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We develop an efficient technique for computing free energies corresponding to conformational
transitions in complex systems by combining a Monte Carlo ensemble of trajectories generated by
the shooting algorithm with umbrella sampling. Motivated by the transition path sampling method,
our scheme ‘‘BOLAS’’~named after a cowboy’s lasso! preserves microscopic reversibility and leads
to the correct equilibrium distribution. This makes possible computation of free energy profiles
along complex reaction coordinates for biomolecular systems with a lower systematic error
compared to traditional, force-biased umbrella sampling protocols. We demonstrate the validity of
BOLAS for a bistable potential, and illustrate the method’s scope with an application to the sugar
repuckering transition in a solvated deoxyadenosine molecule. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1766014#

I. INTRODUCTION

Many physicochemical reactions such as nucleation
events in phase transitions and conformational changes of
biomolecules are activated processes that involve rare tran-
sitions between stable or metastable basins in the free energy
surface. Computing the relative free energies of metastable
basins and those associated with barriers is thus a central
objective in many applications.

Commonly employed free energy methods are derived
from thermodynamic integration or umbrella sampling.1 For
systems of moderate size and complexity~;1000 atoms!,
these approaches can be combined with different sampling
strategies based on Monte Carlo and molecular dynamics.2–5

Biomolecular applications present a challenge, in large part
because it is difficult to quantifya priori associated with the
free energy landscape. Indeed, biomolecular dynamics
simulations6 typically capture motion representing only a
sliver of the complex landscape. Thus, novel sampling
schemes and efficient techniques for computing free energies
are needed.

In traditional sampling methods used for complex sys-
tems, large biasing potentials (@kBT) are necessary to
sample regions of high free energy, and this introduces a
systematic error in the computed free energy~since the ‘‘bi-
ased’’ phase space can depart significantly from the natural
space6,7!. The transition path sampling method of Chandler
and co-workers10,11 can, in principle, circumvent this prob-
lem by generating bias-free trajectories near barrier regions;
however, computing the overall free energy profile for large
systems becomes prohibitively expensive.

Here we develop an approach for computing free ener-
gies using a Monte Carlo ensemble of trajectories generated
by the shooting algorithm10 combined with umbrella sam-

pling. The generation of short molecular dynamics trajecto-
ries was inspired by the transition path sampling scheme;10,11

our usage of path sampling and subsequent computation of a
free energy profile is motivated by our study of the confor-
mational closing reaction kinetics mechanism for a solvated
DNA polymeraseb system~;40 000 atoms!.12 We call the
developed scheme for free energy calculations ‘‘BOLAS,’’
after a lasso with attached balls popularized by cowboys of
South America~gauchos!. Essentially, BOLAS combines the
zero potential-bias feature of transition path sampling in ex-
ploring phase space with umbrella sampling for free-energy
computation along a chosen reaction coordinate. This com-
bination has the advantage of allowing arbitrary choices for
the order parameter characterizing the reaction coordinate
and leads to a reduced systematic error compared to tradi-
tional umbrella sampling; efficient applications to biomo-
lecular systems, namely, identifying probable conformational
transition mechanisms and associated free energy profiles,12

are then possible.
We show here that BOLAS preserves microscopic re-

versibility and leads to the correct equilibrium distribution,
which can then be computed as a function of the reaction-
characterizing order parameter. We verify the validity of BO-
LAS by calculating the free energy profile of a particle gov-
erned by a bistable potential in one dimension and
comparing the calculated profiles to results obtained using
the Jarzynski equality, as well as traditional umbrella sam-
pling with Langevin dynamics. We then report an application
to a biomolecular prototype that is small enough~529 atoms!
yet biologically interesting—a sugar repuckering transition
in a solvated deoxyadenosine molecule occuring on the
nanosecond time scale with barrier of the order of a few
kilocalories per mole.

II. BACKGROUND

BOLAS is motivated by the method of transition path
sampling,10,11 which provides a clever means to access tran-
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sition state regions in complex multidimensional landscapes
without the knowledge of reaction coordinatesa priori. Tran-
sition path sampling~TPS! has been successively applied to
relatively small systems~alanine dipeptide isomerization,13

dissociation of water in the condensed phase,14 methanol
coupling in zeolites,15 ice nucleation,16 folding of oligomers
modeled as hard spheres,17 base-flipping in short DNA
segment,18 andb-hairpin folding19!. The challenge of apply-
ing TPS to a macromolecular system is threefold—in deter-
mining the order parameters that characterize the multiple
transition state regions; assessing the convergence, quality,
and completeness of sampling; and estimating free energy
barriers. We have already addressed the issues of multiple
transition-state regions and convergence measures through a
first application of TPS to a macromolecular system in an
explicit solvent, namely, a conformational change in a DNA/
polymeraseb complex.12 Here, we describe the third com-
ponent~free energy calculations! by developing our BOLAS
protocol for efficient calculations of free energies in complex
systems. BOLAS is useful as an algorithm in its own right.

By way of background, we start by illustrating the for-
malism of transition path sampling that is essential to the
development of the BOLAS protocol~specifically, derivation
of the BOLAS actionS!. For a more complete treatise on
transition path sampling, we refer the readers to excellent
reviews from the Chandler group;11 a brief summary is also
included in an appendix of Ref. 12.

Transition path sampling20 aims to capture rare events
~excursions or jumps between metastable basins in the free
energy landscape! in molecular processes by essentially per-
forming Monte Carlo sampling of symplectic dynamics tra-
jectories; the acceptance or rejection criteria are determined
by selected statistical objectives that characterize the en-
semble of trajectories.

Essentially, for a given dynamics trajectory, the state of
the system~i.e., basinA or B! is characterized by defining a
set of order parametersx5$x1 ,x2 ,...%. These order param-
eters are geometric quantities such as dihedral angles, bond
distances, root-mean-square deviations of selected residues
with respect to a reference structure, etc., which display bi-
modal distributions in regions of phase space. For biomol-
ecules, the key to a successful TPS application is identifying
these key variables.12,18 Each trajectory is expressed as a
time series of lengtht, $x%t5$x0,x1,...,xt%; each element
x i of x has a value at each time stepj (x i

j ).
To formally identify a basin,the population operator hA

indicates if a particular molecular configuration associated
with a time t of a molecular dynamics trajectory belongs to
basinA,

hA„x~ t !…5H 1 if x~ t !PA

0 otherwise
. ~1!

The trajectory operator HB identifies a visit to basinB in a
trajectory of lengtht,

HB$x%t

5H 1 if there exists 0,t,t such thathB~ t !51

0 otherwise
.

~2!

The idea in TPS is to generate many trajectories that
connectA to B from one such existing pathway. This is ac-
complished by a Metropolis algorithm that generates an en-
semble of trajectories$x%t of length t according to a path
actionS$x%t given by

S$x%t5r~0!hA~x0!HB$x%t, ~3!

wherer~0! is the probability of observing the configuration
at t50 @r(0)}exp$2bE(0)%, in the canonical ensemble#.
Trajectories are harvested using the shooting algorithm:10 a
new trajectory$x* %t of lengtht is generated from$x%t by
perturbing the momenta of atoms at a randomly chosen time
t in a symmetric manner,10 i.e., the probability of generating
a new set of momenta from the old set is the same as the
reverse probability. The forward and reverse trajectories for
durationt andt2t, respectively, are then generated and con-
catenated to yield the new trajectory of lengtht. The mo-
mentum perturbation scheme conserves the equilibrium dis-
tribution of momenta and the total linear momentum. The
perturbation scheme is symmetric, i.e., the probability of
generating a new set of momenta from the old set is the same
as the reverse probability of generating the old set from the
new set. Moreover, the scheme conserves the equilibrium
distribution of momenta and the total linear momentum~and,
if desired, total angular momentum!. The acceptance prob-
ability implied by the above procedure is given by

Pacc.5min@1,S$x* %/S$x%#. ~4!

Together, these criteria ensure preservation of detailed bal-
ance, and thus according to the Metropolis algorithm~see p.
116, Chap. 4 of Ref. 1!, generate an ensemble of trajectories
consistent with the path actionS. Conserving the path action,
as described above, both conserves the equilibrium distribu-
tions of the individual~metastable! states, and ensures that
the accepted molecular dynamics trajectories connect the two
metastable states in question. With sufficient sampling in tra-
jectory space, the protocol converges to yield physically
meaningful trajectories passing through the saddle region.

III. METHODS

The BOLAS protocol

Motivated by transition path sampling, BOLAS gener-
ates an ensemble of molecular dynamics trajectories using a
Monte Carlo protocol with an appropriate actionS based on
shooting perturbations.10 Below, we define the BOLAS ac-
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tion S and show that BOLAS preserves the desired equilib-
rium distribution of configurations, a distribution which can
then be used to compute the free energy as a function of a
reaction coordinate or order parameter chosena priori. The
BOLAS path action@different from the TPS path action in
Eq. ~3!# is

S$x%t5r~0!, ~5!

where r is the equilibrium distribution of the ensemble
(exp@2E/kBT#), and the probabilityPi(t50) of finding the
system in the initial configuration~state i! at t50 is
r(t50)5r( i ). The resulting acceptance probability for the
new trajectory is given byPacc.5min@1,S$x* %/S$x%#.

A modified path action for BOLAS@Eq. ~5!# is required
to compute the unbiased probability distribution of a given
order parameterx i at equilibrium. In principle, configura-
tions contained within the trajectories harvested by TPS@us-
ing path action in Eq.~3!# are also obtained from the shoot-
ing algorithm. However, the bias imposed at the boundaries
due to thehA(x0) andHB$x%t terms in Eq.~3! prevents the
correct estimation of the equilibrium probability distribution
P(x i) of x i from trajectories harvested by TPS. This is be-
cause the contribution toP(x i) comes from six classes of
trajectories: trajectories that start inA and visit B in time
interval t ; trajectories that start inB and visit A in time
interval t ; trajectories that neither originate inA nor B, but
visit both the states in time intervalt ; trajectories that visitA
and notB; trajectories that visitB and notA; and trajectories
that neither visitA nor B. The TPS action@Eq. ~3!# includes
only the first class of trajectories; an action defined by
S$x%t5r(0)HA$x%tHB$x%t includes the first three classes
of trajectories; the BOLAS action@Eq. ~5!# includes all six
classes of trajectories.

Since detailed balance is preserved for the momentum
perturbation move of the shooting algorithm, and the indi-
vidual molecular dynamics trajectories conserve a stationary
~equilibrium! distribution r, the configurations contained
within the ensemble of the generated trajectories are also
distributed according to the equilibrium distributionr, as we
prove in Appendix A.

Thus, from the ensemble of trajectories generated using
the BOLAS action@according toS$x%t5r(0)], theequilib-
rium probability distribution of the order parameter
P(x i5x i8) can be calculated as

P~x i8!}E dr dp S$x%t(
j 51

t

d~x i82x i
j !, ~6!

where summation extends over all time steps in each trajec-
tory and over all accepted trajectories. The preservation of
the equilibrium distribution allows us to compute relative
free energiesF(B)2F(A) between two statesA andB ~Refs.
21 and 22! by

exp$2b@F~B!2F~A!#%

5E
x i ,B,min

x i ,B,max
dx i8P~x i8!/E

x i ,A,min

x i ,A,max
dx i8P~x i8!, ~7!

where x i ,A,min,xi8,xi,A,max characterizes the stateA, and
x i ,B,min,xi8,xi,B,max characterizes the stateB.

In Eq. ~6!, P(x i) is a one-dimensional probability distri-
bution. Thus, for purposes of the free energy calculations, we
select one order parameter (x i) to describe the transition
between basinsA andB. To enhance the efficiency of com-
puting the probability distributionP(x i) over a desired range
of x i , we employ a window based umbrella sampling strat-
egy ~see p. 172, Chap. 6 of Ref. 23!. The desired range ofx i

is divided up in terms of smaller windows and the BOLAS
protocol is used to independently sample the configurations
in each of these windows. In a specified window, trajectories
are harvested using the path action in Eq.~5! and are ac-
cepted only if they visit the windowx i ,min,xi,xi,max during
time t. This is equivalent to performing an umbrella sam-
pling with a weighting function of zero. The potential of
mean forceL i(x i) is given by21–23

L i~x i !52kBT ln@P~x i !#1const. ~8!

The functionsL i(x i) in different windows are pieced
together by matching the constants such that theL i function
is continuous at the boundaries of the windows. A simple
procedure to estimate the number of windows is given in the
Results section. The use ofN windows results in a savings in
CPU time by a factor ofN ~assuming that the dynamics in
each window is diffusive, see p. 173, Chap. 6 of Ref. 23!.

In summary, we implement BOLAS for eachx i defining
a transition using the following steps.

~1! We define the order parameter windowx i ,min,xi

,xi,max in which to calculate the free energy profile.
~2! We harvest dynamics trajectories according to the

action in Eq.~3! but accept them only if they visit the win-
dow x i ,min,xi,xi,max during timet.

~3! We use the configurations contained within the en-
semble of accepted trajectories to compute the probability
distribution P(x i) according to Eq.~6! by constructing a
histogram corresponding tox i .

~4! We combine the probability distributionsP(x) in
successive windows by adjusting the constants in Eq.~8! to
makeL i(x i) continuous.21–23

~5! We compute the relative free energies using Eq.~7!.

IV. RESULTS

A. Applying BOLAS to a particle
in a bistable potential

We now test BOLAS for computing the free energy pro-
file of a classical particle moving in one dimension governed
by a bistable potentialV(x) coupled to Nose´-Hoover chain
of thermostats.24 The ten thermostats with massesQi , for i
51, 10 are 8, 10, 16, 24, 32, 32, 64, 128, 256, 512. The
potential V(x) ~Fig. 1, see caption! is described by three
piecewise harmonic functions and is continuous and differ-
entiable everywhere; we use unit particle massm and unit
temperaturekBT, with lengths, time, forces, and energies
scaled accordingly. A velocity Verlet integrator with two dif-
ferent time steps~see below! was used to generate the Hamil-
tonian dynamics.

We divide thex coordinate into one, three, and ten win-
dows, and integrate over 250 000 steps in each case: time
step Dt50.001 for the one- and three-window cases, and
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Dt50.000 01 for the ten window case. The variable window
number and time step values allow us to evaluate the effect
of trajectory length and the intrinsic damping~of order
dx/dt) along the reaction coordinate on the computed free
energy profile.~The one-window case is not expected to be
valid, but we report it here for analysis purposes.!

Each window defined byxmin,x,xmax is sampled by
harvesting trajectories according to the shooting and shifting
algorithms. We accept the harvested trajectories according to
the actionS5r(t50) as long as the trajectories visit the
region xmin,x,xmax in the time interval 0<t<t. In the
shooting moves, the randomly perturbed momenta were
drawn from a standard normal distributions, i.e., pnew

5pold10.1m1/2s, yielding an acceptance rate of 25% to
30%. Histograms of the frequency distributions ofx are ac-
cumulated for each window by harvesting 100 new trajecto-
ries. The probability distributionsP(x) in successive win-
dows are combined according to the recipe of Lynden-Bell
and co-workers.22 The free energy profile is calculated from
the probability distributions by Eq.~7!.

The computed free energies forV(x) in Fig. 1 show that,
except for the one-window case, our procedure accurately
reproduces the true free energy profile. Using just one win-
dow is expected to underestimate the free energy barrier be-
cause of the lack of ergodicity. Significantly, the error bars
associated with the three- and ten-window sampling proce-
dures are within 0.5 (kBT51, here!.

The agreement between the three- and ten-window sam-
pling procedures also indicates that the calculated free en-
ergy is independent of the trajectory lengthDt3nstep(nstepis
fixed butDt was varied!. This independence of free energy
from trajectory length also shows numerically that our pro-
tocol conserves the desired equilibrium distribution.25

In our three-window case, it can be argued that the indi-
vidual dynamics trajectories are long enough to capture one
transition event per trajectory and hence the equilibrium dis-
tribution is trivially conserved collectively. However, the ten-
window case puts our protocol to a stringent test. In this
case, the duration of each trajectory is much shorter than the
average time for a transition. Thus, the equilibration is
acheived solely due to the shooting and shifting moves.

In complex systems, the trajectory length should be dic-

tated by the acceptance rate of the shooting algorithm. The
number of windows can then be approximately estimated as
(xmax2xmin)/(tk), wherexmax2xmin determines the region of
focus along the reaction coordinate in terms of the order
parameter, andk is the intrinsic damping in the system~of
orderdx/dt). For example, in our deoxynucleoside applica-
tion below, this estimate yields five windows, and in our
large solvated protein/DNA complex this translates to ten
windows.12

B. Comparing BOLAS’ free energy profile
to the Jarzynski equality and umbrella sampling

We now employ both the Jarzynski equality8 and um-
brella sampling with Langevin dynamics simulation to com-
pute the free energy for the bistable-potential test problem
and compare with the results above.

To compute the free energy difference between statesA
andB using the Jarzynski equality, we generate several dy-
namics trajectories that connect the two states, calculate the
work done on the system in each trajectory, and apply the
Jarzynski equality.8 This procedure is expected to be accurate
if the standard deviation in the calculated work from the
different trajectories is small, a criterion easily satisfied for
small systems like the bistable potential.

To harvest several trajectories connecting statesA andB,
we employ the shooting algorithm with a modified action
with respect to Eq.~3! as outlined in Appendix B to ensure
that the harvested trajectories connect statesA and B. We
then apply the Jarzynski equality to calculate the free energy
difference between statesA and B ~see Appendix B for de-
tails!.

Figure 1 reports the resulting free energy profile con-
structed from 100 trajectories connecting statesA andB and
application of the Jarzynski equality from the path average of
the work done in individual Hamiltonian trajectories@Appen-
dix B, Eq. ~B-4!#. The agreement with BOLAS’ results as
well as the exact result is evident.

We also compute the free energy profile in the bistable
potential example by using the well established umbrella
sampling procedure in conjunction with Langevin dynamics
simulations,26 as follows. Dynamics trajectories are gener-
ated according to the Langevin equation of motion~for a
particle in one dimension!,26

m dv/dt52dVtot~x!/dx2kv1 f r , dx/dt5v. ~9!

Here,$x,v% is the set of coordinate and velocity for the par-
ticle, Vtot(x) is the total potential energy~internal and exter-
nal! function,k is the friction coefficient, andf r is a random
force satisfyinĝ f r&50 and^ f r(0) f r(t)&5Cd(t), whereC
is a constant andd is the Dirac delta function. Equation~9!
with C52kkBT/m ensures that the dynamics follows a ca-
nonical distribution at the specified temperature.

We perform Langevin dynamics simulations using
Vtot(x)5V(x)1Vumb(x), whereV(x) is the potential energy
function in the original Hamiltonian, andVumb(x)5K3(x
2xoffset)

2 is an umbrella potential that restricts the system to
a window aroundxoffset. We compute the probability distri-
bution Pumb(x) alongx by accumulating histograms of con-
figurations visited during the dynamics. The probability dis-

FIG. 1. Free energy profile of a classical particle in the bistable potential
defined by V(x)55(x12)2 for x<21, 1025x2 for 21,x<1.2, and
5(x22.4)224.4 for x.1.2. The free energy curve calculated using the
Jarzynski equality falls on top of the exact result. The ten-window simula-
tion only coversx.0 for better illustration.
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tribution P(x) corresponding to the canonical ensemble is
then obtained from Pumb(x) using the relationship
2kBT ln@P(x)#52kBT ln@Pumb(x)#2Vumb(x). The Helm-
holtz free energy is calculated by usingP(x) in Eq. ~7!.

The resulting free energy profile for the bistable example
using a ten-window umbrella sampling protocol is shown in
Fig. 1. In each window, we use Langevin dynamics trajecto-
ries of 253106 trajectory steps, with time stepDt50.01 and
a friction coefficientk51 @see Eq.~9!#. The umbrella poten-
tial Vumb is defined as 5.03(x2xoffset)

2, wherexoffset corre-
sponds to22.0, 21.5, 21.0, 20.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5
in each window. The statistics from each window are com-
bined using a method similar to that described in Sec. III A.
The free energy profile shows excellent agreement with re-
sults of BOLAS and the Jarzynski approach.

C. Sugar repuckering in a solvated
deoxyadenosine molecule

We now demonstrate the scalability of BOLAS to a sol-
vated deoxyadenosine molecule~see molecular illustration in
Fig. 4, top!. The conformations of nucleic acid sugars play
important roles in the structure of DNA and RNA. The over-
all conformation of a nucleoside~sugar plus nitrogeneous
base! can be described in terms of the glycosyl torsion angle
x in standard nomenclature~not to be confused with the
vectorx introduced earlier!: the angle defined with respect to
atoms O48-C18-N9-C4 for purines and O48-C18-N1-C2 for
pyrimidines ~see Table 5.2 and Fig. 5.5 in Ref. 26!, and a
phase angle of pseudorotationp, which effectively defines
the sugar conformation based on a wavelike motion.27–29

Based on the original definition for furanose puckering phase
angle p by Altona and Sundraligam,27 Rao, Westhof, and
Sundraligam introduced a modified formulation using an ap-
proximate Fourier analysis which treats the endocyclic tor-
sions in the sugar ring in an equivalent manner.28,29 In this
modified definition,28,29 the pucker anglep is calculated as
follows:

A5
2

5 (
j 50

4

n j S 4p j

5 D ,

B52
2

5 (
j 50

4

n j S 4p j

5 D ,

~10!
nmax

2 5~A21B2!,

p5tan21S B

AD .

The $n i% are the five endocyclic torsion anglesn0 ,
C48-O48-C18-C28; n1 , O48-C18-C28-C38; n2 ,
C18-C28-C38-C48; n3 , C28-C38-C48-O48; and n4 ,
C38-C48-O48-C18. The sugar puckering amplitude (nmax)
measures the extent of deviations of torsion angles from
zero. See the pseudorotation conformational wheel in Fig.
5.6 of Ref. 26.

The sugar pucker conformational space for DNA is char-
acterized by two broad energy minima at C38-endo and

C28-endo conformations, centering aroundp518° and p
5162°, respectively. These are characteristics ofA and B
forms of DNA, respectively.

From experimental structures, it is known that a typical
C38-endo state lies in the north range of pseudorotational
values,21°<p<34°, and a C28-endo configuration is in
the south range, 137°<p<194° ~see Fig. 5.8 in Ref. 26!. We
use the terms C38-endo and C28-endo to denote these broad
ranges rather than a localized set of specifically puckered
states.

Many theoretical studies on nucleic acid sugars have
been reported;29–37see the text of Ref. 26 for a review. Based
on Lifson and Warshel’s newly developed Cartesian coordi-
nate consistent force-field approach,30 Levitt and Warshel
computed an adiabatic map to investigate the variation of
potential energy along the pseudorotation path, which im-
plied an energy barrier of 0.6 kcal/mol for the interconver-
sion between C28-endo and C38-endo deoxyribose
conformations.31 Molecular mechanics studies of Harvey and
Prabhakaran29 produced a value of 1.5 kcal/mol for the same
barrier. Methods that do not include the sugar in its ambient
solvent environment produce typically higher values~. 4
kcal/mol, Foloppe and MacKerell;35 3.2 kcal/mol, Schlick
et al.;36 1–2 kcal/mol, Nilsson and Karplus37!. A recent study
by Arora and Schlick38 employed the novel stochastic path
approach on a deoxyadenosine molecule with implicit solva-
tion and reported a free energy barrier of 2.260.2 kcal/mol
for interconversion between C28-endo and C38-endo states,
consistent with previous simulation and experimental
results.29,37,39,40

Our motivation here is to test the scalability of BOLAS
on complex molecular systems.12 We model the solvated pe-
riodic system for dA~deoxyadenosine! with 160 TIP3P water
molecules in CHARMM.41 Dynamics simulations are per-
formed using CHARMM version C28a3~Ref. 41! using a
Verlet integrator with a time step of 1 fs, with electrostatic
and van der Waals interactions smoothed to zero at 12 Å. We
calculate the free energy along the reaction coordinate char-
acterized by the pseudorotation anglep using a five-window
approach as described in Sec. III A~see caption of Fig. 4 for
window definitions!. In each window, new trajectories are
accepted according to actionS5r(0) if they visit configu-
rations within the defined window, and the histogram of the
frequency distribution ofp is calculated from 300 harvested
trajectories of length 10 ps each. The momentum perturba-
tion pnew5pold10.01m1/2s ~in units of amu3Å/fs! yields a
move acceptance rate of 25% to 30%.

A reference adiabatic map of dA~with fewer water mol-
ecules! in the $p,x% space is available in Fig. 5.10 of Ref.
26, showing several minima corresponding to C38-endo and
C28-endo sugar conformations in combination with anti and
syn glycosyl orientations. Figures 2 and 3 show distributions
obtained using BOLAS connecting the C38-endo/anti and
C28-endo/anti conformational states of dA~see Fig. 5 and
discussion below of five sampled states!. The joint popula-
tion distribution of the pseudorotation anglep and the phase
amplitudenmax is given in Fig. 2, which clearly identifies the
metastable C28-endo and C38-endo regions along with the
barrier region representing the bottleneck for the transition.
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The histograms in Fig. 3 showunimodaldistribution of other
variables indicating their relative constancy during the re-
puckering transition~DNA backbone torsiong is defined for
quadruplet O58-C58-C48-C38 and illustrated in Fig. 5.4 of
Ref. 26!. The resulting free energy profile~Fig. 4! as a func-
tion of the reaction coordinatep shows that the C28-endo
state is stable over C38-endo by20.45 kcal/mol. The free
energy barrier for the repuckering transition is 2.5 kcal/mol
with respect to the C28-endo state and occurs via the east
sugar pucker~C48-endo!. These results are consistent with
the large body of experimental work40 and in quantitative
agreement with those of Arora and Schlick,38 who recently
used the stochastic path approach and the AMBER force
field with implicit solvent to obtain the free energy profile of
the repuckering transition for the same system.

Finally, Fig. 5 presents a contour plot of the function
2kBT ln@P(p,x)#, indicating the free energy landscape of the
system in terms of$p,x%. In order to computeP(p,x), two-
dimensional histograms were collected during the five-
window BOLAS sampling alongp as described above. The
plot identifies the metastable basins in thep, x space and also
locates the barrier regions as saddle points in the landscape.
The dominant pathway for the repuckering transition is one
that connects the metastable basins through the saddle re-
gions. BOLAS identified transitions from C28-endo/anti to
C38-endo/anti (A1 to B1 in Fig. 5!, a metastable basin

(B18) in C38-endo/anti, and transitions from
C28-endo/high-anti to C38-endo/high-anti (A2 to B2 in Fig.
5!. These free energy basins correspond to potential energy
basins in the adiabatic map available in Fig. 5.10 of Ref. 26.
The states corresponding to syn glycosyl torsion are not vis-
ited during our sampling, as expected, due to a high free
energy barrier of anti to syn interconversion.42

V. DISCUSSION

We have shown that the shooting algorithm conserves
microscopic reversibility, i.e., obeys the balance condition in
Eq. ~A7!, and this implies preservation of equilibrium distri-
bution and the fluctuation-dissipation relation~Appendixes A
and B!. We exploited these relations to devise BOLAS, an
efficient free energy technique based on an ensemble of tra-

FIG. 2. Two-dimensional population distribution of the pseudorotation
anglep and the phase amplitudenmax @see Eq.~10! for definition# as com-
puted from 1500 trajectories of length 10 ps showing the C28-endo and
C38-endo metastable regions.

FIG. 3. Histograms of distributions of glycosyl torsion anglex ~unfilled!,
and backbone torsion angleg ~filled! showing the conformational space
of the molecule during the C38-endo/anti to C28-endo/anti repuckering
transition.

FIG. 4. Free energy profile for the repuckering transition of the solvated
deoxyadenosine molecule. The molecular snapshots illustrate the conforma-
tion of the sugar ring in the C38-endo~left! and C28-endo~right! states. The
free energy profile was calculated using a five-window BOLAS protocol in
the p coordinate defined by 0°<p<50°, 30°<p<80°, 60°<p<110°,
100°<p<150°, 130°<p<180°.

FIG. 5. Contour plot of the two-dimensional distribution2 ln@P(p,x)# illus-
trating the sampled metastable states~basins! in the free energy landscape
along with the barrier regions~saddle points!. The basins correspond to A1
~C28-endo/anti!, B1 and B18 ~C38-endo/anti!, A2 ~C28-endo/high-anti!,
and B2 ~C38-endo/high-anti!. These minima were confirmed by energy
minimization.
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jectories generated by the shooting algorithm combined with
umbrella sampling~and motivated by the transition path
sampling scheme10,11!. Our application to two systems has
demonstrated BOLAS’ utility for computing the free energy
profile of simple as well as complex systems. The validity of
BOLAS was demonstrated through comparison to the
Jarzynski approach and the traditional umbrella sampling ap-
proach. Successful applications to a solvated biomolecular
system of;40 000 atoms, namely, the closing conforma-
tional transition of DNA polymeraseb complexed to primer/
template DNA~reported separately12!, have allowed us to
identify five crucial transition states in the free energy land-
scape of the conformational pathway; the computed relative
free energies of several metastable states, as well as the free
energy barriers associated with the five transition states,
yielded insights into the sequence of events and the ranking
of conformational and energetic events along polymerase
closing pathway.12

BOLAS differs from transition path sampling10,11 in the
action it employs. Our actionS5r(0) ensures that the con-
figurations contained within the ensemble of trajectories are
distributed according to the equilibrium distribution. Our
window xmin<x<xmax subsequently sampled by umbrella
sampling includes all generated trajectories that visit that
window and avoids imposing additional bias. Hence, unlike
the transition path sampling algorithm@which, by using the
action of Eq.~B1!, selects only those trajectories that start
from x,xmin and visit x5xmax at least once during 0,t
,t], BOLAS includes paths that do not connectxmin

andxmax.
BOLAS is advantageous over currently used techniques

for calculating free energies because the constraint that re-
stricts the trajectories to sample the relevant window of the
order parameter is introduced through the window specifica-
tion, independently of the Hamiltonian dynamics generating
the trajectory. This allows an easy implementation using ar-
bitrary definitions of the order parameter@such as the pseu-
dorotation anglep in Eq. ~10! and glycosyl torsion#, as often
required to characterize the reaction coordinate for complex
systems. In contrast, explicit constraint-based methods for
free energy calculations are practical only for simple choices
of the order parameter~e.g., bond distance!.43

The zero potential-bias feature of the shooting algorithm
also ensures the correct weighting of the density of states,
leading to a lower systematic error in the calculated free
energies44 ~compared to traditional force-based umbrella
sampling methods! for biomolecules. For our simple ex-
ample of the bistable potential illustrated, the ten-window
stochastic sampling procedure involved an aggregate time of
simulation corresponding to 1.03104 in reduced units, com-
pared to an aggregate time of 2.53106 for the ten-window
traditional umbrella sampling procedure using Langevin dy-
namics, for the same statistical error of 0.5kBT in the free
energy. This is a saving of two orders of magnitude in CPU
time. For complex systems, significant savings in terms of
CPU time can be realized.

BOLAS is also expected to have a lower statistical error
~per CPU time! compared to the scheme10 that computes the
autocorrelation function associated with the reactive flux to

calculate the rate of reaction. The latter is computationally
demanding for biomolecular systems because only theend
points of the trajectories~unlike all configurations in our
considered trajectories! contribute to the reactive-flux calcu-
lation; this implies of the order of 105 trajectories to compute
the transition rate. In contrast, the free energy results re-
ported here were calculated from a few hundred trajectories,
and all parts of the trajectories contribute to the generated
free energy profile.

In our present illustration of the stochastic sampling al-
gorithm, we have relied on the intrinsic damping~k! of the
system to sample specific windows. While this works well
for barrier regions with moderate or high intrinsic damping,
a barrier crossing process with low degree of damping will
‘‘slip off’’ from the barrier region, resulting in a large rejec-
tion rate for the generated trajectories in the stochastic sam-
pling procedure. A way to enhance the efficiency of our pro-
tocol is to combine the shooting and shifting moves with
configurational bias sampling. That is, instead of using
shooting or shifting moves at a selected time slice 0<t<t, a
bias can be introduced such that the moves are attempted
only for n out of a total ofN5t/Dt configurations satisfying
xmin,x,xmax. To conserve microscopic reversibility, this
bias can be removed by using a modified acceptance crite-
rion Pacc.5min@1,(S$x* %/S$x%)3(n/n* )#. Additional sam-
pling efficiency by the use of smart Monte Carlo methods
~e.g., density of states Monte Carlo45,46! can also be envi-
sioned, as well as by optimizing the trajectory lengths.47

Finally, we mention that though BOLAS relies on the
assumption that the chosen order parameter accurately de-
scribes the transition in question, this choice can be rational-
ized based on available data and convergence tests.12 Relax-
ing this assumption results in a much more computationally
demanding scheme10 for a solvated biomolecule. Note that
both Eqs.~7! and ~B4!, i.e., the histogram approach as well
as the Jarzynski approach, can be used for constructing the
free energy profile. Of course, new alternatives to umbrella
sampling, such as enhanced sampling using Tsallis
statistics48 and the adaptive sampling approach of Vanden-
Eijnden and co-workers,49 may also show promise for com-
plex systems.
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APPENDIX A: DETAILED BALANCE
FOR SHOOTING TRAJECTORIES

We first illustrate that detailed balance is conserved for a
single time step symplectic integration of the Hamiltonian, as
well as for the symmetric momentum perturbation move of
the shooting algorithm.10 We then sketch the proof that con-
figurations in the ensemble of the generated trajectories are
also distributed according to the equilibrium distributionr.
In the rest of this Appendix, we denote time in subscripts,
and we use positionx as our order parameter.
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Since Hamiltonian dynamics correspond to a Markovian
process in which the statext evolves over timeDt into the
state xt1Dt with transitional probability p(xt→xt1Dt)
5d@xt1Dt2fDt(xt)# @d is the Dirac delta function, and the
propagatorf t maps the system at timet to the initial state,
i.e., xt5f t(x0)], the individual transitional probabilities sat-
isfy the master equation50

]Pi~ t !

]t
5(

i 8
@p~ i→ i 8!Pi 8~ t !2p~ i 8→ i !Pi~ t !#. ~A1!

At equilibrium, ]Pi(t)/]t50, andPi(t)5r( i ), which yields
the condition of detailed balance, namely,

p~ i→ i 8!/p~ i 8→ i !5r~ i 8!/r~ i !. ~A2!

The individual transitional probabilities satisfyp( i
→ i 8)/p( i 8→ i )5r( i 8)/r( i ) ~detailed balance! at equilib-
rium.

Thus, the shooting move that generates a new trajectory
from $x%t also conserves detailed balance, as follows. The
statistical weightP$x%t of the trajectory$x%t is expressed as
a product of short-time transitional probabilities as11

P@$x%t#5r~x0!)
i 50

t21

p~xi→x~ i 11!!, ~A3!

where thei→ i 11 move corresponds to aDt step. In the
shooting move,10 a point in phase space (xt8) of the available
trajectory is perturbed by displacing the atomic momenta
~while conserving the Maxwellian distribution of velocities!
to a modified statext9

* , where t95t81a, 2t,a,t,
thereby preserving the equilibrium distribution of momenta
and total linear momentum. For nonzero~random! a, the
shifting enhances degree of ergodicity in the sampling,10

where trajectory segments are started~forward and backward
in time! from xt9

* to define newt-length trajectories. The
generating probabilities for the forward~from t9 to t! and
reverse~from t9 to zero! sections of the new trajectory are
given by

Pgen
f 5 )

i 5t9

r 21

p~xi* →x~ i 11!
* !, Pgen

b 5)
i 51

t9

p̄~xi* →x~ i 21!
* !,

~A4!

where p̄(x→x8) describes the backward evolution in time
given by the propagatorf2t .

The generation probability for a complete new trajectory
is expressed based on the generation probabilities for the
forward and reverse segments as follows:

Pgen@$x%t→$x%t* #5pgen@xt8→xt9
* # )

i 5t9

t21

p~xi* →x~ i 11!
* !

3)
i 51

t9

p̄~xi* →x~ i 21!
* !. ~A5!

Combining the generation probability for the modified time
slice xt9

* with those for the new forward and reverse seg-
ments, we express the ratio of old to new probabilities@using
Eqs.~A3! and ~A4!# as

P@$x* %t#Pgen@$x* %t→$x%t#

P@$x%t#Pgen@$x%t→$x* %t#

5
r~x0* !pgen~xt9

* →xt8!

r~x0!pgen~xt8→xt9
* !

)
i 50

t921 p~xi* →x~ i 11!
* !

p̄~x~ i 11!
* →xi* !

3 )
i 50

t821
p̄~x~ i 11!→xi !

p~xi→x~ i 11!!
. ~A6!

Using detailed balance, the right-hand side of the equal sign
of Eq. ~A6! for a symmetric momentum perturbation reduces
to r(x0* )/r(x0). Therefore, given the acceptance probability
Pacc., the ensemble of configurations contained within the
generated trajectories preserve the balance condition,

E dx r~x!p~x→x8!5r~x8!. ~A7!

Convergence to the equilibrium distributionr is guaranteed
similar to Metropolis Monte Carlo.1 Significantly, the con-
figurations contained within the ensemble of the generated
trajectories are distributed according to the equilibrium dis-
tribution r.

APPENDIX B: APPLICABILITY OF JARZYNSKI
EQUALITY TO COMPUTE FREE ENERGIES
MOTIVATED BY PATH SAMPLING

For small systems, where the fluctuations in the path
dependent variables, such as the work done in a molecular
dynamics trajectory, are not large, the free energy between
two statesA andB can be obtained by applying the Jarzynski
equality as follows.

We generate several dynamics trajectories connecting
statesA andB according to the action used in transition path
sampling,10,11

S$x%t5r~0!hA~x0!HB$x%t, ~B1!

where thepopulation operator hA indicates whether a mo-
lecular configuration belongs to stateA: hA„x(t)…51 if
x(t)PA, or zero otherwise, and thetrajectory operator HB

identifies a visit toB over a trajectory of lengtht: HB$x%t

51 if hB(t)51 for 0,t,t, or zero otherwise. The action
above ensures that the harvested trajectories connect the
statesA andB.

A particular path from stateA to B is written as

A5 i 0→
l1

i 1→
l2

i 2
¯→

lt

i t5B, ~B2!

where the$l%t sequence defines the control parameters gov-
erning the evolution~e.g., l’s are thermostat parameters!.
Given that the balance condition in Eq.~A7! is preserved, the

ratio of the path probability of the forward pathA→
$l%t

B to the

reverse pathB→
$l%t

A in the canonical ensemble can be
expressed as ~see Crooks51! exp$b@E(B)2E(A)#%
3exp$2b@F(B)2F(A)#%exp(2bQ). HereE andF correspond
to the total~kinetic plus potential! energy and the free energy
of the system at the given state, andQ is the energy ex-
changed with the thermostat as the system moves along the
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forward path. IfW is the total work performed on the system
as it moves forward, this ratio reduces~see Crooks51! to the
fundamental Jarzynski equality,8

^exp~2bWAB!&path5exp$2b@F~B!2F~A!#%. ~B3!

The average ofW, taken over several paths connecting
A and B ~denoted byWAB), is related to the free energy
difference betweenA and B; ^•&path represents an average
in the ensemble of the generated paths. Thus, the Jarzynski
equality ~originally derived for a nonequilibrium system
driven by an external control! is valid for equilibrium
paths connectingA andB ~paths driven by an external ther-
mostat! as long as the balance in Eq.~A7! is preserved by
the transitional probabilitiesp( i→ i 8). Under the assumption
of nearequilibrium, the left-hand side of Eq.~B3! can
be linearized to yield the fluctuation-dissipation theorem8

@DF5^W&path2b/2(^W2&path2^W&path
2 )#.

The conservation of the Jarzynski equality allows us to
compute relative free energiesF(B)2F(A) ~Ref. 8! between
statesA andB,

exp$2b@F~B!2F~A!#%5 K expF1bE fW•drW G L
path

,

~B4!

where WAB52* fW•drW for a given trajectory connectingA
andB; fW anddrW are force and displacement vectors of all the
atoms in the system at a given time step. In relatingWAB to
the molecular forces and displacements in the system, we
have used the fact that the work done on the system is the
negative of the work done by the system.
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