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ABSTRACT
Motivation: Understanding RNA’s structural diversity is vital
for identifying novel RNA structures and pursuing RNA gen-
omics initiatives. By classifying RNA secondary motifs based
on correlations between conserved RNA secondary structures
and functional properties, we offer an avenue for predicting
novel motifs. Although several RNA databases exist, no com-
prehensive schemes are available for cataloguing the range
and diversity of RNA’s structural repertoire.
Results: Our RNA-As-Graphs (RAG) database describes
and ranks all mathematically possible (including existing and
candidate) RNA secondary motifs on the basis of graph-
ical enumeration techniques. We represent RNA secondary
structures as two-dimensional graphs (networks), specifying
the connectivity between RNA secondary structural elements,
such as loops, bulges, stems and junctions. We archive
RNA tree motifs as ‘tree graphs’ and other RNAs, including
pseudoknots, as general ‘dual graphs’. All RNA motifs are
catalogued by graph vertex number (a measure of sequence
length) and ranked by topological complexity.The RAG invent-
ory immediately suggests candidates for novel RNA motifs,
either naturally occurring or synthetic, and thereby might
stimulate the prediction and design of novel RNA motifs.
Availability: The database is accessible on the web at http://
monod.biomath.nyu.edu/rna
Contact: schlick@nyu.edu

INTRODUCTION
The broad range of RNA’s functional roles in the cell is now
being unravelled as never before (Gibbs, 2003). Indeed, with
the recent sequencing and analysis of the mouse genome, the
abundance of RNA-coding genes and RNA’s unanticipated
functional roles have been suggested (Waterston et al., 2002;
Okazaki et al., 2002; Rivas et al., 2001; Eddy, 2001; Storz,
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2002). Functional RNA molecules possess well-defined sec-
ondary and tertiary structures, which are conserved for each
functional class (e.g. tRNA, ribosomal RNA, group I intron).
Just as for protein structural genomics projects (Burley and
Bonanno, 2002), an understanding of the range of RNA’s
structural repertoire is crucial in the identification of novel
functional RNAs. Here, we present a new RNA motif data-
base RNA-As-Graphs (RAG) that catalogues both existing
and other possible RNA secondary motifs.

Present RNA databases include the Nucleic Acids Database
(NDB; Berman et al., 2003, http://ndbserver.rutgers.edu/NDB)
and the RNA Structure Database (RNABase, http://www.
rnabase.org/), which archive three-dimensional (3D) RNA
structures; the Structural Classification of RNA (SCOR;
Klosterman et al., 2002) provides hierarchical classifica-
tion of RNA motifs; Gutell’s database catalogues the
secondary ribosomal RNA structures (Cannone et al.,
2002; http://www.rna.icmb.utexas.edu); PseudoBase archives
existing pseudoknots (Batenburg et al., 2001, www.bio.
LeidenUniv.nl/~Batenburg/PKB.html); Rfam catalogues
conserved RNA families derived from multiple sequence
alignments and covariance models (Griffiths-Jones et al.,
2003); NCIR, a database of non-canonical interactions in
RNAs (Nagaswamy et al., 2002); and other specialized
RNA databases (see the RNA World; http://www.imb-
jena.de/RNA.html).

In contrast to existing databases, which provide information
about known RNA primary, secondary and tertiary structures,
RAG provides a quantitative method for cataloguing and clas-
sifying all RNA structures based on the topological properties
of their secondary motifs using graph theory results, such
as graphical enumeration (Harary, 1969) and generation, and
spectral analysis (Fiedler, 1989; Cvetkovic et al., 1995).

Topological properties refer to the connectivity pattern
among RNA’s secondary structural elements, such as loops,
bulges, stems and junctions. For example, the star-shaped
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Fig. 1. Tree graph and dual graph representation for the corresponding tRNA (NDB: TRNA12) secondary structure generated by Mfold.

transfer RNA (tRNA) motif is topologically distinct from
the branched structure of 5S ribosomal RNA. Here, ‘motif’
refers to topological properties rather than a sequence or ter-
tiary patterns; our topological level of description is coarser
than that of the traditional RNA motifs, such as base pair-
ing, base stacking or kissing hairpins. A coarse description
is required for exploring the range and diversity of RNA’s
structural repertoire.

Since RNA secondary topologies of different functional
classes are remarkably well conserved, their topological
characteristics provide a basis for organizing RNA sec-
ondary structures broadly (Griffiths-Jones et al., 2003,
http://rfam.wustl.edu/); however, some degree of topolo-
gical diversity within the same functional RNA class (e.g.
RNase P, tRNA) is expected. RAG has immediate applications
for exploring RNA’s repertoire—both existing and potential
motifs (Gan et al., 2003).

An RNA graph is a formal construct composed of lines
(edges) linking nodes (vertices) representing an RNA sec-
ondary structure (Fig. 1). It is characterized by the number
of vertices (V ) and the associated connectivity. Significantly,
our discrete tree and dual graphical representations of RNA
secondary structures allow all distinct RNA motifs to be
enumerated. We use both heuristic and exact graphical enu-
meration results to build RNA motif libraries in the RAG
database. Enumeration of RNA motifs provides unparalleled
opportunity for investigating natural and hypothetical RNA
motifs, including trees and pseudoknots (Gan et al., 2003).
Already, graph enumeration techniques have been exploited to
generate chemical libraries for applications in pharmacology
(Wieland et al., 1996).

RAG catalogues RNA motifs (graphs) according to the
number of vertices (V ) and ranks the associated λ2, second
smallest nonzero eigenvalue of the graph’s (Laplacian) matrix
(Cvetkovic et al., 1995; Mohar, 1991) that characterizes the
complexity of the RNA topology. To help stimulate the search
for RNAs with novel structures, we annotate all motifs as nat-
ural or hypothetical. RAG’s inclusion of both these motif types

is unique. The hypothetical motifs with features resembling
natural RNAs may be candidates for novel RNAs. Indeed,
we show that existing RNAs represent only a small subset of
all possible motifs. RAG also offers a tool for aiding struc-
tural and functional characterization of RNA sequences based
on their secondary structures, since secondary structures are
related to tertiary and functional properties of RNAs.

METHODS
RNA trees and pseudoknots are two major types of 2D RNA
secondary structures, distinguished by the topology of their
base pairing patterns. We employ ‘tree graphs’ for archiving
RNA tree motifs and ‘dual graphs’ for general RNA motifs,
including pseudoknots (Fig. 1). The tree representation is sim-
pler but cannot capture pseudoknots; the latter is more general
but less intuitive to create. The advantage of our discrete RNA
representations is that they allow enumeration and quantit-
ative characterization of all existing and hypothetical RNA
topologies.

RNA tree graphs
For tree graphs (Le et al., 1989), we use the following rules to
assign edges and vertices to RNAs (Gan et al., 2003). (1) A
nucleotide bulge, hairpin loop or internal loop is a vertex (•)

when there is more than one unmatched nucleotide or non-
complementary base pair. The special case of the GU wobble
base pair is regarded as a complementary base pair. (2) The 3′
and 5′ ends of a helical stem are considered a vertex. (3) An
RNA stem is considered an edge (—); an RNA stem must have
two or more complementary base pairs. (4) An RNA junction
is a vertex; a junction is the location where three or more
stems meet. Thus, rule 1 defines a bulge/hairpin/internal loop
to have two or more unpaired bases; a junction may have any
number of unpaired bases. For tree graphs, an edge represents
roughly 20 nt.

Naturally, our simplified tree representation of RNAs cannot
resolve the type of secondary structure (loop/bulge/junction/
3′, 5′ ends), size/length of secondary structures (stems/loops),
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chain polarity (direction of strands), angle between sec-
ondary structural elements, non-canonical base pairing and
sequence level information. Consequently, two distinct func-
tional RNAs may map onto the same graph. This problem can
be overcome by using labelled trees and more advanced graph
constructs. Although more complex graphical representations
have obvious advantages, they make the problem of enumerat-
ing distinct RNA topologies intractable. Our schematic RNA
models are designed to allow assessment of the range of RNA’s
structural repertoire.

RNA dual graphs
Our dual graphs (Gan et al., 2003) can represent all RNA trees
as well as pseudoknots and can also be generalized to repres-
ent RNA structures with triple, quadruple and higher order
helices. We construct dual graphs using the following rules.
(1) A vertex (•) represents a double-stranded helical stem
with ≥2 complementary base pairs. (2) An edge (—) repres-
ents a single strand that may occur in segments connecting the
secondary elements (e.g. bulges, loops, junctions and stems),
where a bulge has more than one unmatched nucleotide or non-
complementary base pair, as in the tree-graph rules. Thus, in
contrast to the situation in tree graphs, a vertex now represents
a stem instead of a bulge, a loop or a junction; an edge repres-
ents a strand in the bulge/loop/junction instead of a stem; see
the dual graph of tRNA in Figure 1. As for sequence length l

to V relation, we find that it is l = 20V for dual graphs.

RNA motif libraries from graph enumeration
methods
Graphical enumeration can be performed analytically or com-
putationally depending on the complexity of the structures.
For unlabelled trees, the number of possible graphs is obtained
from the coefficients {ci} associated with the xi term of the
counting polynomial derived by Harary and Prins (Harary,
1969):

t =
∑

i

cix
i

= x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8

+ 47x9 + 106x10 + 235x11 + 551x12 + · · · .

For example, there is only one distinct graph each for V =
1, 2, 3 vertices (since c1 = c2 = c3 = 1) and two distinct 4-
vertex graphs (c4 = 2), three distinct 5-vertex graphs (c5 = 3)

and so on. These sets of distinct graphs represent libraries of
theoretically possible RNA topologies, which include natur-
ally occurring candidate and hypothetical RNA motifs, with
different RNA sequence lengths.

To enumerate and construct graphs, we use probabilistic
graph-growing techniques (Gross and Yellen, 1999). For
dual graphs with V = 2, 3, 4, 5, 6 and 7 we have identifed 3,
8, 30, 180, 494 and 2388 distinct, non-isomorphic graphs,

Table 1. Number of existing and hypothetical RNA tree and dual graph motifs

V Tree motifs Existing tree
motifs

Dual graph
motifs

Existing dual graph
motifs

2 1 1 3 3
3 1 1 8 4
4 2 1 30 12
5 3 3 180* 6
6 6 2 494* 2
7 11 1 2388* 1
8 23 NA
9 47 NA

10 106 NA

*Estimated by a probabilistic graph-generation method.

respectively (Table 1). For larger V , the number of dual
graphs increases rapidly, and only subsets can be generated
by exhaustive computation.

Spectral analysis of RNA graphs: Laplacian
matrix and eigenvalues
RNA tree and dual graphs can be quantitatively characterized
using spectral techniques in graph theory (Cvetkovic et al.,
1995). A graph’s matrix specifies the degree of connectivity
between the vertices of the graph (Fig. 2), and the matrix’s
eigenvalue spectrum is a tool to quantify connectivity as well
as characterize graph similarity.

Specifically, we use the Laplacian (V by V ) matrix (L)
representation for a graph of V vertices, useful for model-
ling physical systems such as vibrating strings (with beads)
and membranes (Van Dam and Haemers, 2002). L is con-
structed from the matricesD andA that define the graph: L(G)

of graph G with vertices 1, 2, . . . , V is defined as L = D−A,
where A and D are the adjacency and degree matrices of the
graph, respectively. The elements (aij ) of the V ×V symmet-
ric matrix A specify the number of links or edges connecting
i and j vertices (a self-loop at vertex i contributes 2 to the
diagonal element aii). D is a square diagonal matrix whose
elements (dii) specify the valency or the degree of connectivity
of vertex i; e.g. a vertex with four (incident) edges emanat-
ing from it has a degree of 4. Figure 2 shows the 5-vertex
tree graph for tRNA with its corresponding adjacency (A),
diagonal (D) and Laplacian (L) matrices.

A V -vertex graph is thus characterized by the ordered eigen-
values 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λV of L(G), called the
spectrum of G, which is independent of the labelling of graph
vertices and a measure of connectivity. The spectrum of the
tRNA example (Fig. 2) is λ1 = 0, λ2 = λ3 = λ4 = 1
and λ5 = 5, indicating a 4-fold symmetry and a 4-stem
junction. In general, all connected (RNA) graphs have the
property that λ1 = 0 and λ2 > 0, and graphs with sim-
ilar λ2 values have similar topologies. Thus, the second
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λ1 2 3 4 5=0, λ =1, λ =1, λ =1, λ =5

0      1      1      1      1

4      0      0      0      0

 4     -1    -1    -1    -1

1      0      0      0      0

1      0      0      0      0

1      0      0      0      0

1      0      0      0      0

0      1      0      0      0

0      0      1      0      0

0      0      0      1      0

0      0      0      0      1

-1      1      0      0      0

-1      0      1      0      0

-1      0      0      1      0

-1      0      0      0      1

Fig. 2. A 5-vertex (tRNA) tree graph and its matrix representations
(the vertices are randomly labelled). The adjacency matrix (A) is
a connectivity matrix whose entries specify the number of edges
connecting pairs of graph vertices (i, j); e.g. the pairs connected
by an edge have a matrix element of 1 and the non-connected pairs
have a matrix element of 0. The elements of the diagonal matrix
(D) specify the degree of connectivity of each vertex. Also shown
is the eigenvalue spectrum of the Laplacian matrix (L), defined as
L = D − A.

eigenvalue λ2 reflects the overall pattern of connectivity of
a graph (Fiedler, 1989); a linear chain has a smaller second
eigenvalue than a branched structure (since some of the
latter graph’s vertices have degree dii > 2). However, the
Laplacian spectrum does not uniquely determine the topo-
logy of a graph, because of the existence of non-isomorphic
co-spectral graphs (Van Dam and Haemers, 2002, http://netec.
mcc.ac.uk/WoPEc/data/Papers/dgrkubcen200266.html). This
problem is not severe for the tree and dual graphs of interest
to us (e.g. 3% co-spectral graphs for dual graphs with V = 4).

RNA-As-Graphs FEATURES
RNA motif libraries and quantitative
characterization of motifs
The RNA motif libraries for RAG are derived from the
counting polynomial of Harary–Prins for (unlabelled) tree
topologies and from computational enumeration techniques
for dual graph topologies. For a given vertex number V , a lib-
rary of possible RNA motifs is generated, with size depending
on V and the motif type (tree or pseudoknot).

We rank the tree and dual graphs in each motif library
(V = 2, 3, 4, . . .) using λ2 to allow automatic cataloguing
of RNA graphs (and search of existing and hypothetical
RNA motifs) but provide the complete eigenvalue spectrum
(λ1, λ2, . . . , λV ) of each topology. Thus, all existing or hypo-
thetical motifs are referenced as (V , λ2). For easy reference,
we also index graphs as (V , n) where n are integer num-
bers ordered according to the λ2 ranking; distinct graphs
with the same eigenvalue are assigned different n values.
This scheme allows RNA motifs of varying degrees of topo-
logical complexity to be distinguished. Since λ2 depends
on V , it is only meaningful to compare the λ2 values of
motifs in the same library V . Similarly, eigenvalues of the
tree and dual graphs are not directly comparable. Since
tree graphs can also be represented as dual graphs, we link
between the two libraries where relevant. Each library cata-
logues both hypothetical and existing RNA motifs, with
links to other RNA sequences, structures (2D and 3D) and
function databases (e.g. NDB, PseudoBase, 5S). Figure 3
shows V = 4 and 5 tree motif libraries with correspond-
ing RNA secondary folds predicted by Mfold (Zuker et al.,
1999).

RAG’s systematic ordering of all RNA motifs according
to λ2 constitutes an RNA motif dictionary in which the
neighbouring motifs do not necessarily have a structural or
functional relationship, although the sequence lengths of the
various motifs are similar. Such a scheme allows easy access
to and retrieval of RNA motifs.

Libraries of RNA tree topologies from tree graphs
Table 1 summarizes the size of the RNA tree motif librar-
ies for 2, 3, . . . , 10-vertex graphs and the number of distinct
natural and ‘missing’ RNA topologies in each motif lib-
rary. The natural RNA tree motifs found include U2 snRNA
(V = 2, λ2 = 2), single-strand RNAs (V = 3, λ2 = 1
and V = 4, λ2 = 0.5858), tRNA (V = 5, λ2 = 1), 70S
(V = 5, λ2 = 0.3820), 5S rRNA (V = 7, λ2 = 0.2254)

and signal recognition particle RNA (V = 9, λ2 = 0.2311).
While some graphs correspond to natural RNA topologies,
many other tree graphs have not yet been found in nature. For
example, the numbers for missing tree motifs for V = 4, 5, 6
and 7 are 1, 0, 4 and 10, respectively (Table 1). Though the
majority of the missing motifs may not correspond to nat-
ural RNAs or potential RNAs with novel properties, some
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Fig. 3. The motifs of 4- and 5-vertex RNA tree libraries and their corresponding second Laplacian eigenvalues (λ2); each tree motif is
accompanied by an existing (or missing) RNA secondary structure (generated by Mfold) conforming to that motif.

motifs may be identified in natural systems in the future, while
others may be designed in the laboratory.

Libraries of RNA tree and pseudoknot topologies
from dual graphs
Complete libraries (Table 1) of small RNA dual graphs
(V < 7) can be readily enumerated using computational
approaches such as exhaustive search and probabilistic graph-
growing methods (Gross and Yellen, 1999). Each library of

dual graph motifs contains RNA tree, pseudoknot and bridge
types; an RNA bridge is a motif that becomes disconnected
upon removal of an edge. Naturally, dual graph libraries are
larger than tree libraries.

We identified a total of 22 distinct pseudoknot topologies in
the literature and the PseudoBase database (Batenburg et al.,
2001), as follows: 9 for V = 2, 3, 4; 12 for V = 5–18,
and 22; and one for 16S rRNA pseudoknot (V = 87). We
have also identified six examples of naturally occurring RNA
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bridge motifs with 4–22 vertices. These RNAs include the
hepatitis C virus (V = 18, λ2 = 0.1317), group I intron
(V = 22, λ2 = 0.0848; also has a pseudoknot submotif) and
box H/ACA snoRNA (V = 4, λ2 = 0.7639).

RNA structural and functional identification:
RNA Matrix Program
We use a graph comparison procedure (RNA Matrix Program)
to aid the search for structurally/functionally isomorphic
RNAs. Our scheme is advantageous over sequence compar-
ison because RNAs in the same functional class (e.g. tRNA,
5S rRNA, group I intron) have similar or conserved second-
ary and tertiary structures, whereas the conservation of RNA
sequences is less apparent. Basically, we search for an annot-
ated RNA motif in the database that has the same vertex
number V and eigenvalue spectrum as the secondary struc-
ture submitted by the user. A positive match can lead to a
functional interpretation of the quarried structure.

Specifically, the RNA Matrix Program accepts a base pair-
ing file (or file known as ‘ct’ generated by Zuker’s folding
algorithm) for a secondary structure submitted by the user,
converts the file into a graphical RNA representation using
the tree graph rules, and then computes the Laplacian eigen-
value spectrum of the corresponding RNA graph. The output
of the program is then used to search for motifs in the database
with the same topological characteristics.

Our approach of combining the RNA motif database with a
structural identification program has several limitations. First,
not many distinct RNA topologies are currently known, but
the situation will probably change in the near future as more
functional RNAs are identified (Storz, 2002; Eddy, 2001;
Rivas et al., 2001). Second, our schematic graphical rep-
resentations suppress many features such as conservation of
sequence segments and biologically active sites. Still, RAG’s
approach can serve as a preliminary search tool to assist
refined structural/functional annotation methods, such as mul-
tiple sequence alignment and comparative analysis (Cannone
et al., 2002). Some of the current limitations may also be
removed by extensions of graph theory (e.g. labelled and
weighted graphs).

Summary and conclusion
Our RAG database for RNA secondary motifs, including
trees and pseudoknots, exploits the conservation of RNA
secondary structures and their intimate connection to ter-
tiary structure and function. By representing RNAs as graphs,
we introduce a systematic and quantitative approach to the
organization of RNA motifs. RAG describes RNA secondary
motifs according to the number of vertices V (equivalently,
sequence length) and the topological complexity (e.g. second
smallest Laplacian eigenvalue of the RNA graph). It contains
RNA tree libraries, for tree graphs, and the more general (but
less intuitive) dual graph libraries, for tree and pseudoknot
motifs. RAG can thus catalogue all existing and hypothetical

RNA motifs. It immediately suggests missing RNAs. Among
the missing motifs, we can pinpoint RNA-like topological
properties (e.g. those found in the vicinity of existing RNA
motifs).

Many avenues can be pursued to improve RAG.
Labelled and directed graphs can allow more information
about RNA secondary motifs by differentiating specific
loops/bulges/junctions and specifying strand directions. A
substructure search utility tool for analysing RNA secondary
structures (Gan et al., 2003), including large ribosomal RNAs,
can help identify structural/functional relationships; we plan
to incorporate information about existing large RNAs, such
as large ribosomal RNAs. We also plan to expand the number
of dual graphs available by exploiting database technologies
for storage and retrieval, work on linking available 3D RNA
structures (e.g. NDB, RNABase) to RAG topologies, and
classify existing RNA topologies into functional categories
to complement our mathematical cataloguing scheme.

A great challenge emerging from our work on RAG is to
define a ‘mapping’ of sequences onto the most promising new
motif candidates. New RNA motifs can be exploited for bio-
technological applications. We are currently exploring our
idea of using a modular assembly of existing RNA fragments
(Gan et al., 2003) to form a sequence/structure motif. Another
intriguing application of RAG under investigation is to use
the catalogued missing motifs to direct the search for novel
RNA motifs/functions in genomes (Zorn et al., 2004; Laserson
et al., 2004). A coupling of theoretical to experimental efforts
is necessary in this quest. We invite users to explore RAG and
send us their comments to RAG@biomath.nyu.edu.
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