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Abstract

The numerical behavior of the symplectic, implicit midpoint method with a wide range of integration timesteps is examined
through an application to a diatomic molecule governed by a Morse potential. Our oscillator with a 12.6 fs period exhibits
notable, integrator induced, timestep- (At) dependent resonances and we predict approximate values of At where they will
occur. The particular case of a third-order resonance (Ar = 7 fs here) leads to instability, and higher-order resonances
(n =4, 5) to large energetic fluctuations and/or corrupted phase diagrams. Significantly, for Az > 10 fs the energy errors

remain bound.

1. Introduction

In molecular dynamics (MD) simulations of
biomolecules, complex motion is followed by numer-
ically integrating Newton’s classical equations

MV (1) = £(X), (1)

X(1) =V(1), (2)

where M is a mass matrix, X is the collective Cartesian
vector of positions, V is the corresponding collective
velocity vector, f is the effective force vector, and the
dot superscripts denote differentiation with respect to
time, 7. Because the underlying forces are nonlinear
and the multivariate potential energy landscape very
complex — rich with minima, maxima and transition
points - simulating these systems in time by com-
puter presents a formidable task. The challenge arises
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not only from the size (thousand of variables) and
nonlinearity of the governing equations but also from
the timescales of biological interest that must be fol-
lowed. The collective modes in biological molecules
such as proteins, DNA, and RNA are several orders
of magnitude slower than the high-frequency vibra-
tional modes [1]. Moreover, the amplitudes of dis-
placements associated with the low frequencies are
much greater than those of the high frequencies and
therefore crucial for biological activity. Examples of
such large displacements include internal conforma-
tional rearrangements, enzymatic reactions, and pro-
tein folding. Computer models offer an important tool
for studying these problems which are far from being
resolved in the experimental laboratory.

In practice, this disparity of timescales in biomol-
ecules imposes a severe restriction on the integra-
tion timestep (At) for numerical stability consider-
ations: At must be a fraction of the fastest period,
which is around 10~'* s for a C-H stretch [2,3]. With
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such a small time increment, the fastest computers
today can only produce biomolecular trajectories on
the nanosecond scale, still several orders away from
the processes of major interest, as outlined above. It
is far from clear that much longer simulations alone
will be successful at unveiling many processes that
elude us today, as there are also serious approxima-
tions in the governing force field, as well as the un-
derlying thermodynamic assumption (i.e. unmediated
folding). Nonetheless, devising new strategies for in-
creasing the feasible timestep - and hence the simu-
lation times — forms an exciting area of research, not
only for biophysics but also for applied mathematics,
since new and complex problems emerge for which
no standard mathematical body is entirely suitable.

Implicit numerical integrators have been widely
known to the mathematical community as methods
with high stability for problems of multiple timescales
[4]. They have also been introduced to molecular
dynamics simulations [5,6], but straightforward ap-
plication, even with random forces (in the context of
Langevin dynamics) to counteract numerical dissi-
pation, can lead to uncompensated damping, which
in turn alters chemical dynamics. Thus, their use has
been recommended in combination with other proce-
dures that properly resolve the system’s subdynamics
[3,7], or for macroscopic models where the high
frequency modes are absent by construction [8,9].
In any case, implicit integrators are clearly compu-
tationally demanding since solution of a nonlinear
system of equations is involved at every dynamical
step. Nonetheless, minimization formulations of this
additional task and procedures to accelerate mini-
mization convergence [5,6,10] through precondition-
ing and clever initial guesses can make these methods
feasible, if not competitive.

Symplectic numerical integrators for Hamiltonian
systems have gained favorable attention in recent
years [11-13]. Symplecticness is a highly desirable
property associated with dynamical systems that leads
to preservation of areas in phase space and ensures
long-time stability of the method [12]. One symplec-
tic scheme is implicit midpoint (IM). In the linear
regime, the energy is known to be conserved and
stability to hold at large timesteps [12]. However,
certain associated problems in the nonlinear regime,
namely of resonance and large energetic fluctuations
at large timesteps [14,15], have limited IM applica-

tions to biomolecules.

Recent numerical results of Simo et al. [16,17]
indicate that symplectic algorithms introduce artifi-
cial coupling among the motions associated with var-
ious frequencies, leading to instability. Chaotic be-
havior, exhibited by symplectic integrators, for one-
dimensional nonlinear Hamiltonian systems (theoret-
ically integrable and non-chaotic), were also reported
[14,18]! Thus, it is of particular interest (and con-
cern) to explore how IM will behave for naturally
chaotic systems, such as biomolecules.

It is the purpose of this work to begin a feasibility
study regarding IM applications to chemical systems
at large timesteps. We are not interested here in very
accurate trajectories, such as can only be obtained with
high-order methods and small timesteps with respect
to the highest frequency of the motion. Rather, our
goal is to approximate reasonably, in some way, the
natural features of our physical systems so that long-
time processes can be followed to generate new bio-
logical insight. Clearly, one expects errors when the
timestep is not sufficiently small to resolve the high-
est frequency, especially with a low-order integrator
(e.g., one or two). However, it is of interest to dis-
tinguish between systematic errors that increase with
the timestep and more erratic ones, such as caused by
resonance. Moreover, explaining the origin and effects
of those resonances might aid in developing remedies
for these serious artificial effects. Thus, the following
questions form the main focus of this Letter:

(1) How large can the timestep be in IM to yield
similar energetic fluctuations as observed with stan-
dard explicit simulations at small timesteps (e.g., At =
1 fs)?

(2) How does IM perform as At increases and what
are possible problems?

(3) What might explain those problems? Are they
predictable?

(4) What can be concluded about the prospects of
IM for biomolecular dynamics?

Computational issues (i.e. competitiveness of
the scheme with respect to small-timestep explicit
schemes) can only be addressed through applications
to a wide range of system types and sizes. However,
CPU issues will be relevant only if reliable, or at least
predictable, performance can be ensured.
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2. Model and method
2.1. Propagation schemes (IM and Verlet)
The IM scheme, applied to the Newtonian equations

of motion (Egs. (1) and (2)), is described by the
discretization

Vn+l _Vn B

— =M PFGXT+ X, (3)
Xn+1 _Xn

= =V VT, (4)

The superscripts n denote the difference-equations so-
lution to X at time nAt, and f = —VE,, the gradient
of the potential energy E,. Following Ref. [5], the
new position vector, X", can be calculated by mini-
mizing the ‘dynamics’ function, @(X), which for IM
takes form

P(X)=3(X-XHM(X-Xp)

+ (AN Ep(3(X+ X)), (5)
with
Xi=X"+AtV". (6)

To begin a trajectory with IM, only X 0 and V©
must be specified. The minimization procedure is
performed with the truncated-Newton minimization
package, TNPACK [19,20]. This makes implicit in-
tegrators feasible for biomolecules. Here, the initial
guess for @ minimization is taken as X". Once X "*!
is computed, V"1 is calculated directly from the
relation given in Eq. (4).

For comparison, we also propagate the motion of
the Morse oscillator with the commonly used Verlet
algorithm [21], whose updating formula is given by

X" 2x" - X4 (ADEF(XT). (7)

The velocity, not necessary for the position propaga-
tion, can be defined as
Xn+l . Xn—l

- 2At '
The propagation of positions according to Eq. (7)
requires initial specification of both X %and X'. When
X'issetto

vr (8)

X'=x°+Arv0 + LA f(X), 9

the scheme is equivalent to the leap-frog method {22],
known to be symplectic [23]. Here, we choose ini-
tial conditions according to the above equation, so the
leap-frog method is tested.

2.2. Morse potential parameters

Our model system is the diatomic molecule, HBr,
with the hydrogen and bromine atoms interacting via
the Morse potential [24]

E,(r) = D{1 —exp[—S(r — ro)]1}>. (10)

In the above equation, r represents the interatomic dis-
tance, (r = ||xg — xp|| with xy and xp; denoting
position vectors of the hydrogen and bromine atoms,
respectively); D is the well depth, S is a parameter
controlling the width of the well, and rg is the equi-
librium bond distance. The potential parameters for
HBr follow those used in Ref. [6]. Specifically, D =
90.5 keal/mol, § = 1.814 A~!, and ro = 1.41 A,
The masses of hydrogen and bromine are set to my =
1.00785 amu, and mp;, = 79.904 amu, respectively.
The resulting reduced mass, & = myms; /(mpy+ma;),
is then 0.9953 amu.

To study the effect of the IM discretization on the
Morse potential alone, we restrict our application to a
diatomic molecule moving in one dimension under the
influence of this potential. (In practice, a 3D model
is simulated with zero initial conditions for X and V
in two of the three components to eliminate rotation;
the kinetic energy resulting from translation of the
free coordinate is then subtracted.) The conjugate pair
of position and momentum for the Morse oscillator
alone (r, p), is then expressed in terms of two nuclear
positions (xy and xp;) and the two velocities (vp and
vp;) of the hydrogen and bromine atoms as follows:

r=Xp — XH, (11a)

p=p(ve — ). (11b)

The phase diagrams shown in this Letter display the
magnitude of r, r, and the x component of p, p (y
and z components of p are zero). The Morse oscilla-
tor represents a simple nonlinear system on which nu-
merical procedures can readily and systematically be
tested. Moreover, exact trajectories are known analyt-
ically [24]. They are expressed in terms of an energy-
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dependent angular frequency, wg,, which is given by
the formula

wg, =S M (12)
7

Here, E, represents total energy of the system.

3. Results

Results for IM are analyzed below by examining
behavior of the energies and phase spaces by two pro-
cedures: (1) varying At but fixing initial conditions,
and (2) fixing At but changing the initial conditions.
Both procedures provide insight into the behavior of
the system, particularly near chaotic or problematic
regions.

The initial conditions for calculations with varying
timestep are chosen to mimic those typically used in
MD simulations. The initial position was taken as an
average position for desired temperature of the system,
and the initial velocity was set according to the tar-
get temperature. In our calculations, the temperature
is chosen to be around 600 K. (At that temperature
the nonlinear effects are stronger that at room temper-
ature, while the total energy is still low relative to dis-
sociation energy.) Initial conditions are specified as
follows: x¥ = (1.4155,0,0) T A, o{, = (1.545,0,0) T
Alr,x3, =(0,0,0)7 A, v} =(0,0,0)T A/r, where
7 is a time unit used in our calculations, corresponding
to 48.888 fs [6]. The total energy (kinetic plus po-
tential) of the Morse oscillator (not including transla-
tional energy), at this set of initial conditions is E? =
EQ + E? = 1.197 kcal/mol. The corresponding an-
gular frequency of the periodic motion at that value
of energy, calculated from Eq. (12), is wgo = 0.4970
fs~! with the period To = 12.6 fs.

As reported already [ 12], propagation of a nonlin-
ear system with IM does not preserve the value of
the total energy from step to step. Instead, fluctuations
are expected, with their magnitude depending on the
timestep. Figs. 1a~1c¢ shows the average values of the
total energy, (E,), versus At, as well as the magnitude
of fluctuations of the total energy (minimum and the
maximum values of E;), obtained along the trajecto-
ries simulated by both IM and the leap-frog schemes.
Data were collected by averaging the total energy, E,,

over 20000 to 100000 steps (more steps near reso-
nances and/or large values of At), so as to ensure a
converged value to at least three significant figures.

A striking pattern emerges. For small timesteps,
the computed values of total energy are in very good
agreement with the exact value, E,O. Moreover, for
timesteps in the range up to 2 fs (roughly, one sixth of
the period), the fluctuations of IM are much smaller
than those obtained with the explicit integrator (Fig.
Ic), by an order of magnitude for At = 2 fs. Now,
with increasing At, the range of fluctuations in IM
systematically increases, as in leap-frog. However, for
timesteps around 4 and 7 fs (approximately one third
and one half of the period), the fluctuations in IM in-
crease dramatically, leading to instability for At = 7
fs. Nonetheless, further increase of the timestep leads
to a bounded range of fluctuations, converging to a fi-
nite value, as shown for At > 10 fs. As will be shown
below, at large timesteps the frequency of the system
is altered (Fig. 1d).

In Fig. 2 we show the IM kinetic, potential and total
energy distributions as well as phase space diagrams,
for selected timesteps. For At = 1 fs (Fig. 2a), the
phase diagram of the simulated trajectory lies very
close to the analytical one and, within the resolution
of the plot, they overlap. Correspondingly, the fluctu-
ations of the energy are very small from the starting
value. The kinetic and potential energy distributions
appear as mirror images: the potential energy has a
minimum at ro, while Ex has a maximum, and as one
component increases the other decreases correspond-
ingly. When the timestep is increased to At = 2 fs
(Fig. 2b), the simulated trajectory slightly, but visibly,
differs from the exact one, resulting in larger fluctua-
tions of the total energy.

The timestep in Fig. 2c (At = 4.02 fs) corresponds
to the region for which large energy fluctuations are
noted in Fig. 1. Although the average total energy
(E,) = 1.37 kcal/mol is within the 20% of E?, the
sampled trajectory is qualitatively different from the
analytical one for the Morse oscillator: It reveals four
separate islands. Now, in addition to stretched bond-
length values, r, the absolute value of momentum, |p|
( x direction), can take two different values for a given
value of r; thus, the kinetic energy distribution is dou-
bly valued. This in turn causes a highly inaccurate,
doubly valued pattern of the total energy distribution.
The next two parts of Figs. 2d and 2e are chosen
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Fig. 1. The total energy envelopes (kinetic plus potential), obtained for the HBr Morse system by explicit (leap-frog) and implicit midpoint
(IM) integration (a)-(c); and the effective angular frequency of the harmonic oscillator, w(e)ﬁ, defined by Eq. (18) (d). Average energies
and associated envelopes (indicating fluctuation ranges) are calculated from trajectories that cover 20000 to 100000 steps to ensure that the
average energy converges to at least three significant figures. Whereas the size of envelopes and the mean energy values increase steadily
with the timestep (Az) for leap-frog, behavior of IM, though very good for At < 2 fs in comparison to leap-frog, indicates resonance
problems at particular timesteps (e.g., Ar = 2.9,4.02,7 fs). Significantly, beyond Ar = 10 fs, the errors in the IM envelopes are bound.
The three curves in (d) correspond to different original frequencies of the harmonic oscillator, namely wg = 1,2, 3 rad.
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(a) At = 1.0 fs

(b) At = 2.0 fs

(c) At = 4.02 fs
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Fig. 2. Energy distributions (kinetic, potential and total) and phase diagrams obtained for IM trajectories at various timesteps. For the
timesteps Az = 1.0,2.0,4.02,6.7,7.22,20.0 fs, we show the energy (E) distributions as a function of the bond length (r), along with the
corresponding phase diagram (r, p, see Egs. (11a) and (11b)). For each timestep, the distribution for the total energy are shown as dark
lines. The curve of potential energy distribution can be identified by a characteristic minimum at ro. The remaining curve represent the
kinetic energy distribution. The analytical trajectory is shown as a dashed line on the phase plot for comparison with the simulated one.
The regular symmetric pattern at small timesteps is quickly replaced by more intricate energy patterns, indicating the selective sampling
of phase space. Here and in all other phase diagrams, r is given in A, p in amu A/7, and energy in kcal/mol (7 is the time unit used in

our calculations corresponding to 48.888 fs [6]).

for timesteps slightly lower (At = 6.7 fs) and higher
(Ar = 7.22 fs) than that associated with the instabil-
ity region. For these IM trajectories, the sampling of
the phase space is incorrect: trajectories are triangu-
larly shaped. Extended values of r and p are covered
and large energy fluctuations result. Notice that the
triangularly shaped phase diagrams of Figs. 2d and 2e
appear to be rotated by 7 relative to each other. The
plots presented in Fig. 2f are obtained with At = 20
fs. As shown in Fig. la, for large timesteps (A7 > 10
fs), (E,) is nearly constant and fluctuations are bound.
The sampled trajectory for that timestep resembles the
one for a harmonic oscillator centered at r¢ (initial
point (79, p°) is contained in it), since the force is
essentially linearized. The computed average value of
the bond length for that timestep is (r) = 1.4102 A
(1.4155 A for Ar = 1 fs). For Ar > 20 fs phase space

maps are very similar to that one presented in Fig. 2f
(data not shown). Also, {r) — rp as At— oo, indicat-
ing that in the limit of large timesteps, the trajectory
approaches that of a harmonic oscillator. The effective
sampling of the linearized system explains the bound-
edness of the energy fluctuations. Recall that harmonic
oscillator orbits obtained by IM are identical for any
timestep. Thus for large timesteps the average values
of the total energy and energetic fluctuations depend
largely on the initial conditions, not on the timestep
(within reasonable accuracy).

In Fig. 3 (color plate) we show phase diagrams of
the trajectories obtained with several At values near
the ‘resonance’ of 2.9 fs (about one fourth of the pe-
riod). All of these trajectories begin at the same initial
point, as described above, and each trajectory contains
at least 5000 successive points from the simulation.
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Fig. 3. IM phase diagrams for the Morse oscillator corresponding to fixed initial conditions at different timesteps near the n = 5 resonance
(At =~ 2.9 fs). Both planar and three-dimensional views are shown. The black, dotted line in the planar view corresponds to the analytical
solution. The different colors distinguish maps at different timesteps. Starting with At = 2.9190 fs (purple-blue), the timestep is incremented
by 0.0005 fs, up to A =2.9230 fs (red). Clearly, the phase space is disconnected near this resonance, revealing five islands

What is evident from these views is that separate, dis-
continuous regions (islands) are spanned by trajecto-
ries near this timestep.

The pentagonal/oval shape of the diagrams in Fig. 3
and the five-island pattern suggests a resonance of
order five [25]. Similarly, the four islands of Fig. 2¢c
(At = 4.02 fs) indicate a resonance of order four.
The triangular shapes associated with the trajectories
of Figs. 2d and 2e (Ar = 6.7,7.22 fs), as well as the
instability occurring in this range of timestep (Fig. 1),
point to a resonance of order three [25]. The origin
of these resonances is discussed in more detail below.

4. Discussion

It is known that any symplectic integration scheme
applied to a nonlinear autonomous system with Hamil-
tonian H(X, V) is equivalent to the exact sampling
of some perturbed, nonautonomous system with an ef-
fective Hamiltonian Heg( X, V, At), where

H.(X, V, At) = H(x) + O((ADP), (13)

with B denoting the order of the integration scheme
[12].Recently, Wang proved that this effective Hamil-
tonian is time-periodic with period Az [ 18]. Thus, tra-
jectories generated by a symplectic algorithm corre-
spond to some Hamiltonian that depends periodically
on the timestep. In such a system resonance can occur

when a special relationship holds between the forcing
frequency (27r/At) and the frequency of the periodic
motion, @ [25]. For our Morse oscillator system the
resonance condition the takes form

27
nw=m AL (14)
where n and m are relatively prime natural numbers
and » is known as the order of the resonance.

It is well known that IM affects the frequency of
the periodic motion of the system [26]. The effective
frequency, @°%, becomes timestep dependent. The ex-
act analytical formula for @*% of our nonlinear Morse
oscillator system is not known, but for relatively small
energy values it is reasonable to approximate this ef-
fective frequency by expressions known for harmonic
oscillators.

For a one-dimensional harmonic oscillator of natu-
ral angular frequency wg, the IM propagation of the
position, x, and velocity, v, corresponds to the follow-
ing rotation in (v, wox) space [26]:

! cosf —sind o"
n+l = . n . ( 15)

woX sinf cosé woX
The angle of rotation, 6, a function of the timestep, is

given by the formula

0 =2tan™" (JwoAr), (16)
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or equivalently,

At
9=t -1 __.CL_ .
an < — }t(woAt)Z (17)

Thus, € depends on the timestep in a nonlinear way.
The discretized motion of the harmonic oscillator oc-
curs with a modified, effective angular frequency, wf,ff,
defined as

£t

2
et _ v _ £ —1,1
w, =7 Attan (5woA1). (18)

The effective period, T;™, is then given by

Oeff _ _—_IWIM__ ‘ (19)
tan (EwoAt)

Note that as Ar— 0, wgﬁ — wg, and as At— oo,

Wt — /At =0.

A plot of effective angular frequency, wzﬁ, for three
different values of the original angular frequency of
the harmonic oscillator, wg (wg = 1,2 and 3 rad) is
shown in Fig. 1d. We note that wsz is close to wy
only for very small values of the timestep At. For
intermediate values of At the curves sharply decay,
converfging slowly to zero. This monotonic decrease
of wy with the timestep explains our observation of
a series of resonances of different order. Note also
that different natural frequencies are mapped onto one
effective frequency in the limit of large timesteps. This
suggests a troubling scenario for biomolecules, whose
motions are made possible by a large range of different,
but cooperative, characteristic motions.

Inserting Eq. (18) into the resonance condition ( Eq.
(14)) and solving for At we get the approximate for-
mula for timesteps, At, », at which resonances of or-
der n occur,

2
Atym = — tan (T) , Lso (20)
C()El() n m

(At those timesteps, the harmonic oscillator samples
exactly n phase space points in m revolutions, where
nf = nAtw®® = m27.)

For our Morse system, the predicted timesteps with
m = 1, corresponding to the lowest-order resonances,
are presented in Table 1. The agreement between the
predicted (Table 1) and observed resonance timesteps
(Figs. la-1c) is very good.

Table 1

The predicted timesteps, Az, (fs), for resonance of the Morse
oscillator system. The variable n denotes the resonance order and
Aty,1 is computed according to Eq. (20) with wgo = 0.497 fs—1,
The third column gives At, | in period units (TE.° = 12.6 fs).
Only the six lowest-order resonances are listed

n Aty ) Period fraction
3 6.97 0.55
4 4.02 0.32
5 291 023
6 2.32 0.18
7 1.94 0.15
8 1.67 0.13

From the data in Table 1, we expect for At =2 fs
to observe resonance of order n = 7 for relatively low
energies. In fact, from Eq. (20) we can estimate the
minimum value of 2 for feasible resonances at given
timestep. For A¢ = 2 fs this value is close to 6.8. In-
deed, this agrees with the pattern of seven islands seen
in Fig. 4a. With increasing values of energy, and thus
the corresponding period of the system, a systematic
emergence of higher-order resonances (; =1 1 and
%) is evident. For comparison with IM, the phase
space portrait obtained with leap-frog at At = 2 fs is
presented in Fig. 4b. Resonances are expected, since
leap-frog is also symplectic [23]. The relationship be-
tween the timestep and the order of the resonance is
different though: in leap-frog, the angle of rotation in
phase space, 8(Ar), is different than in IM [27]. At
the same timestep (At = 2 fs), resonances of differ-
ent order are observed in both schemes. In Fig. 4b, the
resonance of order n = 6 is seen for small values of
energy and resonances of increasing ratio (125, 23—0)
occur as the energy increases.

Fig. 5 illustrates the severity of the third-order res-
onance: the stability region is decreased around the
equilibrium point of our Morse oscillator system as
the resonant timestep At3; is approached (note di-
verging patterns). This was predicted by Arnold [25].
The case of n = 4 (around At = 4.02 fs here) leads
to large energy fluctuations but not instability in IM
(instability can result from other integrators and sys-
tems [25]). In agreement with Arnold, we do not ob-
serve instability for resonances of order higher than
four [25]. In particular, the resonances of order higher
than n = 5 do not cause large energy fluctuations but
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Fig. 4. Phase diagrams at a fixed timestep, Ar = 2.0 fs, with (a) IM and (b) leap-frog. Initial conditions are chosen by changing the initial
position and keeping the initial momentum zero. Plots show creations of resonances of different orders. In plot (a) the resonances n =7, 8
and 9 are clearly seen. Also the 29 islands of the resonance 29/3 are present. In plot (b) the resonance n = 6 is seen. (The inset shows one
of the associated islands of that resonance in an enlarged scale; to complete the loop it was necessary to use trajectory of 50000 points.)
The other resonances shown are of higher order, 13/2 and 20/3. In both cases, as the initial energy increases, the resonance order increases.

their presence can be detected by the islands created
in the phase diagrams.

The existence of periodic perturbation for any
timestep means that the resonances will occur even for
very small timesteps (At < Tg, ). For small timesteps,
however, the energy fluctuations are not as significant
as those associated with lower-order resonances. Still,
for large systems the discretization-induced perturba-
tion (Eq. (13)) might lead to resonances that exhibit
‘diffusion’ in phase space (Arnold diffusion [28]),
i.e. sampling of regions that the unperturbed sys-
tem would not. Although that process might increase
the ergodicity of sampling, the resulting trajectory

should not be viewed as deterministic. The generated
successive snapshots of the system may bear little
resemblance to the dynamics of the original system.

In the large timestep limit, however, the effect of
the discretization - nonlinear change of frequencies
of the system as well as linearization of the system —
might not reproduce expected behavior and also lead
to effects not seen in the original system.

5. Conclusions

We have studied the problem of resonance by an im-
plicit symplectic integrator, IM, for a nonlinear chem-
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Fig. 5. Phase diagrams at different timesteps near the resonance # = 3. For each timestep, different initial conditions are chosen to show
the decrease of the stability region as the order n = 3 resonance (Ar = 6.97 fs) is approached.

ical system. Relatively large timesteps were examined
to understand the differences between the systematic
and erratic errors. We showed how the dynamics can
be corrupted at and/or near resonant timesteps and
how these problems can be detected. By relying on
the large body of knowledge in the classical mechan-
ics literature, we have presented an analysis that leads
to prediction of the timesteps where the resonances
should occur (Eq. (20)). This analysis is confirmed
by our simulation results (Figs. la-1c, 2c-2e, 3-5).
In sum, the following conclusions can be drawn re-
garding the IM integrator.

(1) For small At, IM is better than leap-frog in
terms of energy fluctuations. As seen in Fig. 1c, IM
errors at At = 2 fs (roughly one sixth of the period)
are smaller than those of leap-frog for Ar = 1 fs by
a factor of 2.5. Still, the computational time of IM is
probably not competitive.

(2) For large timesteps (At > 10{s), energy fluctu-
ations are bound but the force is effectively linearized
and the frequency severely damped. See Fig. 1a and
the phase diagram of Fig. 2f, as well as Eq. (18) and
Fig. 1d.

(3) Resonance problems are expected for the Morse
oscillator according to Eq. (13). Here we observe res-
onances of ordern = 3,4,5 (m = 1) (see Figs. la-Ic,
2¢-2e and 3), corresponding to At = 6.97,4.02, 2.91
fs (roughly one half, one third, and one fourth the pe-
riod), respectively. Higher-order resonances, n = 7, 8,
9 with m = 1 (At smaller than roughly one seventh of

the period), are seen in Fig. 4a. Also, the resonance
% = % is evident in Fig. 4a. However, we found that
only the lowest-order resonance, namely n = 3 and
m=1 (At =6.97), leads to instability (Figs. la and
5). In severity, the resonance of order n = 4 follows
n =3 (m=1). Beyond n = 5, resonances can only
be detected in the phase diagrams (Fig. 4), not by the
energy fluctuations, which are small. (The resonances
displayed in this work do not of course exhaust all the
possible cases.)

(4) For biomolecules, resonance problems are ex-
pected to affect the dynamics severely at moderate and
large timesteps. Thus, extreme caution must be ex-
ercised in this regime when symplectic methods are
used. Although systematic errors due to the discretiza-
tion scheme are expected when the timestep is rela-
tively large with respect to the period of the fastest
motion, we have shown here how additional, erratic
problems due to resonance can occur for symplectic
methods. We emphasize that our analysis does not rule
out resonance in non-symplectic schemes. Not only
are timestep-dependent resonances expected, but also
artificial coupling of motion associated with different
frequencies due to their nonlinear mapping (Fig. 1d).
Based on the harmonic oscillator analysis, we expect
that at large timesteps all the high frequencies of the
system are effectively mapped to one frequency, ap-
proaching zero at large At (Eq. (18), Fig. 1d). More-
over, in this timestep regime, the forces governing the
fast motions are effectively linearized (Fig. 2f), so the
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resulting dynamics may be unrealistic. An application
of IM to a more complex molecular system, to ex-
plore these intriguing observations and scenarios, and
possibly devise a remedy, is underway.
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