
J. theor. Biol. (1996) 182, 505–512

0022–5193/96/200505+08 $25.00/0 7 1996 Academic Press Limited

Addition of Darwin’s Third Dimension to Phyletic Trees

T P,†¶ T S,‡ B L,§  H. G. D†¶

†Biology Department, New York University, 1009 Main Building, New York, NY 10003,
‡Howard Hughes Medical Institute and New York University, Chemistry Department and
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New
York, NY 10012 and §the Chemistry Department and Courant Institute of Mathematical

Sciences, New York University, 251 Mercer Street, New York, NY 10012, U.S.A.

(Received on 1 April 1996, Accepted on 10 June 1996)

A three-dimensional (3D) approach for visualizing the phyletic relationship of living animals is proposed
and developed as an alternative to current two-dimensional (2D) evolutionary trees. The 3D tree
enhances visualization and qualitative analysis since it simultaneously provides topological
(tree-structure) and spatial information (based upon genetically measured distances). However, the
meaning of the third dimension, particularly its relationship to temporal processes, and further
quantitative analyses emerge as open questions. Our method consists of two phases. First, a 3D
representation of the genetic relationships of a related group of extant animals is produced using an
optimization algorithm developed here. Second, linear connections are added to suggest a visual
representation of the differing evolutionary trajectories of the organisms involved on the basis of a 2D
tree algorithm. The method is applied to a set of distantly related Caenophidian snakes, and the resulting
relationships are analysed. The discussions here are meant to stimulate the generation of 3D trees in
the goal of complementing standard 2D views and, perhaps ultimately, improving our classification of
evolutionary relationships.

7 1996 Academic Press Limited

Introduction

The simplification of representing evolutionary
lineages by a series of two-dimensional (2D)
bifurcating branches is basic to most current
tree-building programs (Swofford & Olsen, 1990;
Hillis et al., 1994) and to the classifications that are
based on these trees by phylogenetic taxonomists
(‘‘cladists’’) (Wiley, 1981). Indeed, in his ‘‘Origin of
Species’’ (Darwin, 1859) Darwin stated:

The representation of the groups, as here given
in the diagram on a flat surface, is much too
simple. The branches ought to have diverged in

all directions . . . and it is notoriously not
possible to represent in a series, on a flat surface,
the affinities which we discover in nature among
the beings of the same group. Thus, the natural
system is genealogical in its arrangement, like a
pedigree. But the amount of modification which
the different groups have undergone has to be
expressed by ranking them under different
so-called genera, subfamilies, families, sections,
orders and classes.

Ideally, such relationships involving Euclidean
distances are better visualized in the three dimensions
familiar to us from everyday life. Many complex
spatial relationships that are masked in a flat diagram
emerge in higher dimensions. However, in practical
terms, it is difficult both to generate such three-dimen-
sional (3D) views and to attribute biological meaning
to the added dimension. Here we develop an
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F. 1. An unrooted Neighbor-joining tree of the nine genera of snakes, an example of typical 2D computer-generated trees, is used
to establish the pattern of evolutionary divergence in our 3D network. The labeled branches indicate the relative branch lengths as calculated
by percent divergence and shown in Fig. 2. [a=3.5; b=3.5; c=1.5; d=7.5; e=2.0; f=3.5; g=5.5; h=4.5; m=0.5; n=4.0; p=2.0;
q=4.0; r=3.5; s=3.5; t=3.5].

approach for presenting information on evolutionary
relationships in three dimensions, thereby allowing a
visual representation similar to that of a molecular
system. Our work is meant to stimulate further
research in this direction by illustrating an application
and discussing the new questions that emerge.

We use immunological distances (ID) that have
been obtained by the quantitative micro-complement
fixation technique (MC’F) for a set of distantly
related Caenophidian snakes (Dowling & Jenner,
1988) to develop and apply our algorithm for
generating a 3D view of phyletic relationships. Snakes
are particularly suited for such extensive genetic
analysis, since their ‘‘stripped-down’’ morphology
allows little room for obvious modifications, and their
fossil record is too limited to provide detailed
phylogenetic information.

The first component of our algorithm combines
distance geometry and nonlinear optimization tech-
niques to compute a 3D illustration of points in space.
This tree represents global intergenetic distances
among the snake species analysed. The second
component uses the Neighbor-joining tree-building
algorithm to process further these spatial relation-
ships, thereby associating a linkage-diagram
suggesting a path to the common ancestor. Thus, the
connecting of these points to make a network or a tree
is a secondary procedure that does not affect their
interrelations as positioned on the landscape. These
patterns can be based on discrete character data
obtained from morphological or DNA sequencing
techniques, or distance data obtained from immuno-
logical techniques (MC’F), which we use here. The

position of the taxa on the landscape, however, must
be determined by distance data, inasmuch as
character data cannot be represented as a compara-
tive quantitative unit among taxa.

The suggestion of using 3D trees in taxonomy is not
new (Sokal & Rohlf, 1981). Embedding a distance
matrix in three dimensions is also a well-known
problem in statistics, and a mathematically elegant
method in case an exact representation exists
(Neumaier, 1981, 1990). However, the practical
implementation of this idea when an exact represen-
tation does not exist remains a challenge. We hope
that the algorithm (and software) developed here will
be used to explore this direction further to aid
biological interpretations.

The method presented here produces an evolution-
ary tree embedded in a 3D space. Clearly, the visual

T 1
Pairwise distance data for the nine snake species†

1 2 3 4 5 6 7 8 9

1 (MAD) 0 70 105 113 80 116 61 114 88
2 (MAS) 0 68 56 70 119 74 63 82
3 (DIA) 0 82 56 91 90 93 66
4 (ARR) 0 63 109 112 36 84
5 (HET) 0 104 73 76 73
6 (FAR) 0 130 133 56
7 (LAM) 0 99 92
8 (XEN) 0 92
9 (CAR) 0

Pairwise distances, in units of Immunological Distance (ID), are
given for distantly related snakes, currently thought by some to
belong in the same family [McDowell, 1987].

† Abbreviations used: MAD: Madagascarophis; MAS: Masti-
cophis; DIA: Diadophis; ARR: Atthyton; HET: Heterodon; FAR:
Farancia; LAM: Lamprophis; XEN: Xenodon; CAR: Carphophis.
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F. 2. A 3D representation of the complex immunological interrelations of nine snake genera. The taxa are represented as colored spheres
and their positions were determined on the basis of each taxon’s distance from all other taxa through the use of our algorithm (Appendix
A). A cube is inserted around the figure to offer perspective. The colors of the spheres are based upon morphological similarities
and differences: Green=Arrhyton, Xenodon (Neotropical snakes); Yellow=Lamprophis, Madagascarophis (Ethiopian snakes);
Red=Carphophis, Diadophis, Farancia, Heterodon (relict Nearctic snakes); Blue=Masticophis (advanced Nearctic racer, a recent
entrant).

The spheres are connected back to the Origin (O) through use of the Neighbor-joining tree (Fig. 1) based upon percentage-divergences
in AIDs, thus forming a complex tree. However, linkage can be resolved by any tree-building method considered appropriate.

T. P   . (facing p. 506)
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F. 3. Nine rotated representations of the 3D tree. The image at the upper left is the same view as in Fig. 2. It is rotated 40 degrees
around the x-y plane of the cube sequentially from left to right and top to bottom, with the right bottom image the last. Note that the
Neotropical (green) genera remain together, as do the Ethiopian (yellow) genera, and that both pairs are distinct from all other taxa. By
contrast, only two of the Nearctic relicts (red), Carphophis and Farancia retain similar attitudes, the other relicts (Diadophis, Heterodon),
and Masticophis (blue) reveal trajectories that differ from one another and from all other snakes.

T. P   . (facing p. 507)
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T 2
Computed three-dimensional tree

(a) Coordinates
Snake x y z

1 17.31 −2.29 −1.03
2 65.16 29.30 23.61
3 39.74 101.25 5.62
4 98.15 65.78 23.22
5 29.87 74.05 44.32
6 23.69 88.88 −71.54
7 −4.72 19.74 43.22
8 95.52 64.11 54.92
9 45.27 61.91 −36.11

(b) Quality of Fit†
Pair distance Value % Error

1–2 62.41 8
1–3 106.15 1
1–4 108.42 4
1–5 89.67 10
1–6 115.42 1
1–7 54.12 8
1–8 116.86 2
1–9 78.31 9

2–3 78.40 12
2–4 49.18 9
2–5 60.63 10
2–6 119.67 1
2–7 73.20 1
2–8 55.80 8
2–9 70.89 11

3–4 70.57 12
3–5 48.33 10
3–6 79.77 10
3–7 100.18 9
3–8 83.19 8
3–9 57.62 10

4–5 71.94 11
4–6 122.71 11
4–7 114.46 2
4–8 31.85 6
4–9 77.57 5

5–6 116.96 10
5–7 64.40 9
5–8 67.24 9
5–9 82.79 11

6–7 136.95 5
6–8 147.53 9
6–9 49.48 8

7–8 110.24 9
7–9 102.81 10

8–9 104.00 11

† The numbers refer to the snake species
as given in Table 1. The same units in
Table 1 are also used.

Both O’Hara (1993) and Darwin (1859) noted that the
determination of a phylogeny and the construction of
a classification are two separate activities. In this
report we are interested only in discerning a
phylogeny, not in establishing a classification of the
group considered.

However, what can we say about the 3D tree
quantitatively? Three fundamental questions emerge.

(1) What is the meaning of the third dimension? Our
tree is obtained by embedding genetic distances (in
terms of amino acid sequences in albumin) in three
dimensions, which is visually more attractive.
However, the third dimension cannot be directly
connected to another parameter, such as time.
Certainly, the distance data themselves may reflect
temporal evolutionary changes, but this cannot be
immediately inferred from the 3D tree structure.
Therefore, at present we view the 3D tree to be more
useful for morphological descriptions than for use as
a descriptor of molecular clocks.

(2) How should the species in the 3D tree be
connected? The optimization algorithm presented
below produces only Cartesian coordinates for all the
species involved. Therefore, a linkage step (equivalent
to tree building) when used is a secondary and
separate aspect of the tree generation. For linkage,
distance or character data, or a combination of
the two, can be used. This combination of 3D
representation and linkage might provide insight into
the historical phylogeny of an animal by depicting
both a pattern (topology) and relative directions of
evolutionary changes.

(3) Is the 3D approach better than the conventional
2D representation? This is a difficult question. It is our
hope that the third dimension provides a visual
framework that permits qualitative examination of
inter-relationships among groups of taxa that might be
more difficult to appreciate from a flat representation.
Therefore, a 3D tree might be particularly useful when
a question arises regarding the particular subgroup
classification for a family of related species (Borowsky
et al., 1995). Many statistical tests that are applied to
distance data can be used for analysis of the 3D tree.
Moreover, the energy function used in the optimiz-
ation is a measure of the overall fitness of the 3D
topology to the data, with the distribution of
deviations serving as an additional fit criterion (e.g.,
four distances are within 2% deviation of the measured
genetic distance, six distances have 5% error, and so
on). In fact, the obtained distance matrix [see
Table 2(b)] might be useful to biologists in comparison
with the original matrix. As we will discuss below, the
optimization can only offer a local, rather than global,
solution in any case for this nonlinear problem.

aspect is better since a 3D tree offers simultaneously
infinitely many 2D views (projections). Thus, spatial
relationships (similarities and dissimilarities) among
subgroups of species can be more easily examined
from a multifurcating tree perspective (Mayr, 1974).
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Having said this, some attractive features of the 3D
approach might also be summarized. (1) No a priori
assumptions are necessary for tree generation, as in
two dimensions, regarding tree topology, for example.
(2) The 3D description is more stable to additions of
species than a 2D tree. That is, the positions in space
(coordinates) of the species relative to one another
will not drastically change as the number of taxa
compared increases. This is because the reciprocal
genetic distances will not change between two
previously-located species. As the number of taxa
increases, most modifications necessary to accommo-
date the additional distances would be local, and
would not disrupt the relative positions of the
distantly-related taxa. (3) The 3D tree offers
simultaneously many 2D views and therefore might
facilitate analysis of interrelationships among sub-
groups of species.

Materials and Methods

 

For our application we use a sample of nine
Caenophidian (modern) snakes (Dowling & Jenner,
1988). Five of these (Carphophis, Diadophis, Farancia,
Heterodon, Masticophis) are of Nearctic (temperate
North American) derivation, two (Arrhyton,
Xenodon) are Neotropical (West Indies and South
America), and two (Lamprophis, Madagascarophis)
are Ethiopian (Africa and Madagascar, respectively).
The data consist of reciprocal immunological
distances (antibody–antigen) between the albumins
(Albumin Immunological Distances: AIDs) of the
nine taxa (Table 1). As mentioned above, detailed
information on extinct species of snakes is not
available, as it is for mammals; most snake fossils
consist of isolated vertebrae, which can show only
minimal degrees of variation. Thus, this tree is
constructed on the basis of the genetic relationships
of living species.

The antibodies and sera to be compared were
obtained by standard methods (Maxson & Maxson,
1990). Each AID determined by MC’F is approxi-
mately equal to one amino acid change in the albumin
molecule (Maxson & Maxson, 1986). Although the
percent deviation from reciprocity in our raw data
was less than the acceptable 100%, the data were
scaled (Cronin & Sarich, 1975) for antisera which
consistently overestimated or underestimated the
distances obtained. These scaled distances gave a
slightly better overall fit to the 3D algorithm. The
mean of each pair of reciprocal distances was
considered to be the best estimate of the number of

amino acids which had changed since the two
compared species had diverged.

These means were converted to percent divergence
by using the previously determined (Benjamin et al.,
1984) protein size of albumin of approximately 580
amino acids: % divergence=100 ( ID/580. These
values were then used to construct Fig. 1 by the
Neighbor-joining algorithm (Saitou & Nei, 1987) that
was suggested by Schubert et al., (1993) as
appropriate for estimating patterns of genetic
divergence (Fig. 1), and to compute the coordinates
(Table 2) for 3D figures (Figs 2 and 3) constructed by
our algorithm.



The mathematical problem for computing a 3D
arrangement in space can be stated as follows. Given
a set of n species and an associated pairwise distance
matrix, find the coordinates for all the species in three
dimensions that match those pairwise distances as
closely as possible. The pairwise data come from
experimental measurements, for example from dis-
tances of homologous proteins (or genes) in two
different species. Although we would like to satisfy
those constraints exactly, this is usually impossible
(see below); we thus seek the best possible
approximation. This class of problems is central to
distance geometry (Crippen, 1991; Crippen & Havel,
1988), a field with wide applications in chemistry and
biology. A classic problem involves calculating the 3D
molecular configuration subject to nuclear magnetic
resonance data (inter-proton distances).

While it is easy to visualize a static molecular
configuration in space, it is more difficult to picture
evolutionary interrelationships in three dimensions:
the spatial relationships (in terms of immunological
distances) help differentiate the amino-acid changes in
the protein albumin among the taxa compared
(Maxson, 1992). Clearly, only closely related organ-
isms will share a close relationship in space.
Moreover, because the position of each taxon in space
is based upon its distance to every other taxon
compared, a temporal pattern of divergence might be
approximated from a tree-building algorithm which
utilizes distance data, such as the Neighbor-joining
method (Tateno et al., 1994). When branches connect
the taxa in the 3D image, the vectors represent the
taxa’s interrelated historical trajectories. Therefore,
closely related groups should share not only a small
difference between their amino acid sequence, but also
a similar direction in their trajectories.

The following, more precise, mathematical problem
can be formulated. We are given for n species a set of
measured distances {d0

ij} for i, j=1, . . . , n, where d0
ij
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is the distance between specimens i and j. We would
like to find a set of n 3D points {xi}, i=1, . . . , n
which approximates the pairwise data in some way.
More compactly, we donate by X the collective vector
of 3n components that lists the positions of each
specimen in turn. We require that the set of
inter-species data, {dij}, at X, where dij (X)= >xi − xj>
is measured in the standard Euclidean norm, fit the
measurements within some margin of error:

lij E dij (X)E uij, i, j=1, . . . , n. (1)

The measured values {d0
ij} lie between these lower and

upper bounds:

lij E d0
ij E uij , i, j=1, . . . , n. (2)

Why do we seek some approximate, rather than
exact, solution? This kind of problem is typically
overdetermined. Thus, we can expect at best a good
overall fit. For n species, the matrix of pairwise
distances contains (n(n−1))/2 unique non-zero
elements (in the strict lower or upper triangle); in
contrast, the Cartesian vector X contains 3n−6
independent variables for nq 3, as three degrees of
freedom are removed for rigid-body translation and
rotation invariance. Thus, more constraints than
degrees of freedom follow for nq 4, and current
optimization techniques can only provide a locally
optimal solution. This is not unlike the generation of
2D phylogenetic trees, where various a priori
assumptions must be made (e.g., additivity) in
designing the algorithm that produces a certain form
of tree.

Our approach to find an optimal solution for the
data of snake species consists of several components:
(1) Formulation of an energy function that describes
the quality of fit. (2) Generation of reasonable
starting structures. (3) Minimization of the objective
function by a rapidly-converging Newton method
for nonlinear functions. (4) Repeated projections/
minimizations of the solution vector onto the bounds
to optimize the fit to the data within the prescribed
error bounds. We include steps 2 and 3 above in
Phase II of our algorithm. The algorithm combines
strategies in nonlinear optimization, distance geo-
metry, and molecular mechanics. While it is heuristic,
the overall form of the final configuration (Fig. 2)
is the best we found through many trials and
variations in parameters and starting configurations.
For nearby solutions (less optimal fit), very similar
patterns emerged, so we believe that our 3D image
is a key representative structure for the data given
here. Full details of the algorithm are given in
Appendix A.

Results and Discussion

The 2D Neighbor-joining tree (Fig. 1) shows three
distinct sister-relationships: a Neotropical Arrhyton-
Xenodon clade, an Ethiopian Lamprophis-Madagas-
carophis clade, and a Carphophis-Farancia clade
among the five Nearctic genera. An apparent
relationship between the North American Masti-
cophis and the Neotropical clade also is suggested,
although Masticophis is immunologically distant
from the Neotropical members. The three clades and
all of the remaining Nearctic taxa are shown to be
only distantly related to one another. The topology of
this tree, based upon percentage-divergence infor-
mation, is identical to those based directly upon either
raw or scaled AID data.

The 3D information is provided in Figs 2 and 3.
Each of the taxa is represented as a colored sphere
placed in relation to its % AID to all other taxa by
our algorithm. Figure 2 shows the complexity of
relationships revealed by this technique in a ‘‘fixed’’
position. It shows three distinct branches from the
central Origin (O), with some of the Nearctic genera
apparently occupying somewhat intermediate pos-
itions. This figure indicates clearly, however, that the
Ethiopian (yellow) and Neotropical (green) genera
are at opposite poles of relationship and that none
of the Nearctic genera is closely related to either
clade.

Figure 3 begins at the upper left with the same view
as Figure 2. Each subsequent view shows the
relationships revealed in a 40-degree turn, with the
final one at the lower right. They show that whereas
the pairs of genera of Neotropical and of Ethiopian
origin remain together and separate from other taxa;
this is not true of all Nearctic genera. In particular
Masticophis (blue M), Diadophis (red D), and
Heterodon (red H) show entirely separate patterns of
relationship to one another as well as to all of the
others. They also show that no single (2D) view can
resolve the complex relationships shown here.

The addition of the 3D view to the pattern of
immunological distances suggests the complex and
different ‘‘evolutionary trajectories’’ of the taxa. Even
though these trajectories are here visualized only in
terms of immunological distance measurements
(rather than genomic, morphological, or ecological
differences), it is evident (Fig. 2) that those taxa which
were believed to be closely related on morphological
and distributional bases (Dowling & Jenner, 1988;
Pinou, 1993) follow similar directional paths. They
cluster around one another, and occupy distinct
regions separate from those that may be roughly
equidistant (immunologically) from a common
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ancestor, but which have followed different evolution-
ary trajectories (directional paths) as shown by the
differences in their relative positions on the ‘‘land-
scape’’.

Such a distinction in the relationship of Masti-
cophis (blue M) to Arrhyton and Xenodon (green) is
particularly illuminated by the 3D approach (Fig. 3).
Although the Neighbor-joining figure (Fig. 1)
suggests that Masticophis is most closely related to
the Neotropical clade, its independent trajectory,
particularly well shown in images 3, 4, and 7 (Fig. 3),
contradicts such a suggested relationship in spite of
the relatively shorter AID between Masticophis and
this clade. The 3D views (Fig. 3) also suggest the
independent evolutionary trajectories of the other
Nearctic snakes. Only Farancia and Carphophis
retain similar associations in the rotation of the figure.
By contrast, Diadophis and Heterodon reveal
trajectories that not only differ from one another but
also from all other taxa.

Conclusions

The optimization algorithm presented here for
computing 3D trees from distance data can be easily
used and applied to problems of phylogeny. Although
new problems regarding the interpretation of the
third dimension emerge as discussed in the introduc-
tion, especially the connection to temporal processes,
the additional dimension provides a useful visual,
complementary tool for analysing relationships
among related species. The inherent difficulty of
compressing a multidimensional and multifurcate
phylogeny into a bifurcate, 2D format has led to
many approaches for construction of evolutionary
trees (Swofford & Olsen, 1990; Hillis et al., 1994) and
to various selection criteria for the ‘‘correct’’ tree
among the many candidates generated by computer
programs (Hedges, 1992).

In theory, the 3D dendrogram can better serve as
one of the foundations from which a classification of
the taxa involved can be derived. When a speciation
event occurs, each of the species loses its genetic
contact with the other and develops its own
evolutionary trajectory (Frost et al., 1992). If plotted
as a dendrogram (tree), the resulting relationship
between the two species and the (real or presumed)
ancestor can be accurately represented on a plane as
three connecting points. The angle may indicate the
degree of separation between the two sister species,

and the plane thus defined is equivalent to the
evolutionary trajectory of the species involved. If a
third species evolves from the same ancestral stock,
however, inasmuch as it is on a trajectory independent
of the others, it is unlikely that its trajectory will be
the same as that of the first two. Thus, it cannot be
indicated on the same plane, thereby complicating the
problem of accurate tree delineation.

Biological classification should be treated as a
hypothesis that also serves as an organized reference
system for information storage and retrieval. For this
reason, a single phylogenetic tree should not be used
as the sole basis of a classification. However, by
incorporating a trajectory, a 3D dendrogram might
illuminate differences among the taxa which otherwise
remain obscure in a conventional 2D tree. This 3D
framework suggests analysis of the complex relation-
ships among taxa by a combination of morphological,
physiological, geographical, ecological, and ad-
ditional genetic data. Ultimately, such comprehensive
analyses might be used to derive more sophisticated
evolutionary classifications.

New applications of our 3D tree algorithm are now
underway with regards to fresh-water fish†. Further
studies are necessary for understanding the type of
information that 3D trees might be useful for and the
relation between spatial and temporal processes.
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Department of Biology at New York University and was
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APPENDIX A

The Numerical Optimization Procedure

We formulate the objective function as the sum of
weighted squared distance deviations:

Ek(X)= s
iQ j

vk
ij (dij (X)− dk

ij )2, (A.1)

where dij is the Euclidean distance between particles i
and j in the configuration X, dij is a target distance,
and vij is a weight. A weighted sum is used since we
would like to incorporate relative, rather than
absolute, errors for each distance; each vij should
depend on the associated difference between the upper
and lower bounds, uij − lij , so that differing magni-
tudes among the elements as well as differing
accuracies in the measurements could be incorpor-
ated. (Only the first is relevant to this work but the
second may be important for similar applications with
a larger set of species.) The purpose of the superscript
k on the energy function, weights, and targets of
eqn (A.1) will become evident below; they basically
indicate that our objective function is modified as the
algorithm proceeds.

The form of E(X) is identical to a harmonic bond
potential as used in molecular mechanics calculations
(Burkert & Allinger, 1982). The corresponding first
and second derivatives are straightforward to
calculate (Schlick, 1987), and thus this function can
be subjected to a Newton minimization algorithm.
Any available Newton minimizer for non-linear
functions can be applied to this problem, and we
choose for the calculations reported here the
truncated-Newton package (Schlick & Overton, 1987;
Schlick & Fogelson, 1992a,b), well suited to explore
conformational regions with many minima, maxima,
and saddle points.

When there are no available data regarding a 3D
configuration, a first objective is to generate a
reasonable starting structure for the optimization
method. We employ here the following strategy,
which might be a useful technique in general. Since
for nine species, there are 36 unique pairwise distances
(see Table 1) but only 21 independent Cartesian
coordinates, we select a subgroup G1 of 21 distance
pairs which have good reciprocity values: 1–2, 1–5,
1–7, 1–9, 2–4, 2–6, 2–7, 2–9, 3–4, 3–5, 3–6, 3–9, 4–5,
4–7, 4–8, 5–9, 6–7, 6–8, 6–9, 7–9, and 8–9. We then
set the weights for the G1 pairs as vk

ij =S1/(d0
ij )2,

where S1 =100; for the remaining 15 distances (group
G2), we set the weights to zero. This setting yields an
initial objective function as a sum of squared relative
errors for group G1 distances. Relative errors are
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important here, as our distances vary between 56 and
133. An initial configuration for the nine species is
chosen by distributing nine points in three parallel
lines, in such a way that each neighboring pair of lines
is in a perpendicular orientation.

Minimization with the target function defined above
produced afinal energy value of zero, as all 21 distances
in G1 were satisfied exactly. Errors of up to 150%
occurred for the distances in G2, not included in the
target function. Gradually, we then increased the
weights for the G2 pairs by setting vk

ij =S2/(d0
ij )2, where

S2 was increased slowly from 10−4 to 100 (S1 remained
at 100 for G1). Each k setting was followed by a
minimization of Ek(X) from the previous configur-
ation. This procedure produced a final configuration in
which the largest distance violation was 20%. The
largest deviations occurred for distance pairs 2–3
(19%), 2–9 (15%), 3–5 (15%), and 5–7 (13%). This
completes Phase I of our algorithm.

Phase II begins as no further improvements could be
made by varying S1 and S2. Our minimization/projec-
tion procedure of Phase II adopts a similar strategy to
that proposed by Hayden and co-workers (Glunt et al.,
1994). The goal of this procedure is to fit the solution
as well as possible to the 3D region specified by the
lower and upper bounds of each distance value. In
other words, we seek to optimize the fit. In this work,
we specify 10% margins of error, as dictated by the
data collection procedure. The projection strategy
involves changing the targets {dk

ij } at each step k: when
a certain distance dij (Xk) is outside its permitted range,
the corresponding target is set to the nearest bound (so
it is approached upon minimization); when dij (Xk) lies
within the bounds, the target retains the current value.

To accelerate convergence, the algorithm also
modifies the weights at each step so that they reflect the
magnitude of the error, or the ‘distance’ to the nearest

bound. With such stepwise weight adjustments and
target resettings, we found rapid convergence to the
solution reported here with our minimizer. This phase
of the solution can now be summarized as follows.

Projection/Minimization Algorithm

(a) LetX0, {d0
ij}, {lij}, {uij}be given for i, j=1, . . . , n,

where

X0 =an approximation to the solution;
d0

ij =the measure target distance for pair i, j
(Table 1);

lij , uij =lower and upper bounds, respectively, for
measurement i, j (in this work, lij =(0.9)d0

ij ,
uij =(1.1)d0

ij );
w0

ij =S/(d0
ij )2 where S is a constant (S=100 in this

work).

(b) for k=1, 2, . . . , until Ek(X) is sufficiently small:
1. Minimize the function:

Ek(X)= s
iQ j

vk
ij [dij (X)− dk

ij ]2;

Set k 3 k+1 and Xk to the minimum of Ek−1(X).
2. Update the targets of the objective function above:

dk
ij =6dij (Xk)

lij
uij

if lij E dij (Xk)E uij

if dij (Xk)Q lij
if dij (Xk)q uij

.

3. Update the weights of the target function:

vk
ij =S(1+ ej )/(dk

ij )2,

eij =max{0, dij (Xk)− uij , lij − dij (Xk)}.

4. Go to step 1.


