
Invited Talk

Searching for 2D RNA Geometries in Bacterial Genomes

Uri Laserson Hin Hark Gan Tamar Schlick∗

Department of Chemistry and Courant Institute of Mathematical Sciences
New York University, 251 Mercer Street, New York, New York 10012

schlick@nyu.edu

Categories and Subject Descriptors: J.3 [Life and
medical sciences]: Biology and genetics

1. INTRODUCTION

The central dogma of biology, that DNA makes RNA makes
protein, was again shown to be outdated with the recent
discovery of RNAs that have essential regulatory functions
(e.g., metabolite-binding RNAs, transcription regulation) [2,
15]. These finding have stimulated a large effort to search
for small, functional RNA motifs (either embedded inside
larger messenger RNA molecules or as separate molecules
in the cell). For example, it is known that cells make use of
a variety of small non-coding RNAs (such as microRNAs) as
a mechanism for gene regulation. The very existence of these
small motifs in Nature suggests that the functional, artificial
RNA molecules developed through (experimental) in vitro
selection technology1 may shed some light on the scope and
functional diversity of these small RNA molecules in vivo.

The binding and catalytic properties of nucleic acid mol-
ecules are conferred by specific sequence and structural mo-
tifs. Indeed, recent discoveries show that metabolite-induced
RNA conformational changes constitute another form of bac-
terial gene regulation [12, 20, 21]. Since in vitro selection
is a process that simulates evolution, it is reasonable that
novel nucleic acid motifs discovered through in vitro selec-
tion experiments may have also evolved in the cell, especially
since such motifs often target molecules (e.g., ATP, cAMP,
antibiotics, etc.) that are prevalent in Nature.

The structure of RNA is hierarchical in nature. The pri-
mary (1D) structure of an RNA molecule is the oriented,
linear ordering of the nucleotides A, C, G, and U. The
secondary (2D) structure of the molecule is described by
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1In vitro selection is a process that mimics evolution in which
a large pool of small, random-sequence RNA molecules is sub-
jected to an iterative process that selects for a specific physical
or chemical property; see [19] for a review.
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the pairs of nucleotides that “base-pair” with each other by
forming hydrogen bonds according to the traditional Watson-
Crick base pairing rules (i.e., A with U and G with C), plus
other common pairing schemes, like the non-canonical G-U
base pair. Finally, the tertiary (3D) structure of RNA refers
the the arrangement of the 2D geometries in space. Though
it is ultimately the 3D structure that confers function onto
the molecule, it is known (thermodynamically) that RNA
structure is hierarchical, so it is possible to assign functions
to specific 2D geometries [17].

We present a method of extracting relevant structural de-
tails from experimental studies (mainly in vitro selection
experiments) and applying several computational tools to
search the genomes of various organisms for sequences that
may potentially fold into similar structures, should they be
transcribed in the cell. We also develop several tools for
analyzing the significance of our results.

After applying our techniques to several aptamer motifs,2

we report several promising candidate sequences in the ge-
nomes of various bacterial organisms that may exhibit the
desired functional characteristics.

2. APTAMER SEARCH ALGORITHM

Our method for searching for the experimental aptamer struc-
tures in various genomes is comprised of three major steps:

1. Motif Descriptor Construction. The motif de-
scriptor is written manually by extracting the critical
sequence and structural motifs from the experimental
2D aptamer structure that mediate the specific physi-
cal/chemical properties of the molecule.3

2. Genome Search. The genomes of selected organisms
are searched for the structural motif defined in the
descriptor.

3. Analysis of Candidate Sequences. The results of
the searches are subjected to several analyses to assess
their quality, and filter out false positive signals.

The first step involves the analysis of the structure of the
motif as elucidated by the in vitro selection experiment (usu-
ally at the level of secondary structure) and, if available,
2Aptamers are small, artificial nucleic acid molecules that exhibit
binding affinity to a specific molecule.
3See our articles on RNA geometries for introductions
into RNA structural motifs and modeling: [5, 4] and
http://monod.biomath.nyu.edu/rna . The Appendix of this ar-
ticle reviews work in our group on using graph theory to study
RNA structures.
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Figure 1. The hydrogen-bonding scheme of the streptomycin ap-
tamer developed by the Schroeder group [18] and crystallized by
the Patel group [16]. The dotted lines represent hydrogen bonds
between the streptomycin molecule (center) and the nucleotides in
the binding pocket. This type of information is ideal for pinpoint-
ing the specific nucleotides that account for the binding specificity.
(Adapted from [16].)

also any detailed 3D structural characterizations of the mo-
tif (e.g., X-ray crystallography or NMR studies). This al-
lows us to pinpoint the important structural qualities of the
motif such as the qualitative structure (e.g., helices, bulges,
hairpins, etc.) and the specific nucleotide sequences that are
critical in the motif’s physical/chemical activity.

This process is illustrated with the streptomycin-binding
aptamer in Figure 1. Since 3D crystallographic data is avail-
able, the hydrogen-bonding scheme is clearly discernible,
and it is a simple matter to pinpoint the specific nucleotides
involved in conferring the binding specificity of the RNA
molecule. Additionally, since the secondary structure of the
molecule is also known (from the original in vitro selection
study; see top of Figure 2), it is simple to extract the overall
structural motif (which acts as a structural scaffold).

This information is subsequently compiled in a motif “de-
scriptor” (a computer language designed as part of the RNA-
Motif software [10] used to define nucleic acid secondary
structures), and the motif is searched for in the genomes
of various organisms using the RNAMotif tool. This tool
produces a set of genomic sequences that have the potential
to fold into the specified motif based on Watson-Crick base-
pairing rules (i.e., A with U and G with C). We subsequently
filter the initial pool of candidates by using standard tools
to predict the secondary structures of the candidates and
discard those RNA sequences that fold into structures that
are not similar to the original experimental form.

Finally, we subject the remaining pool of candidates to
further tests to evaluate which candidates are most likely
biological sequences, and to hopefully filter out additional
false-positives. These include energetic calculations (to eval-
uate the stability of the candidate sequences) as well as sta-
tistical tests (to deduce whether there is a statistical over- or
under-representation of the specific motif). These methods
are summarized below, though full details will be given in a
separate work.
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Figure 2. The secondary structure of the streptomycin aptamer
(top) with the corresponding motif descriptor (bottom). Regions
with many ‘N’s are variable in length. The nucleic acid symbols
are: N = {A, C, G, U}, V = {A, C, G}, and S = {C, G}. We
search several genomes for sequences fits into the descriptor con-
sensus structure (allowing for slight mismatches). The descriptor
structure shows what information is considered critical for the bind-
ing specificity. The aptamer experimental study is [18, 16].

2.1 Energetic Analyses

After initially filtering the pool of candidates by predicting
whether they adopt the correct geometry, the remaining can-
didates are subjected to two energetic analyses to evaluate
their stability, an analysis of heat capacity curves (“melt-
ing curves”) and the generation of a conformational energy
landscape (a “folding funnel”).

The melting curve of a molecule plots its specific heat ver-
sus temperature. Higher and sharper peaks at high temper-
atures correspond to higher structural stability. Therefore,
we compute the melting curve of our candidate sequence (us-
ing the Vienna RNA package [8]) as well as melting curves
for a large number of random permutations of the sequence.
We can then compare the melting temperature of the candi-
date with the melting temperatures of the shuffled sequences
to see whether the candidate stands out.

Conformational energy landscapes are obtained by calcu-
lating the suboptimal structures of the candidate sequence
(also with the Vienna RNA package), and plotting the en-
ergy of each such structure against its “distance” from the
minimum energy structure. The distance metric can be
defined in many ways. Since the secondary structure of
an RNA molecule can be defined as a set of pairs of nu-
cleotides, we use a simple distance metric that defines the
distance between two structures (on the same sequence), as
the symmetric difference set between the two sets of base-
pairs. Structures that are very stable should have steep
“funnels” where the greater the distance from the minimum
energy structure, the greater the energy of the correspond-
ing suboptimal structure.

2.2 Statistical Analysis

Since the motifs can be described as “words” in the 4-letter
nucleotide alphabet, it is possible to analytically compute
the theoretical frequency of observing each motif in a ran-
dom sequence of nucleotides [13]. This makes it possible to
evaluate whether a specific genome has a statistical over-
or under-representation of the given motif. However, this
computation can become extremely complex. Therefore, a
Monte Carlo estimation method is far more appropriate.
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Specifically, we implement a simple Sample-Mean method
[14] that, for each iteration, generates a 1 Mbp uniformly dis-
tributed sequence of nucleotides (using the Mersenne Twister
algorithm [11]). We then search the sequence for the speci-
fied motif using RNAMotif and average the number of matches
over one million iterations.

2.3 Computational Performance

Creating the actual motif descriptors is done manually and
requires biological intuition and (most importantly) exper-
imentation. Once the descriptor is defined, the genome
searches using RNAMotif are very fast (for bacterial-sized
genomes, < 10 Mbp). The search conducted on the strepto-
mycin-binding aptamer in Figures 1 and 2 was completed in
less than one minute for the largest genome searched (Strep-
tomyces avermitilis, ∼ 9 Mbp). In general, the computa-
tional speed depends on both the genome size as well the
the complexity of the descriptor.
The Vienna RNA package, which we use to predict the sec-

ondary structures of the candidates (i.e., “fold” them), can
fold a sequence less than 100 nucleotides long in a matter
of seconds. (The predicted secondary structure corresponds
to the minimum potential energy conformation; therefore,
the folding algorithm is essentially an optimization algo-
rithm.) However, computing suboptimal structures for a
given sequence (i.e., local minima that are higher in energy
than the global minimum) is relatively lengthy and variable.
The problem is that certain sequences, despite being of sim-
ilar length, have extremely different numbers of suboptimal
structures (for example, some sequences have about 150 sub-
optimal structures while other sequences of similar length
have about 200,000). However, the generation of each sub-
optimal structure is fast and even the case with over 200,000
structure is completed within 2 minutes. (The generation of
suboptimal structures is used for the construction of confor-
mational energy landscapes, discussed below.)
The screening analyses (step 3) we perform are more com-

putationally intensive. Generating heat capacity curves (also
using the Vienna package) can take several minutes. Since
we generate many curves for each sequence, the process is
relatively computationally expensive (up to several hours
of CPU time). Additionally, we implement a Monte Carlo
method for computing the theoretical expected frequency of
each motif. We perform on the order of one million iter-
ations of the Sample-Mean method since our sample-space
has very high dimensionality. The combined calculations
take on the order of weeks (with the MC accounting for the
largest amount of computation).
For more detailed analyses of the performance of the tools

used, we refer the reader to the literature describing the tools
in detail. Our computations were performed on an SGI 300
MHz MIPS R12000 IP27 processor with 4 GB of memory.

3. RESULTS

We tested our method on several aptamers that bind to
antibiotics (chloramphenicol [1], streptomycin [18, 16], and
neomycin B [9]). We searched the genomes of various bacte-
rial organisms for these motifs to see if the algorithm is suc-
cessful in producing potential candidate sequences that may
bind the molecule in question.4 The results are summarized
4The genomes are available for download at the National Center
for Biotechnology Information (http://www.ncbi.nlm.nih.gov).

in Tables 1 and 2 for statistics of matches and sequences,
respectively.

Table 1. Number of initial sequence matches for the three antibiotic-
binding aptamers in selected bacterial genomes.

Size Chlor Str Neom
Genome (Mbp) phen myc B Total
Strep. avermitilis 9.2 0 2 6 8
Strep. coelicolor 8.8 0 1 1 2
E coli K12 4.7 7 1 11 19
Ec O157:H7 5.6 7 1 17 25
Ec O157:H7 EDL933 5.6 7 1 19 27
Ec CFT073 5.3 7 0 17 24
Neis. men. MC58 2.3 1 0 9 10
Neis. men. Z2498 2.2 5 0 9 14
Sinorh. meliloti 3.7 1 1 3 5
Chlamydia trach. 1.1 4 0 1 5

Total 39 7 93 139

Chloramphenicol Candidate Sequences
1:TCAGAGCTGAAAAACTGGCCCCGGGTGCAGCTAAAAACTGA
2:TCAGAGCTGAAAAACTGGCCCCGAGTGCAGCTAAAAACTGA
3:TCAGAGCTGAAAAACTGGCCCCGAGTGCAGCTAAAAACTGA
4:GGGAAACGCAAAAATCAGGTACAGGCAGACGACGGTGGCGTAAAACTCCC

Sequence: 1 2 3 4
Genome: E coli E coli Ec O157:H7 N. men.
Genome: K12 O157:H7 EDL933 Z2491

EFFE: −11.9 −10.58 −10.58 −9.17
Melt T: 78.0 72.6 72.6 54.4

Melt Curve: Accept Accept Acceptable Poor
CE Landscape: Good Fair Fair Fair

Table 2. Distilled candidate pool for chloramphenicol (after filter-
ing by looking at predicted 2D structures). Ensemble Folding Free
Energy (EFFE) is measured in Kcal/mol and Melting Temperature
is measured in degC. The folding free energies are computed using
the Vienna RNA package. The corresponding RNA sequences have
T replaced with U. Note that the second and third candidates have
identical sequences.

Several trends are immediately discernible from the re-
sults in Table 1. For example, the average number of matches
to neomycin B in the Streptomyces genomes is 4, while the
average number for E. coli genomes is four times as many.
However, the Streptomyces genome is about twice the size
of the E. coli genome, so based on probability alone, one
would expect that Streptomyces would have about twice the
number of matches compared with E. coli, not one-fourth,
as we observe.
Another significant trend is that the neomycin B pool

clearly has many more matches than either the chloram-
phenicol or streptomycin pools. This is due to the fact the
the neomycin B aptamer is simpler (or more rigorously, the
neomycin B aptamer has less Shannon entropy [3]). There-
fore, it is important to estimate the expected number of
matches in a random sequence to be able to significantly
conclude whether or not there is a statistical over- or under-
representation of a specific motif. These estimates are ob-
tained by implementing a Monte Carlo scheme as described
previously. (These calculations are still underway.)
Following the initial search, we filter the pool of candidate

sequences by folding each sequence and discarding those that
fold into structures that are not similar to the target exper-
imental motif geometry. We then subject the sequences to
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two energetic analyses, an analysis of heat capacity curves
(melting curves) and the generation of a conformational en-
ergy landscape.

Since functional, biological RNA molecules are expected
to form stable structures, we can use both of these analyses
to determine exactly which candidate sequences have the
highest potential to actually be functional in vivo. The final
batch of candidates for the chloramphenicol motif are shown
in Table 2, along with descriptions of the results of their
energetic analyses.

4. DISCUSSION AND DIRECTIONS

We have developed a method to search for specific RNA ge-
ometries in the genomes of various organisms. Our study
is motivated by the deduction that since these RNA mole-
cules were developed by a method that simulates evolution
(in vitro selection), similar structures are likely present in
the cell. After applying this method to several aptamers, we
found many potential candidate sequences that correspond
to the experimental structures.

Clearly, much work remains ahead. We are in the process
of automating the analysis so that all genomes available at
NCBI can be searched at once. We are also developing bet-
ter ways to eliminate false-positives from our search results.
Most importantly, we plan to conduct an experimental col-
laboration to verify whether our candidate sequences both
exhibit the desired physical or chemical property and are ex-
pressed in vivo. Significantly, our search methodology may
ultimately be used to apply in vitro selection technology as
a tool for identifying novel RNA genes or RNA-based regu-
latory mechanisms.
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APPENDIX

A.1 RNA genomics and graph theory

An alternate approach to RNA genomics developed in our group
is the use of graph theory (Gan and Schlick, in progress, see
also [5, 4]). Graph theory analysis of genomes is promising be-
cause all RNA structures can be schematically represented as two-
dimensional graphs. Thus, novel graph topologies from graphical
enumeration can be used to drive discovery of novel RNA motifs
in genomes via methods and analyses similar to those described
above. Below, we outline the essentials and advantages of graph
theory for describing, cataloguing, and predicting RNA struc-
tures.

A.2 RNA structural motifs & graphs

RNA molecules are hierarchical in nature since their secondary
structures are known to be stable independently of their tertiary
structures [17]. RNA secondary motifs have a network-like topol-
ogy with stems linking loops, bulges, and junctions (Figure 3).
Such a topological RNA representation allows exploration of RNA
topologies using graph theory.

Figure 3 shows three RNA secondary (tree) motifs represented
as tree graphs: the vertices (•) are RNA loops, bulges or junc-
tions, and the edges (lines, —) are RNA stems (precise rules are
detailed in [5]). Thus, the schematic tree graphs represent the
connectivity between the RNA secondary elements (e.g., stems,
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Figure 3. Graphical representations of RNA secondary structures
(top) as tree (middle) and dual (bottom) graphs.

loops, bulges, junctions). The tree graphs provide intuitive rep-
resentations of RNA structures, but they cannot represent other
important RNA types, such as pseudoknots. For completeness,
we developed another class of RNA graphs called dual graphs
(third row of Figure 3; [5]); dual graphs can represent all RNA
trees and pseudoknots and can be generalized to represent un-
usual RNA structures with triple, quadruple, and higher-order
helices.

Since the “RNA graphs” are discrete, they allow us to enu-
merate all possible 2D RNA motifs using enumeration methods
of graph theory. Graphical enumeration of RNA topologies can
be performed analytically or computationally depending on the
complexity of the structures. For example, for unlabeled trees,
the number of possible graphs with i vertices is obtained from
the coefficients ci associated with the xi term of the counting
polynomial derived by Harary and Prins [7].

These sets of distinct graphs represent libraries of theoreti-
cally possible RNA topologies, which include naturally occur-
ring, candidate, and hypothetical RNA motifs (see Schlick lab’s
RNA-As-Graphs (RAG) Database at http://monod.biomath.-
nyu.edu/rna/ and [4]). Known RNAs in public databases (NDB
and others) can thus be matched to the topologies we describe
(see Figure 3). Significantly, because we found that the known 2D
RNA motifs represent only a small subset of all possible topolo-
gies, we hypothesize that some of the missing motifs may repre-
sent undiscovered naturally occurring RNAs while others may be
designed and then synthesized in the laboratory.

A.3 Sequence space vs. topology space

Current theoretical and experimental approaches to RNA struc-
ture explore RNA’s sequence space. Experimental in vitro selec-
tion techniques exploit random sequence pools for comprehensive
searches for novel RNAs. In the search for RNA genes in genomes,
scanning algorithms require sequence and structural motifs as in-
put. In contrast, our RNA analysis focuses on structural motifs
rather than sequences per se. A critical advantage of RNA graph
analysis is that the space of topologically distinct structures is
vastly smaller than the nucleotide sequence space. In fact, we esti-
mate, based on Harary-Prins enumeration formula for tree graphs
(above) [7, 6], that the number of distinct RNA tree topologies

can be parameterized as ∼ 2.5(N/20)−3 for N > 60 compared
with 4N for the nucleotide sequence space! The markedly smaller
RNA topology space implies great potential for the search for
novel RNA structures. Once a novel target topology/motif is
identified, the corresponding RNA sequences can be found in two
ways: for natural RNAs, the selected motif can be found by scan-
ning the genomes; and, for synthetic RNAs, they can be designed
using modular assembly of existing RNA fragments (i.e., using a
library of sequence/motif building blocks and application of 2D
folding algorithms). Both of these research directions are cur-
rently being pursued in our laboratory.

A.4 RAG: RNA-As-Graphs Database
Our RNA graphical representations present an opportunity for
cataloguing of RNA structures based on their topological proper-
ties (Figure 4). Cataloguing RNA’s structural diversity, including
hypothetical motifs, is vital for identifying novel RNA structures
and for pursuing RNA genomics initiatives. Our RNA-As-Graphs
(RAG; http://monod.biomath.nyu.edu/rna) database catalogues
and ranks all mathematically possible (including existing and can-
didate) RNA secondary motifs on the basis of graphical enumer-
ation results. We archive RNA tree motifs as “tree graphs” and
other RNAs, including pseudoknots, as general “dual graphs.” All
RNA motifs are catalogued by graph vertex number (a measure
of sequence length) and ranked by topological complexity (sec-
ond smallest eigenvalue (λ2) corresponding to the graph’s Lapla-
cian matrix). RAG’s inventory immediately suggests candidates
for novel RNA motifs, either naturally occurring or synthetic.
Through RAG, we hope to pursue and further stimulate efforts
to predict and design novel RNA motifs and thereby contribute
to RNA genomics initiatives.
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