! and ~21! in the text are used to illustrate the
upper bounds for the timesteps~given in fs! corresponding to threeg values
andv50.7 fs21, characteristic of an O–H bond stretch~period of 9 fs!.

Algorithm g50 g50.05 fs21 g50.5 fs21

BBK 2.86 2.85 2.46
LE 2.86 2.96 3.88
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Solutions~at most two distinct roots! thus correspond to the
following:

b065
2g

2
6Ag2

4
2v2.

Note that the special caseg50 yieldsb056iv.
The solution to the inhomogeneous equation@Eq. ~4!#

can be found similarly as for discrete equations. We write the
solution in terms of the coordinate and velocity,V(t), at
t50:

Q~nDt !5S b01e
b02t2b02e

b01t

b012b02
DQ~0!

1S eb01t2eb02t

b012b02
DV~0!

1E
0

nDt

dtS eb01t2eb02t

b012b02
DF~nD2t!. ~25!

Since the difference-equation solution,Qn, converges to the
analytic solution,Q(nDt), as Dt→0, the following limit
holds:

lim
Dt→0

b6~Dt !5b06 . ~26!

Thus, our solutions from Eqs.~13! and ~14! for bR and
bI contain the effective values of the damping constant and
frequency as a function of theDt. These are obtained by
applying the above limit@Eq. ~26!# to the real and imaginary
parts ofb. Since the real part ofb0 is 2g/2, we have from
Eq. ~18!,

geff~Dt !52bR5
1

Dt
ln

m

s
. ~27!

Therefore,

lim
Dt→0

geff~Dt !5g. ~28!

From the imaginary part of b @Eq. ~19!#,
Im~b0!5

1
2~4v22g2!1/2, we have

veff~Dt !5b I5
1

Dt
cos21F 2n

2Ams
G , ~29!

so

lim
Dt→0

veff~Dt !5 1
2 A4v22g2. ~30!

We refer to the functionsgeff andveff defined above as
theeffective damping constantand theeffective frequencyof
the difference-equation solution, respectively. For a discus-
sion of veff for the implicit-midpoint scheme, for example,
see Ref. 23. These expressions for each algorithm are given
in Table II and illustrated in Figs. 1 and 2~discussed below!.

Interestingly, all the algorithms exhibit a perturbed fric-
tion. For the implicit algorithms, the numerical damping is
frequency dependent, whereas for explicit methods, it is not.
In LI, numerical damping exists even wheng50 ~that is why
the method has been proposed only for the Langevin
model21!, but for largeg numerical damping increases only
logarithmically.

An intriguing question immediately arises from the
above findings. Is it possible for the effective frequency and
the effective damping constant to be equal to their associated
asymptotic~true! values at some nonzeroDt? This is pos-

FIG. 1. Products of the effective frequency~a! and damping coefficient~b! with the timestep for a harmonic oscillator of frequencyv50.7 fs21 and damping
coefficientg50.05 fs21 for the five schemes. The frequency used here corresponds approximately to an O–H stretch~period of 9.0 fs!. The formulas forveff

andgeff given in Eqs.~27! and ~29!, respectively.
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sible if there existsDt.0 for which both of the following
equations inv, g, and,Dt are satisfied for the algorithm-
dependentgeff andveff expressions:

geff~Dt !2g50, ~31!

veff~Dt !2 1
2 A4v22g250. ~32!

From the above two equations, we can eliminatev to get a
relation betweenDt andg, which may have zeros at values
of Dt other than zero. If such nonzero solutions exist, then
given a value ofg, we can choose a certain timestepDt so
that the algorithm will exhibit neither numerical damping nor
perturbation of frequency! Indeed, the frequency perturba-
tion is a serious artifact since it can lead to resonance,23 and
the numerical damping alters the overall motion of a system,
even for a large biomolecule with an enormous range of
vibrational modes.29

In the case of LI, from Eq.~31!, Eq. ~27!, and Table I,
we write

m5egDts,

or ~sinces51!

11gDt1~vDt !25egDt.

This relation implies

vDt5AegDt2~11gDt !. ~33!

Combining Eq.~29! with Eq. ~32! yields

1

Dt
cos21F 2n

2Ams
G5

1

2
A4v22g2

or

cosF12 A4~vDt !22~gDt !2G5
2n

2Ams
.

We now use the expression for (vDt)2 above and the ex-
pression form, s, andn ~Table I! to obtain the final relation:

cosAegDt2F11
gDt

2 G25e2~gDt !/2F11
gDt

2 G . ~34!

Thus, Eqs.~33! and~34! are satisfied by infinitely many
$vDt,gDt% pairs. In Table IV, we show the first few pairs.

FIG. 2. Products of the effective frequency~a!,~b! and damping coefficient~c!,~d! with the timestep for a harmonic oscillator of frequencyv50.7 fs21 and
damping coefficientg50.5 fs21 for the five schemes. See Fig. 1 caption. The explicit and implicit algorithms are shown separately for clarity. Note the
different scales used and the more complex behavior of the explicit algorithms in comparison to a smallerg ~Fig. 1!.

TABLE IV. Nonperturbative timesteps for LI. The first few$vDt,gDt%
pairs are listed as solutions to the Eqs.~33! and ~34!.

vDt gDt

5.496 53 3.548 476
11.560 42 4.938 652
14.132 42 5.328 136
17.733 73 5.772 243
20.449 01 6.052 594
23.948 71 6.364 588
26.746 55 6.583 356
30.184 59 6.823 213
33.036 61 7.002 538
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Similar manipulations can be performed for MID1 and
LIM2. It turns out, however, that for these algorithms the
cosine function becomes hyperbolic for nonnegative values
of Dt, implying no solutions for nonzeroDt. For BBK and
LE, the first equation does not containv, so for these algo-
rithms the derivation is not possible. Thus, there are nonzero
solutions only in the case of LI.

To implement this idea of nondamping, nonperturbative
timesteps for LI, one would use a knownv to getDt, from
which g would be specified. However, this approach cannot
be used for a system with more than one frequency, and even
for a single-frequency systemg turns out to be rather large.
In order to overcome these difficulties in performing nonper-
turbative simulations with LI, we devise a different approach
in the next subsection which, in principle, can be applied for
all timesteps and damping constants.

F. Delay-function approach to LI

The artificial damping and frequency-perturbation of LI
can be removed, at least in the case of coupled harmonic
oscillators, by introducing a linear functionC into the LI
discretization@see Eq.~5! with M21gE(x)5Ax#:

xn1122xn1xn21

Dt2
1g

xn112xn

Dt
1Axn111C~xn,xn21!

5M21r n. ~35!

Here, the delay function

C~xn,xn21!5Pxn1Qxn21 ~36!

is expressed in terms of symmetric matricesA, P, andQ. As
done earlier, we recast the above equation in the general
form

mxn111nxn1sxn215M21r n, ~37!

with

m511gDt1Dt2A,

n52~21gDt2Dt2P!, ~38!

s511Dt2Q.

If we impose the following two conditions onm, n, ands:

geff~Dt !5g,

and

veff~Dt !5
1

2
A4v22g2,

using Eqs.~27! and~29!, the forms ofP andQ are obtained:

P5
1

Dt2 F2I1gDtI22 expS 2gDt

2 D
3cosS DtFA2

g2

4 G1/2D ~ I1gDtI1Dt2A!G ,
~39!

Q5
1

Dt2
@exp~2gDt !~ I1gDtI1Dt2A!2I #.

For molecular dynamics using the Backward-Euler method
~g50 in LI!, the above equations can be simplified consid-
erably. If one further imposes nondamping condition with
frequency correction up to orderDt3 only, the delay function
is simply

C52A~xn2xn21!. ~40!

This procedure can intuitively be interpreted as an addition
of energy to the system at each timestep. To test this idea, we
performed MD simulations with LI using Eqs.~35!, ~36!, and
~40! on a system of 50 coupled harmonic chains, each made
of four carbon atoms. This type of system is chosen to im-
prove statistics, which are poor for a small molecular model.
Each oscillator is assigned four frequencies: 0, 2 sin~p/8!,
and 2 sin~p/4!, and 2 sin~3p/8!, and we setDt to 0.2. The
results are compared to those from the velocity-Verlet
scheme in Fig. 3. From the total and kinetic energy plots
generated by the two schemes, we see that the delay-function
method conserves energy very well. The fluctuation in total
energy in the case of MD is larger with LI. This may be due
to the symplecticness of Verlet as opposed to the LI variant
above and also because the velocity in Verlet scheme is cor-
rect to a higher order, in comparison with LI. The overall
agreement between the two methods is satisfactory for the
kinetic energy as well. Without theC addition, the LI energy
would be much lower, especially in theg50 case, where the
energy would decay to zero rapidly with time.

In the nonzerog case, formulation ofC is more difficult,
requiring higher order corrections in frequencies to avoid
instability. The extent of correction inP can be determined
from the following matrix inequality:

Dt2P<@~21gDt !22e2~gDt !/2~11gDt !#I . ~41!

However, in energetic terms, the Backward-Euler scheme
above with simpleC structure@Eq. ~40!# appears to be a
viable approach. Indeed, it is possible to generalize this
method to a general nonlinear potential in a straightforward
way: replace the termAx by M21gE(x) in the above deri-
vations. The resulting solution to the implicit difference
equation can be found by transforming the nonlinear equa-
tion into a local optimization problem,21 as done for LI.
However, fluctuations in energy might be large if the eigen-
structure changes rapidly. Preliminary experiments on the
nucleic acid component deoxycytidine suggest that the fluc-
tuations are quite large in practice, and that the delay-
function method requires some modifications. Such applica-
tions of the delay function and suitable variations for
nonlinear potentials are in progress.

G. Illustration of the five schemes

In Figs. 1 and 2, we illustrate the expected behavior of
the five integration algorithms analyzed here with respect to
the effective frequency and the effective damping constant.
In Fig. 1, we show for two sets ofg and v the products
veffDt and geffDt, whereveff and geff are defined by Eqs.
~27! and ~29!, respectively, and expressed in Table II. To
make the illustrations relevant to MD simulations, we show
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the timestep in units of femtoseconds~1 fs510215 s! and
choosev @in Eq. ~4!# to correspond to the fastest oscillation
present in biomolecular system, such as an O–H stretch. This
vibrational mode has a characteristic period of 9 fs, which
corresponds tov5~2p!/T50.7 fs21. For the damping con-
stantg @Eq. ~4!# we use two values: 0.05 fs21 ~Fig. 1!, a
typical setting in all-atom Langevin simulations, andg50.5
fs21 ~Fig. 2!, closer to the diffusive~i.e., random-force
driven! regime. Note that for the former case, the critical
damping for the oscillator is atg52v51.4 fs21.

From Fig. 1, we see that all algorithms give good agree-
ment withvDt ~straight line! but depart from the expected
value at larger timesteps. The implicit algorithms~dashed
and dotted line patterns! produce a smaller value for larger
timesteps, and the explicit schemes~circles! give larger val-
ues within the stability region~Table II!. There is a limit
associated with each algorithm. For the effective frequency,
we see that

lim
Dt→`

veff~Dt !Dt5cos21
g

2v
for LI,

5
p

2
for LIM2,

5p for MID1,

56p for BBK,

56p for LE. ~42!

In particular, this behavior implies a troubling scenario for
biomolecules since many disparate frequencies may be
mapped onto one effective frequency at large discretization
steps. In case of LI, this can happen only wheng50 ~a case
when LI is not relevant!.

Note also that thep limit for MID1 might explain the
third-order resonance of the implicit-midpoint scheme.23 A
scheme like LIM2 or possibly another symplectic
algorithm30 might overcome this order of resonance@Mand-
ziuk, Schlick, Skeel, and Srinivas~unpublished!#.

With respect to the productgeffDt, we see again better
agreement at small timesteps. However, while LIM2 and
MID1 reproducegDt closely for Dt,1.0 fs, LI diverges
very rapidly with increasingDt and exhibits a different
trend. In particular, the first-order Euler algorithms~both im-
plicit and explicit! show no finite upper bound for
geff(Dt)Dt, but the others have a zero limit:

lim
Dt→`

geff~Dt !Dt5` for LI and LE,

50 for LIM2, MID1, and BBK.
~43!

The behavior for the explicit algorithms is more complex
and appreciated by comparing the twog cases in Figs. 1 and
2. For largerg, the bifurcation of the product curves at cer-
tain values of timesteps is particularly evident. For theg and
v chosen here~underdamped case! for Fig. 1, the timestep
limits for stability areDt,2.85 fs for BBK andDt,2.96 fs
for LE. For Fig. 2 ~larger g!, the corresponding limits are
2.46 and 3.88 fs. It is evident that for the underdamped case,
the upper bound decreases with increasingg for BBK
whereas for LE, it increases~see also Table III!. We see from
the figure that there are two branches forveffDt for both
BBK and LE at all timesteps and that one of them matches
the expected value at small timesteps. BBK diverges from
this product at smaller timesteps~e.g.,Dt52 fs as opposed to
4 fs for LE!.

FIG. 3. MD simulations of a molecular model composed of 50 four-carbon systems using the backward-Euler scheme with the delay-function modification
~LI with g50! ~a! and velocity-Verlet schemes~b!. The timestep used is 0.2, and the four frequencies assigned to each four-atom system are: 0, 0.76, 1.41,
and 1.85. The lower curve shows the kinetic energy, and the upper curve gives the total energy~see Sec. II F for details!.
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III. THE FRAMEWORK FOR STATIONARY
CALCULATIONS: EXPECTED KINETIC AND
POTENTIAL ENERGIES AND CROSS CORRELATION
FUNCTIONS

Though valuable for many kinetic aspects, MD simula-
tions can also be used to obtain thermodynamic averages
from the generated configurational ensembles. Certainly, the
integrator will affect dynamic properties of the system; for
example, we have shown that the effective friction and fre-
quency depart from the theoretical values at finite timesteps.
But what about stationary properties? How will the integra-
tor affect mean kinetic and potential energies, for example?
How will those expected quantities depend on the model
parameters~g,v! and the timestep? To examine these mean
values, we develop in this section the necessary mathemati-
cal tools to answer those questions, and additional ones, such
as expected cross correlation functions. The latter can be
used, for example, to compute the expected translational dif-
fusion constants and other physical properties of interest
~next section!.

According to classical statistical mechanics, equiparti-
tion among all vibrational modes is assumed at thermal equi-
librium. Although valid only for quadratic Hamiltonians, the
equipartition theorem gives a general reference for the dis-
tribution of energy among all vibrational modes. Clearly, the
governing Newtonian equations are classical, but quantum
effects may be important in many cases for biomolecules,
certainly for processes involving electronic rearrangements.
The stationary approximation computed below can thus be
compared to the expected energies according to classical me-
chanics.

We now define what we mean by a statistically station-
ary process.31 A real process [x(t)] is a statistically station-
ary processin the wide sense if the following two conditions
hold:

~i! ^x(t)&5constant,
~ii ! ^[x(t1t)2^x(t1t)&][ x(t)2^x(t)&] &5 f (t) only.
Using condition~i!, we can simplify the expression in

the left hand-side of~ii !, since^x(t1t)&5^x(t)&, to obtain

^@x~ t1t!2^x~ t1t!&#@x~ t !2^x~ t !&#&

5^x~ t1t!x~ t !&2^x~ t1t!^x&&2^x^x~ t1t!&&1^x&2

5^x~ t1t!x~ t !&22^x&21^x&25^x~ t1t!x~ t !&2^x&2.

Therefore, the autocorrelation function̂x(t1t)x(t)& de-
pends ont only; this implies that the first two moments are
invariant with respect to translation on the time axis~‘‘sec-
ond order stationarity’’!. In particular,̂ x(t1t)x(t)& is sym-
metric with respect to time.

Assuming that the discretized equation@Eq. ~10!# gov-
erns a statistically stationary process, we now proceed to
derive useful expressions for the mean average energies and
cross correlation functions. We first restrict ourselves to the
algorithms that describe a coordinate propagation only;
MID1, which involves a dependent velocity propagation, is
treated separately in Appendix A.

We multiply Eq.~10! byQn andQn21, respectively, and
then take the stationary average to obtain the following pair
of equations:

m^Q1Q&1n^Q2&1s^Q1Q&50, ~44!

m^Q1Q2&1n^Q1Q&1s^Q2&50. ~45!

Note here that we have used the stationarity assumption to
write

^QnQn&5^Q2&,

^Qn11Qn&5^QnQn21&5^Q1Q&,

^Qn11Qn21&5^Q1Q2&.

We have three unknown quantities in Eqs.~44! and ~45!:
^Q1Q2&, ^Q2&, and ^Q1Q&. To obtain a third relationship
among those quantities, we square Eq.~10! to arrive at the
relation

~m21n21s2!^Q2&12n~m1s!^Q1Q&12ms^Q1Q2&

5Dt4^F2&. ~46!

Solution to the above system of equations@Eqs. ~44!, ~45!,
and ~46!# leads to

^Q2&5
Dt4^F2&~m1s!

~m2s!~m1s2n!~m1s1n!
, ~47!

^Q1Q&52
n

~m1s!
^Q2&, ~48!

^Q1Q2&5
@n22s~m1s!#

m~m1s!
^Q2&. ~49!

The value of̂ F2& above is known:̂ F2&52gkBT/Dt.
Many important quantities can now be computed from

these expressions for each discretization scheme. For ex-
ample, oncêQ2& is computed according to Eq.~47! from the
corresponding$m,n,s% triplet ~Table I!, the expected poten-
tial energy for each mode can be obtained from the expres-
sion

^Epot&5 1
2v

2^Q2&. ~50!

For the system of coupled harmonic oscillators, the mean
total energy is obtained as a sum over all mean energies for
each modej @see Eq.~4!#. According to classical mechanics,
^Epot& for each mode should be equal to12kBT. Table V
shows in the first data column the resulting expressions in
kBT units for the potential energy. Note that wheng50, all
potential energies converge to12kBT, as expected, asDt→0
~see also middle data column in Table VI, which shows vari-
ous limiting cases!. Note also that thêEpot& values for LIM2
and BBK areg independent while the others are not~see also
first data column in Table VI!. Thus, only these two algo-
rithms give the desired result for the Langevin equation. This
is becauseg describes the strength at which the system is
coupled to the heat bath. Whatever the value ofg is, it
should not affect the equilibrium reached, only the rate at
which equilibrium is attained. For MID1, for example, the
larger theg the lower the mean potential energy.
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To derive the expected kinetic energy for each algo-
rithm, we use the difference formula for the velocity of each
algorithm in terms of the positionsQn11, Qn, andQn21 ~as
defined byQ̇ in Table I!. We then obtain expressions for
^V2& in terms of ^Q2&, ^Q1Q&, and ^Q1Q2& and calculate
the corresponding energy from the expression:

^Ekin&5 1
2^V

2&. ~51!

For LI and LE,Vn5(Qn2Qn21)/Dt, and we obtain

^VnVn&5
1

Dt2
^~Qn2Qn21!2&5

2

Dt2
@^Q2&2^Q1Q&#.

~52!

For LIM2 and BBK,Vn5(Qn112Qn21)/2Dt, leading to

^VnVn&5
1

2Dt2
@^Q2&2^Q1Q2&#. ~53!

The symmetric velocity definition for the second-order
algorithms LIM2 and BBK implies a zero cross correlation
for the position and velocity:

^QnVn&5
1

2Dt
^@Qn112Qn21#Qn&

5
1

2Dt
@^Q1Q&2^Q1Q&#50,

in agreement with exact calculatons. For MID1, sinceVn and
Qn are defined interdependently, we must formulate a differ-
ent linear system and then solve for^(Vn)2& and ^QnQn&.
Details are collected in Appendix A.

From the values of the expected kinetic energy~Table
V!, we see again that the energy converges to1

2kBT for g50
asDt→0 for all methods~see also Table VI!. The kinetic
energy in all cases depends ong and v, expect for BBK
where the kinetic energy depends ong only ~i.e., not onv!.

In Figs. 4–6, we plot the resulting curves for the kinetic,
potential, and total energies for the various algorithms for
one vibrational mode. Two cases are illustrated:g50 @Figs.
4, 6~a! and 6~b!# andg50.05 fs21 @Figs. 5, 6~c! and 6~d!#.

For these examples, we again usev50.7 fs21, corre-
sponding to the fastest period expected for biomolecules
~O–H stretch, around 9 fs!. Recall that the timestep limits for
stability of both the BBK and LE schemes are 2.857 fs for
g50; and 2.855 fs~BBK! and 2.959 fs~LE! for g50.05 fs21.
We plot the energy means for the implicit and explicit algo-
rithms on separate curves to illustrate the patterns of the
explicit algorithms; these exhibit large values at certain
timesteps and sharp discontinuities and are plotted on differ-
ent scales. The scale in the abscissa is inkBT units.

TABLE V. Stationary values of the potential, kinetic, and the total energy. Energies are given inkBT units. See
Eqs.~50! and ~51! with Eqs.~47!, ~48!, and~49! of the text. See Tables I and VI for further information.

Algorithm ^Epot& ^Ekin& ^Etot&

LI
d~21d1e2!

~d1e2!~412d1e2!

2d

~d1e2!~412d1e2!

d~41d1e2!

~d1e2!~412d1e2!

LIM2
21e2

41e2
1

21d1e2
21e2

41e2
1

1

21d1e2

MID1
812e2

~412d1e2!2
2~414d1d21e2!

~412d1e2!2
2~814d1d212e2!

~412d1e2!2

BBK
2

42e2
1

21d

2

42e2
1

1

21d

LE
21d

412d2e2
2

412d2e2

41d

412d2e2

TABLE VI. Limiting cases of the stationary potential and kinetic energy.
Energies are given inkBT units. See Table V caption. ‘‘NR’’ denotes not
relevant~in a strict sense, the stability breaks down for explicit schemes!.

Algorithm

^Epot&

g→0 Dt→0 Dt→`

LI
d~21e2!

e2~41e2!

1

2 F12Sd1
e2

d DG d

e2

LIM2
21e2

41e2
1

2 F11
e2

4 G 1

2 F12
2

e2G
MID1

2

41e2 F12
4d

41e2G 12d

2

2

e2

BBK
2

42e2
1

2 F11
e2

2 G NR

LE
2

42e2 F12
2d

42e2G 1

2 F11
1

4
~e22d2!G NR

^Ekin&

g→0 Dt→0 Dt→`

LI
2d

e2~41e2!

1

2 F12S2d1
e2

d DG 2d

e4

LIM2
1

21e2
1

2 F12
d

2G 1

d

MID1
2

41e2 F11
12d2

~41e2!2G 1

2 F12
e2

4 G 2

e2

BBK
1

2 F12
d

2G 1

2 F12
d

2G NR

LE
2

42e2 F12
2d

42e2G 1

2 F12
d

2G NR
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We observe from the plots that the potential energy for
the explicit algorithms rises sharply from the expected value
~0.5 in kBT units! with Dt, decreasing very sharply from the
point whereDt is roughly one third the period~for g50,

^Epot& for BBK and LE is the same!. At that timestep, the
effective frequency becomes purely imaginary and decreases
in magnitude, so the potential energy approaches zero for
large timesteps. The kinetic energy for LE exhibits a very

FIG. 4. Stationary kinetic~a!,~b! and potential~c!,~d! energy components for a harmonic oscillator of frequencyv50.7 fs21 and damping coefficientg50 for
the five schemes. See Eqs.~50! and ~51! of the text and Table V. The potential energy curves for BBK and LE coincide wheng50.

FIG. 5. Stationary kinetic~a!,~b! and potential~c!,~d! energy components for a harmonic oscillator of frequencyv50.7 fs21 and damping coefficientg50.05
fs21 for the five schemes.
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similar pattern for nonzerog. In contrast, for BBK theki-
netic energy decays exponentially~monotonically!, whereas
thepotentialenergy departs from the 0.5 value rapidly. As a
consequence, the total energy of both explicit algorithms di-
verges from the expected value of 1.0 rapidly@Figs. 6~b! and
6~d!#, with the divergence much sharper for LE, and sharper
for both algorithms whengÞ0.

The implicit algorithms exhibit very different and inter-
esting trends. The kinetic energies decay to zero with in-
creasingDt for MID1, LIM2, and LI ~LI is shown only for
nonzerog as intended!. As expected from the asymptotic
results forDt→` ~Table VI! the rate of decay is fastest for
LI, followed by MID1, and then LIM2~rates proportional to
1/Dt3, 1/Dt2, and 1/Dt, respectively!. However, the potential
energy of LIM2 increases withDt as opposed to the decreas-
ing trend for MID1 and LI. As a result, the total energy for
LIM2 stays much closer to the expected value, relatively
speaking, than LI and MID1. Furthermore, the critical dip in
the LIM2 total energy curve suggests a critical timestep to be
tested.

The trends above are consistent with the findings of
Zhang and Schlick19 ~see Fig. 3 of Ref. 19 in particular! and
also extend beyond those results. Clearly, we see that: BBK
is preferred over LE, implicit algorithms achieve stability at
the cost of some damping, and total energy conservation may
be an inadequate criterion for evaluation when dynamic
properties are of interest. This fact is highlighted by the com-
pensating trends of the kinetic and potential-energy compo-
nents of LIM2. While the total energy may be reasonable,
the dynamics may be very different~e.g., little momentum
but overstretched bonds and angles!. By comparison, it ap-

pears that for stationary mean square of coordinate calcula-
tions LIM2 and BBK are the only suitable candidates, as the
averages calculated from them are independent of the damp-
ing constant. Also, for these two algorithms, since the veloci-
ties are defined symmetric, the cross-average^QV& has the
true value zero.

Another point warrants emphasis. The stationary curves
shown in the figures above serve only as reference, but most
likely they have little relevance to practical MD calculations
at a constant timestep for systems of many coupled vibra-
tional modes. This is because equipartition is reached very
slowly, namely at a rate inversely proportional tog. In prac-
tice, a symplectic scheme at relatively small timesteps is
likely to exhibit reasonable energy-conservation behavior if
started at expected energy values. For harmonic oscillators,
the conservation is exact even at large timesteps for such
schemes. Thus, one might see far less severe energy devia-
tions in practice.

For frequencies small compared to the damping coeffi-
cient ~i.e., slower motions!, the potential energy is very close
to the equipartition value and the kinetic energy varies
roughly as~21gDt!21 ~see Table V! for all five algorithms.
Thus, at small timesteps~compared to the periods of the slow
motions!, the qualitative, as well as the quantitative features
of the corresponding energy graphs for coupled normal
modes are mostly governed by the highest frequencies.

IV. ZERO FREQUENCY LIMIT: FREE PARTICLE

We now show how to apply the constructs of the previ-
ous section, namely correlation functions, to analyze quanti-

FIG. 6. Stationary total energy for a harmonic oscillator of frequencyv50.7 fs21 and damping coefficientg50 ~a!,~b! andg50.05 fs21 ~c!,~d! for the five
schemes. See Table V also.
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ties of physical interest. In the limit of zero frequency, we
have a free particle subject to Brownian motion. In this case,
the translational diffusion constant,Dt , is related to the co-
ordinate autocorrelation function in the larget limit. Specifi-
cally, for a Brownian particle of unit mass, we have

lim
t→`

^Q2&52Dtt52
kBT

g
t. ~54!

From the discretized equation, we expect to see similar be-
havior for largen. We can test this by formulating the time-
dependent coordinate-correlation function

^QnQn&5
Dt4

~n224ms! (
p51

n21

(
s51

n21

~a1
n2p2a2

n2p!

3~a1
n2s2a2

n2s!^FpFs&

5
2gkBTDt3

~n224ms! (
p51

n21

~a1
p 2a2

p !2 ~55!

for each algorithm.
For the implicit and explicit Euler~first-order! algo-

rithms, LI and LE, respectively, we get two solutions fora in
the limit v→0:

a151, a25
1

11gDt
.

The denominator,n224ms, for Eq. ~55! is equal to (gDt)2

for these schemes. Thus, in the largen limit ~for finite Dt!,
ignoring terms independent ofn and noting thata2

n→0, we
have

^QnQn&5
2gkBTDt3

~gDt !2 (
p51

n21

~a1
p !2

5
2kBTDt

g (
p51

n21

152•
kBT

g
•nDt

52t•
kBT

g
. ~56!

We therefore recover the exact diffusion coefficient.
Similarly, in the case of BBK, LIM2, and MID1, we find

for v50,

a151, a25S 12
gDt

2 D YS 11
gDt

2 D ,
and

n224ms5~gDt !2.

The same expression for the diffusion coefficient is obtained:

lim
nDt→`

^QnQn&52•
kBT

g
•nDt.

Thus, all five algorithms considered predict the exact diffu-
sion coefficient. In practice, one observes diffusive motion
when (gm)/(v2Dt) is very large; the inertial effects become
relatively small and the motion is mainly governed by the

velocity dependent force and the random force. However, at
largeg, the error associated with the stationary coordinate-
autocorrelation function@see Eq.~47!# may be very large.
We saw that LIM2 and BBK do not seem to have this prob-
lem, since for them,̂QQ& is independent ofg. Indeed, it can
be seen that for largeg, the difference equation for LIM2
@Eq. ~6!# reduces to

xn111xn21

2
5xn2

Dt

g
M21gEFxn111xn21

2 G
1

Dt

g
M21r n, ~57!

which is a Brownian algorithm if we assume
(xn111xn21)/2'xn11. In case of LI and LE, we recover in
the largeg limit the corresponding implicit and explicit ver-
sions of diffusive algorithms. For BBK, in the largeg limit,
we find

xn115xn212
2Dt2

g
M21gE~xn!1

2Dt2

g
r n. ~58!

Note, however, that BBK was derived in the lowg limit.
This equation could be viewed as a propagation scheme with
twice the timestep, sincegE(x

n) can be considered an inter-
mediate point in the [xn11,xn21] range. However, the above
iteration is not a recommended procedure in practice for nu-
merical reasons.

V. TRAJECTORY ERROR ESTIMATION

In stochastic dynamics, there is no unique trajectory but
rather an ensemble of trajectories. Even in MD, different
trajectories result from using: various algorithms, same algo-
rithms but different timesteps, different starting points,11 and
different pseudorandom-number generators or seeds. An im-
portant question that must be addressed is how to evaluate a
generated trajectory. In the absence of direct experimental
data for comparison, the convention to date has been to com-
pare results to a simulation at a small timesteps. But is this
comparison adequate? How can it be supplemented? Are
there rigorous mathematical tests that can be performed?
These are difficult questions, and it is clear that the answers
must be based on statistical considerations. However, both
ways to evaluate static means as well as dynamic functions
must be constructed.

Below, we begin to formulate certain statistical tests that
could be performed for a given simulation. We then investi-
gate theoretically the behavior of our five integrators in two
relevant limits: largeDt and largeg. For these limits, theo-
retical references exist.

The precise question we wish first to address is: given a
certain algorithm, set of parameters, etc., how does one par-
ticular resulting trajectory deviate from an exact, or mean,
trajectory? Loosely speaking, this is a notion of convergence.
However, there is a more rigorous way to quantify this time-
dependent statistical behavior of such a deviation.

Let us define the quantity

dQn5Qn2Q~nDt !,
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whereQn andQ(nDt) are the positions at timenDt for the
discrete and the continuous case, respectively. By definition,
the probability of havingdQn5x at timenDt is

P~x5dQn; t5nDt !5^d~x2dQn!&,

where the functiond(x) is defined by

d~x!5
1

2p E
2`

`

dk eikx.

We can now write the above probability as

P~x5dQn; t5nDt !5
1

2p E
2`

`

dk^eik~x2dQn!&.

To separate the errorQn2Q(nDt) into systematic and ran-
dom components, we letdQn represent the former, namely
the average value ofQn2Q(nDt), and dRn represent the
latter,so that:x2 dQn5 x2 dQn2 dRn, i.e.,

^eik~x2dQn2dRn!&5eik~x2dQn!^e2 ik•dRn&.

Thus, our probability of having the errorQn2Q(nDt)
of the specified valuex becomes

P~x5dQn, t5nDt !

5
1

2p E
2`

`

dk eik~x2dQn!^e2 ik•dRn&.

In general, the random component is a nonlinear func-
tion of Gaussians, and may have very complicated distribu-
tion. For harmonic oscillators, however, it is a linear combi-
nation of the independent Gaussian random variables with
time-dependent coefficients. In that case, the expectation
value in the above integral can be simplified to the expres-
sion

^e2 ik•dRn&5e2~k2/2!^~dRn!2&.

Then, our probability of having the errorQn2Q(nDt) of the
specified valuex becomes

P~x5dQn, t5nDt !

5
1

2p E
2`

`

dk eik~x2dQn!e2~k2/2!^~dRn!2&.

Upon integration, we obtain the result

P~x5dQn, t5nDt !

5
1

A4p^~dRn!2&
expS 2

@x2dQn#2

4^~dRn!2&
D .

We clearly see thatx(t) too is a Gaussian random vari-
able with mean and variance given, respectively, by

^x~ t !&5dQn, ^x~ t !2&5^~dRn!2&.

Thus, for any algorithm, if the following limit holds:

lim
Dt→0

^~dRn!2&50,

the algorithm is said to be convergent in the mean square
limit.32

For a nonlinear system, the above simple statistical de-
scription ofx(t) is generally not possible. For such a system,
we can still use this criteria of trajectory error to determine
the stochastic effects as a function of time, as follows.

Let A andB be two trajectories starting at timet05n0Dt
separated by a distance

udQAB
n0 u5uQA

n02QB
n0u,

where the norm used here corresponds to the standard Eu-
clidean norm. This difference has an upper bound of

udQA
n02dQB

n0u<udQA
n0u1udQB

n0u

At any given timet5nDt, the expression fordQAB
n is di-

rectly related to the maximum Lyapunov exponent for the
dynamics,l. If the time evolution is written as a linear com-
bination of exponentials, for smallt2t0 , we can approxi-
mate it with the fastest growing term:

^dQAB
n 2dQAB

n0 &.elDt~n2n0!. ~59!

The maximum Lyapunov exponentl reflects the rate of the
fastest event in the dynamics of a system making multiple
jumps among energy wells. This exponent is found to be a
function of the system size.33 From Eq. ~59!, the rate of
divergenceD(^dQAB

n &)/Dt can be defined as

^dQAB
n112dQAB

n &
Dt

.elDt. ~60!

If two trajectories start from the same energy well, the rate at
which they diverge depends upon the rate at which they
jump across a barrier. The more rare an event is, the slower
the divergence rate. So, roughly speaking, there is close re-
lation between these two quantities, namelyl and the tran-
sition rate.

A. Application: Barrier crossing

Let us consider a one-dimensional concave potential sur-
face @gE(Q)52 1

2vb
2Q2 in Eq. ~4!#. Then it is possible to

calculate the transmission coefficient associated with the
transition state rate of barrier crossing using Kramer’s rate
theory. The transmission coefficientk is defined in terms of
the rate constantk and the corresponding transition-state-
theory value,kTST:

k5k/kTST. ~61!

It is closely related to the way trajectories diverge.34 If the
trajectory starts at positionQ~0!50, the continuous Langevin
equation can be used to derive the transmission coefficient in
the low-to-intermediateg regime:35

k5F11
1

kBT
^F̃~l r !

2&G21/2

5
l r

vb
. ~62!

Here F̃(l r) is the Laplace transform of the random force
evaluated at the larger root of the quadratic equation:

l r
21gl r2vb

250,
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andvb is the barrier frequency. The valuelr can be identi-
fied with the Lyapunov coefficient for a nonlinear concave
region. Correspondingly, we can derive the transmission co-
efficient for the discrete case following exactly the same line
of analysis.

Recall that in Sec. I we have derived the solution to the
discrete equation forQn @Eq. ~B6!# for real positive fre-
quency. If the initial velocityV0 is specified instead ofQ1,
we can evaluateQ1 either exactly or numerically using an
explicit method:

Q15a1~Dt !V01a2~Dt !, ~63!

wherea1(Dt) and a2(Dt) ~a linear combination of Gauss-
ians! are functions of the method chosen. Above, we as-
sumed the initial positionQ050, as in the continuous case.
The expression forQn with v5ivb can now be written as

Qn5
m

An224ms
F ~a1

n 2a2
n !Q11

Dt2

m (
p51

n21

~a1
n2p

2a2
n2p!FpG . ~64!

The rootsa6 , andm, n, ands here correspond tov5ivb .
Now, long-time behavior is governed by the divergent terms
in the expression above, so we can write

Qn5
ma1

n

An224ms
FQ11

Dt2

m (
p51

n21

a1
2pFpG

1Nondivergent terms. ~65!

The summation term above can be simplified using the con-
volution theorem for the discrete Laplace transform; thus we
have for the first part ofQn:

Qn'
ma1

n

An224ms
FQ11

Dt

m
F̃~b1!G , ~66!

whereF̄~b1! is the discrete Laplace transform of the random
force,

F̃~s!5 (
m50

`

DtFm exp~2msDt !,

evaluation ats5b15~1/Dt!ln a1 ~see Sec. I!. There are two
ways for Qn to be positive ~i.e., cross the barrier!:
m/An224ms can be positive or negative, but not zero. This
means thatQ1 is required to satisfy either:

Q1.2
Dt

m
F̃~b1!

or

Q1,2
Dt

m
F̃~b1!,

respectively. In both cases we nevertheless arrive at the same
expression fork, valid in the low-to-intermediate friction
regime. To determinek, integration over all the trajectories

which cross the barrier and normalization@division bykTST,
which assumesV0.0 in Eq. ~63!# is required:

k5

K E
2~Dt/m!F̃

`

dQ1 Q1expF2
~Q1!2

2^~Q1!2&G L
K E

a2

`

dQ1 Q1 expF2
~Q1!2

2^~Q1!2&G L
. ~67!

Solving the integral, we get

k5

K expS 2
Dt2F̃2

2m2^~Q1!2&
D L

K expS 2
a2
2

2^~Q1!2& D L
. ~68!

As the linear transform of a Gaussian distribution is Gauss-
ian, F̃~b1! is also a Gaussian, having zero mean,^F̃~b1!&50,
and variance given bŷF̃2(b1)&52gkBT/b1 . The latter is
obtained using convolution theorem from the autocorrelation
function of the random force. Also,a2 in Eq. ~63! is a linear
combination of Gaussians. Thus, the transmission coefficient
is

k5F ^~Q1!2&1^a2
2&

^~Q1!2&1
gDt2

m2b1

G 1/2
or

k5F 11
^a2

2&

^~Q1!2&

11
g

m2b1

kBTDt2

^~Q1!2&

G 1/2

, ~69!

where from Eq. ~63!, ^(Q1)2&5a1
2^(V0)2&1^a2

2&. In the
limit of Dt→0, the expression above fork becomes identical
to the one obtained by Gertneret al.35

B. Transmission coefficient for the five schemes

In order to study the comparative performance of various
integrators, we examine the term containingb1 @denomina-
tor in Eq. ~69!#, since the terms in the numerator will stay
approximately the same for all schemes. Recall thata1 and
a2 define the initial conditions@Eq. ~63!#. These initial con-
ditions are the same for LI and LE, as well as for BBK and
LIM2. For MID1, the initial velocityV0 is specified instead
of Q1; therefore, the expression fork for MID1 does not
contain them2 factor in the denominator. Bothm andb1 in
the denominator of Eq.~69! are scheme dependent~Table I!.
If we further assumê (Q1)2&'kBTDt2, we can roughly
write

k'F11
g

m2b1
G21/2

, ~70!

where we have disregarded the factor determined by the ini-
tial conditions.

In Fig. 7, we illustratek as a function ofDt andg for
our five schemes. The barrier frequencyvb51.0 fs21 and the
damping-constant settings examined areg550, 500, and
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1000 ps21. For largerDt, unlike the exact case,b1 can be
complex for some schemes leading to complexk. Wheng is
small, the behavior ofk is simply correlated to the loss in
kinetic energy for all schemes. This is most prominent for
LI, where at smallerg there is little counteracting mecha-
nism to numerical damping. BBK and LE show systematic
divergent drifts withDt for larger g, whereas the implicit
schemes show a batter overall balance in their behavior for
the range ofDt examined. For example, the implicit mid-
point scheme does quite well in the intermediateg regime.

For an ideal scheme, the rate will be independent of the
timestep used. However, this will not be the case in practice.
The differences in transition rates can be considered as a
global estimate of how the individual trajectories diverge.
For biomolecules, the complex potential is composed of

many concave and convex regions, and in such cases, the
expression for the rate will be more intricate.

VI. CONCLUSION

This work was motivated by the problem of developing
a framework for error analysis for practical simulations of
macromolecules today by molecular and Langevin dynamics.
This problem is a difficult one for chaotic, multiple-time-
scale systems, such as biomolecules, typically simulated at
relatively large timesteps for relatively short times. Trajec-
tory assessment is likely to increase in importance in the
coming years with improvements in computer hardware and
software.

As a start, we have analyzed the behavior of five inte-
gration algorithms for the Langevin equation with respect to
accuracy, stability, and statistical properties. Two concepts
of practical and theoretical importance, namely perturbative
damping and perturbative frequency, were introduced. The
model considered is a very simple and exactly solvable one.
Still, in absence of a general framework for analysis of non-
linear systems, this simple example already provides impor-
tant theoretical insights with regards to choosing a particular
algorithm for a given problem, appreciating algorithmic dif-
ferences, and quantifying error.

If stochastic dynamics is used for searching the configu-
rational landscape of a molecule for low energy conforma-
tions, large timesteps are preferred. In this case, the implicit
algorithms are recommended due to their unconditional sta-
bility. These algorithms are feasible computationally with an
efficient nonlinear minimizer.30 The symplectic implicit al-
gorithm LIM2 is an excellent candidate for moderate
timesteps~with respect to the period of fastest oscillation!
since it has many good statistical properties~mean energies!
and small numerical damping. For larger timesteps, however,
severe departures from the assigned damping coefficient and
the original frequency are realized. Both quantities approach
zero in the infiniteDt limit. In the case of MID1~implicit
midpoint!, we observe similar behavior. However, numerical
work is needed to assess these trends since theasymptotic
limits may have little practical relevance to finite simulations
of complex systems. In addition to this limiting behavior,
distortion of the phase-space picture and occurrence of reso-
nances have also been reported at timesteps that are rela-
tively large with respect to the fastest period.23 The pertur-
bative damping and frequency functions introduced here can
help in devising cures for these problems.30

For the implicit-Euler/Langevin algorithm, LI, theory
suggested existence of timesteps for which there is no nu-
merical damping nor shift in original frequency~e.g., Table
IV ! to overcome these difficulties. However, since the value
of the corresponding damping constant is large, the use of
such special timesteps in LI is probably not of practical
value. Our delay-function approach, in contrast, appears
more promising, as demonstrated on a system of linear os-
cillators. Extensions to nonlinear systems were outlined here
and will be tested in further works.

When the detailed dynamic behavior of a molecular sys-

FIG. 7. Transmission coefficient as a function of timestep for a concave
potential of frequencyvb51.0 fs21 and three values ofg: 0.05, 0.5, and 1.0
fs21 for the five schemes. For the threeg values, the theoretical values ofk
are 0.975, 0.781, 0.618, corresponding to~a!, ~b!, and~c!, respectively. See
Eqs.~62! and ~70! of the text.
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tem is of central interest, the implicit algorithms cannot gain
advantage over the explicit algorithms because resolution
cannot be as good with larger timesteps. The implicit algo-
rithms are also computationally expensive.19 As long as one
chooses timesteps sufficiently smaller than the limiting value
for linear stability~e.g., Table II!, BBK appears to have the
desirable properties on theoretical grounds with respect to
stationary processes. The mean potential energy is indepen-
dent ofg and the correlation between position and velocity is
zero. Furthermore, the upper bound ofp/2 for the effective
rotation in space~effective frequency! might dampen low-
order resonances in comparison to the implicit midpoint al-
gorithm, which can have maximal rotation within a family of
symplectic integrators.23 In the limit g→0, BBK becomes the
favored Verlet algorithm.

Certainly, our conclusions regarding harmonic oscilla-
tors cannot be extrapolated automatically to more complex
systems. Both extended analysis and practical simulations
are required. In a subsequent paper, we plan to extend and
apply the mathematical constructs developed here for analy-
sis of simulations proper for nonlinear systems. The intrigu-
ing problems of resonance and perturbed effective Hamilto-
nians might also be investigated.
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APPENDIX A: ANALYSIS FOR MID1

For the implicit-midpoint algorithm, MID1, the coordi-
nate and velocity for each normal mode satisfy the following
equations:

Vn112Vn

Dt
1

g

2
@Vn111Vn#1

v2

2
@Qn111Qn#5Fn

and

Vn111Vn

2
5
Qn112Qn

Dt
.

In a matrix form, this can be written as a single equation:

F Vn11

vQn11G5UF Vn

vQnG1FDtFn

0 G , ~A1!

where

U5
1

f F 12
d

2
2

e2

4
2e

e 11
d

2
2

e2

4

G ,
f511

d

2
1

e2

4
,

with the definitions:

d5gDt, e5vDt.

The matrixU has two eigenvalues which satisfy a quadratic
equation:

fa222F12
e2

4 Ga1F12
d

2
1

e2

4 G50.

Comparing this form with the general expression of Eq.
~11!, we obtain the values ofm, n, ands ~shown in Table I!
and use local stability and accuracy analysis of Sec. II. The
two eigenvalues ofU are

a65

12
e2

4
6Ad2

4
2e2

11
d

2
1

e2

4

.

The homogeneous part of the solution can be written as

F Vn

vQnG5Fc1 c2

c3 c4
GF a1

n

a2
n G .

For example, with the values ofQn specified atn50 and 1,
the homogeneous solution forQn is

Qn5Fa1a2
n 2a2a1

n

a12a2
GQ01Fa1

n 2a2
n

a12a2
GQ1. ~A2!

Also, we have the following relation forn51:

F V1

vQ1G5Fc1 c2

c3 c4
GFa1

a2
G .

To calculate the stationary averages corresponding to
MID1, we multiply on the right by the transpose of Eq.~A1!
to obtain

F ^VV& v^VQ&

v^QV& v2^QQ&
G5UF ^VV& v^VQ&

v^QV& v2^QQ&GUT

1FDt2^F2& 0

0 0G .
We then obtain three simultaneous linear equations in three
unknowns. The solution for the three stationary averages are
given by

^VV&54kBT
@414d1d21e2#

@412d1e2#2
,

v2^QQ&54kBT
@41e2#

@412dDt1e2#2
,

v^QV&5
24kBTde2

@412d1e2#2
.

Thus, the stationary values of energies can be written in
terms of the above averages:
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^Epot&5
1

2
v2^Q2&52kBT

@41e2#

@412d1e2#2
,

^Ekin&5
1

2
^VV&52kBT

@414d1d21e2#

@412d1e2#2
,

and

^Etot&5^Ekin&1^Epot&.

APPENDIX B: SOLUTION OF THE INHOMOGENEOUS
EQUATION

Substitution of a solution of type

Qn5Ana1
n 1Bna2

n

in Eq. ~10! of the text gives

mAn11a2
n111nAna1

n 1sAn21a2
n211mBn11a2

n11

1nBna1
n 1sBn21a2

n215~Dt !2Fn.

Sincea1
n anda2

n satisfy the homogeneous part of the equa-
tion, the above equation simplifies to

2na1
n ~An112An!2sa1

n21~An112An21!2na2
n ~Bn11

2Bn)2sa2
n21~Bn112Bn21!5~Dt !2Fn.

By imposing the following constraint relating the functions
An andBn :

a1
n ~An112An!1a2

n ~Bn12Bn!50, ~B1!

we can further simplify the above equation to

2sa1
n21~An112An21!2sa2

n21~Bn112Bn21!5~Dt !2Fn.

Using the constraint again, we obtain

2s@a1
n21~An112An!1a2

n21~Bn112Bn!#5~Dt !2Fn. ~B2!

Thus, we arrive at two simultaneous equations inAn andBn ,
which can be solved to give

An115An2
~Dt !2Fna1

2n

s~a22a1!
,

~B3!

Bn115Bn2
~Dt !2Fna2

2n

s~a22a1!
.

The above equations are first order and can be readily solved
to obtain the functionsAn andBn for n>1:

An5A02
~Dt !2

s~a22a1! (
k50

n21

Fka1
2k ,

~B4!

Bn5B02
~Dt !2

s~a22a1! (
k50

n21

Fka2
2k .

The final solution is obtained by substituting these functions
into the assumed solution to the inhomogeneous equation:

Qn5Ana1
n 1Bna2

n 1
~Dt !2Fna2

2n

s~a22a1! (
k50

n21

Fk~a2
n2k2a1

n2k!.

~B5!

The constants can be determined by the given initial condi-
tions forQ0 andQ1: Q05A01B0 andQ

15a1A01a2B0 .
This leads to the final analytical expression for the solution:

Qn5
1

An224ms
@2s~a1

n212a2
n21!Q01m~a1

n 2a2
n !Q1#

1
Dt2

An224ms
(
p51

n21

~a1
n2p2a2

n2p!Fp. ~B6!
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