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Abstract: Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics.
Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic
computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to
simplify the model and associated calculations, but they are generally used in combination with standard atomic models
for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that
are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the
DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few
hundred discrete charges on a surface enclosing the system modeled by the Debye-Hiickel (screened Coulombic)
approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can
represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the
surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are
optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a ~5.5% residual. Because
regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we
develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare
charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular
surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field
is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by
the TNPACK minimizer) is efficient and does not depend on the initial assigned values, and that the residual is
acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications
of DiSCO’s model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins.
DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate,
to yield a resolution between the all-atom representative and the polymer level.
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Introduction

Biomolecular electrostatics governs many important processes as-
sociated with DNA and/or proteins." However, evaluating the
electrostatic component of the force in dynamic simulations is
challenging because of the complex structures of macromolecules,
the large number of solute atoms, and the huge amount of water
molecules and salt ions. The third difficulty can be avoided by
modeling the solvent as a continuum, a successful approach in

many applications today. Several major types of implicit solvation
models are widely used*>: finite difference solutions of the non-
linear Poisson-Boltzmann equation (PBE),* boundary element
methods (BEM),” and the generalized Born (GB) model.®~'° The
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first approach solves the electrostatics potential at each point on a
computational grid, given fixed charges on the macromolecules.
The second approach can produce effective charges for the system,
namely solute charges and induced surface charge, but its perfor-
mance depends on the density of surface elements. In the third
approach, the electrostatic potential is estimated based on effective
Born radii and an analytical atom-pair energy function. Excellent
packages are available for solving the PBE, such as that by the
McCammon and Holst groups'''? and by Honig and cowork-
ers*!? (see also Chapter 9 in ref. 14). When very large biopolymer
systems that contain multiple proteins bound to long DNA are the
targets for the long-time (millisecond and longer) studies, “me-
soscale” type models are appropriate—which incorporate local
details as necessary (like protein-bound sites) and approximations
as possible (e.g., wormlike chain/bead model for supercoiled DNA
of thousands of base pairs)—to make possible long simulations
such as by Brownian dynamics.'?

Beard and Schlick have recently developed the Discrete Sur-
face Charge Optimization (DiSCO) algorithm'® to address these
difficulties with the motivation of studying chromatin folding."”
Essentially, the nucleosome core with its wrapped DNA is mod-
eled as a simple geometric object (a disk and a cylinder), based on
the nucleosome core crystal structure.'® A few hundred discrete
surface charges'® are assigned based on an optimization procedure
that minimizes the Debye-Hiickel (DH) approximation (electric
field)'*-*° with respect to the nonlinear PBE. The linker DNA—
which connects each nucleosome core particle to the next—can
then be represented by the homogeneous wormlike chain/bead
model developed by Allison and coworkers?'**? and extended by
Chirico and Langowski for supercoiled DNA**** (see model de-
velopments for linear DNA,? circular DNA at low salt,*® and
circular DNA at high salt*’). Thus, the DiSCO approach can
reduce the electrostatic calculations for medium- and long-range
macromolecular interactions and make possible large-scale rear-
rangements in Brownian dynamics simulations.'” DiSCO has also
been used more recently to study the Hin-mediated and Fis-
enhanced DNA inversion reaction,”®?° in which three protein-
bound sites on long supercoiled DNA juxtapose to form a synaptic
supercoiled complex.*°—? Such applications can help in under-
standing systematic effects, such as chromatin folding as a func-
tion of salt, or the dependence of juxtaposition dynamics on the
superhelical density and on the bound proteins.

An alternative algorithm termed ECM (Effective Charges for
Macromolecules in solvent) developed by Gabdoulline and
Wade®® also uses effective charges (potential derived) to model
macromolecules in implicit solvent, with the charges placed inside,
rather than on the surface, of the macromolecular systems. ECM
derives the effective charges by fitting them to reproduce the
electrostatic potential calculated relative to the finite-difference
solution of the linearized PBE. Because the approximate solution
by linearizing PBE should satisfy |e¢| < 1, where e is the
elementary charge, this approach works well only when the elec-
trostatic potential ¢ is small. As we will show here, a refinement
based on the electric field (E) rather than the electrostatic potential
(¢, where —V¢ = E) is more robust. Furthermore, optimization in
DiSCO using our truncated Newton minimizer TNPACK?**7¢ is
efficient and likely works better than the procedure used in ECM
based on matrix inversion, which is computationally intensive and
a potential source of error for large systems.
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Figure 1. The crystal structure, regular DiSCO surface, and irregular
DiSCO surface of the nucleosome core particle (PDB code: laoi).'®
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com]

The first version of DiSCO was applied to model the nucleo-
some core particle (Fig. 1A),'® with the following general proto-
col. After reading coordinates from the Protein Data Bank (PDB;
www.pdb.org; nucleosome core particle, code laoi), DiSCO cal-
culates the electrostatic potential ¢ by solving the nonlinear PBE
using QNIFFT 1.2,>’7*° an outgrowth of the DelPhi program.*'?
The corresponding electric field E is then calculated as E = —V .
For the nucleosome core particle, the surface is predefined— by an
engineering-type construction—to be a composite of one large
disk for the DNA-wrapped nucleosome core and a small cylinder



Irregular Surfaces for Mesoscale Electrostatics

27 T nucleosome
/ core particle

33~
=
N o [
-52 5 B e e |
computatienial domain
__A{whole cube) .
-0 '-'_'_"_-.- g 2
166 e ja e T
123 o
81 TR L
Y [A] 39 T 19 X [A]

3 -6l

2065

¢ - minimization distance
(probe radius)

I(\h_'
model surface, §
123
minimization
surface, S,
81
39+
V' - minimization space (outside § ;)
3k " . i
-61 19 23 65 108

X [A]

Figure 2. Left: the computational domain of the electrostatic potential and the electric field contains 65 X
65 X 65 grid points enclosing the nucleosome core particle. Right: the minimization space V' (of the residual)
defines the computational domain separated from DiSCO surface by the minimization distance d. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com]

for the protruding H3 tail, as shown in Figure 1B. Initial values for
the discrete charges are then assigned on the model surface,'® after
which DiSCO calculates the corresponding DH potential ¢ and
associated electric field E. The DH potential ¢ at position r; is
defined as

- _ q;e
dr) =27 (1)
j=1 :
_ 8me’N,C, )
= kyTe &

where N is the number of discrete surface charges; g; is the value
of discrete surface charge j; r,; is the distance between charge j
and position i; k, is the Boltzmann constant; 7 is the absolute
temperature; € is the dielectric constant; e is the elementary
charge; N, is the Avogadro constant; C, is the monovalent salt
concentration. (The DH potential is a linear homogeneous approx-
imate solution to the nonlinear PBE if [e¢p| < 1.) DiSCO then uses
the TNPACK minimizer developed by Schlick and coworkers** 3¢
to optimize the values of the discrete surface charges ¢;, j = 1,
2, ..., N, so as to minimize the residual R of the electric field E
between the nonlinear PBE solution and the DH approximation.
Finally, DiSCO outputs the optimal charges and the minimum
residual.

Here, we report enhancements of the DiSCO package in terms
of both modeling and computation. Namely, we now construct
irregular, rather than regular surfaces, to enclose any general
macromolecular system, and also allow the refinement (to produce
the discrete surface charges) based on the electrostatic potential as
an alternative to electric field-based refinement; we find the latter
to be more robust. We evaluate performance of these enhance-
ments by comparing the former models of the nucleosome core

particle system with the new approximation, and also study the
dependence of the residual R on the threshold distance d beyond
which the DiSCO approximation is valid, and the dependence of
the optimized discrete surface charges on their initial values. We
also illustrate the DiSCO models for the recent Hin-mediated
application.?®-°

The article is organized as follows. In the next section, we
describe how we construct irregular models enclosing general
macromolecular systems and perform the optimization to assign
discrete surface charges. We then describe results to evaluate E
versus ¢-based refinement, regular versus irregular models, effects
of surface smoothing, and the performance of charge optimization.

Methods

Computing the Electrostatic Potential and Electric Field

DiSCO computes the electrostatic potential ¢(r) by solving the
nonlinear PBE for a monovalent salt solution using the QNIFFT
1.2 package.’”*° DiSCO runs QNIFFT under the “coulombic”
boundary condition followed by the focussing boundary condition,
used to represent an infinite media. The computational domain is
a 65 X 65 X 65-grid-point cube that encloses the whole system
(e.g., nucleosome core particle), as shown in Figure 2 (left). The
ratio between the largest dimension of the target macromolecule
and the side length of the cube is 0.5 under the coulombic and 0.6
under the focussing boundary condition. This means that the side
length of the cube is decreased under the focussing boundary
condition in order to minimize the edge effect in the calculation
under the coulombic boundary condition. The corresponding
scales are 0.25 grid/A and 0.30 grid/A, respectively.

In solving the nonlinear PBE, atomic partial charges are as-
signed from the 1995 AMBER force field.* The atomic radii are
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assigned with the extended atom radii based loosely on Mike
Connolly’s MS program.*' The temperature T is set to 298 K. At
this temperature, the solvent’s dielectric constant € is 78.3.*> The
dielectric constant inside the target macromolecule is assigned to a
low value of 2 following the literature.*'® The salt concentration
C, is varied from 0.01 to 0.10 M, with charges optimized as a
function of C,. These assignments and settings echo those used in
the original DiSCO package'® except for the slight change in &
(78.3 now instead of 80).

After the electrostatic potential ¢(r) is computed, the electric
field E(r) = —V¢(r) is calculated, where differentiation is per-
formed with respect to the independent variables r (Cartesian
coordinates of grid points in the computational domain).

Building Surface Models

Programs such as GRASP*? can also construct molecular surfaces
of macromolecules. However, such surfaces require many more
points to define than appropriate for long-time simulations of large
systems. DiSCO aims to represent a macromolecular complex by
a few hundred discrete surface charges.

The original models were built manually'® and thus reflected
regular domains, such as those constructed from cylinders and
spheres. To apply DiSCO more generally, we developed the follow-
ing algorithm to automatically construct geometric models for any
macromolecular complex. There are four major steps in the irregular
DiSCO model building procedure (Fig. 3), which we describe in turn.

Defining Surface Elements/Filling Empty Volumes/Initial
Smoothing

Surface models are constructed in spherical coordinates (p, 6, ¢),
0 € [0°, 180°], ¢ € [0°, 360°]. The coordinate center of the target
macromolecule is defined as the origin, with

0,=(—1)xA0, j=1,...,j_max,

o=(k—=1)XAp, k=1,...,k_max,

A0 =Ap=4° j_max = 180/A0, k_max = 360/A¢

Note that (j, k) indexes the volume element represented by
0;:0,+ A0, ¢, : ¢, + Ag, in which the algorithm finds an atom
whose center is farthest away from the origin, and defines its
distance vector as p(j, k) (Pseudocode 1). The associated surface
area p(Jj, k)sin(0)AOA¢ is defined as the surface element SE(j, k),
as shown in Figure 3A (left):

/* Pseudocode 1: Defining Surface Elements */
/* Natom: total number of atoms in the target macromolecule */
/* Initialize all p(j, k) to zero */
for i = 1, Natom
(x;, ¥i» 2;) = (J, k); /* find the volume element for atom i
*/
p = VAT ETE
if p(j, k) < p;
p(j. k) = p;
end
end

Because not every 3D slice contains atoms, that is, p(j, k) may
still be 0 for some (j, k) after Pseudocode 1, we thus implement
Pseudocode 2 to perform the following operations. If p(j, k) = 0,
then p(j, k) will be assigned to the average value of its nearest
nonzero neighbors [p(j — nb, k), p(j + nb, k), p(j, k — nb),
p(j, k + nb)], where nb is increased from 1 to 3 until a nonzero
neighbor is found. For certain p(j, k), no nonzero neighbors can
be found even if nb has reached 3. Then the filling procedure
continues until all p(j, k) are nonzero. We denote this process as
“filling empty volumes,” as summarized below:

/* Pseudocode 2: Filling Empty Volumes */
/* Nzero: total number of p(j, k) whose value is 0 */
Nzero = 0;
forj = 1, j_max
for k = 1, k_max

if p(j, k) == 0
Nzero = Nzero + 1;
end
end
end

while Nzero > 0
forj = 1, j_max
for k = 1, k_max
if p(j, k) == 0
fornb = 1,3
if p(j — nb, k) > 0 or p(j + nb, k) > 0
or p(j, Kk — nb) > 0 or p(j, k + nb) > 0 /* 4
neighbors */
) sum of the nonzero neighbors
Pl k) = number of the nonzero neighbors :
Nzero = Nzero — 1;
break; /* exit current loop of nb */
end
end
end
end
end
end

To smooth the model surface, the program executes “Initial
Smoothing” (rounds of smoothing, RS = 1). If p(j, k) is smaller
than all of its four nearest neighbors [p(j — 1, k), p(j + 1, k),
p(j, k — 1), p(j, k + 1)], then p(j, k) is assigned to the average
value of these neighbors. This process (Pseudocode 3) is only
executed once over p(j, k) in this step. The target macromolecule
now has a closed model surface enclosing the macromolecule itself
(Fig. 3A, right).

/* Pseudocode 3: Smoothing */
/* Nmini: total number of p(j, k) whose value is smaller than
any of its 4 near neighbors */
/* RS_MAX: maximal rounds of smoothing. For 1 round of
smoothing, RS_MAX =1 */
Nmini = 1; RS = 0;
while Nmini > 0 and RS <= RS_MAX
Nmini = 0; RS = RS + 1;
forj = 1, j_max
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Figure 3. Irregular DiSCO model building procedure. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com]

for k = 1, k_max
if p(j, k) < p(j — 1, k) and p(j, k) < p(j + 1, k)
and p(j, k) < p(j, k — 1) and p(j, k) < p(j, k + 1)
/* 4 neighbors */

) sum of all the 4 neighbors

p(j, k) 1 ;

Nmini + 1;

Nmini
end
end
end
end

Multiple RS (RS > 1)

To make the model surface smoother and simpler, we execute mul-
tiple RS. Figure 3B shows two smoothed model surfaces as obtained
in the rounds RS = 50 and RS = ~170,000. The latter is the irregular
model surface used for the nucleosome core particle (Fig. 1C).

Distributing Overall Surface Points

Because the p(j, k) values are reassigned during the RS, the
corresponding surface elements SE(j, k) are redefined automati-
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Table 1. Debye Length A, at Different Salt Concentrations C; (T = 298 K).
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0.01
30.4

0.02
21.5

0.03
17.6

C, M)
Ap [A]

0.04
15.2

0.05
13.6

0.06
12.4

0.07
11.5

0.08
10.8

0.09 0.10
10.1 9.6

cally. Because each surface element SE(j, k) usually has a dif-
ferent value of p(j, k) from its neighbors, the program evenly
distributes surface points not only on the front face of surface
element SE(j, k), but also on its right side and bottom (Fig. 3C).
These two surfaces join the surface element SE(j, k) to its right-
side neighbor SE(j, k + 1) and bottom-side neighbor SE(j + 1,
k), respectively. [For the left and top side, the program has already
distributed surface points when it operates on SE(j, k — 1) and
SE(j — 1, k), respectively.] Thus, the resulting surface points are
evenly distributed on the whole model surface. The density of the
surface points is set to 4.0 per A2 in the program.

Choosing Discrete Surface Charges

The set of N discrete surface charge points is selected as a subset of
the set of previously generated surface points. To distribute surface
charge points evenly, the algorithm divides the set of surface points
into N groups. In each group the surface charge position is assigned as
the point farthest away from the the surface charge points already
assigned in other groups (Fig. 3D). (The first chosen surface charge

point can be any surface point in the first group.) In our nucleosome
model, we consider six N values: 62, 79, 144, 199, 277, 353 (to be
comparable with the regular DiSCO models'®).

The entire DiSCO model-building procedure (with ~170,000 RS)
only takes 47 s of CPU time on the SGI R12000 for the nucleosome
core particle (12,386 total atoms for the proteins and DNA).

Optimizing Discrete Surface Charges

The initial values of all the discrete surface charges ¢(j), j = 1,
2, ..., N are assigned to zero. (We show that this assignment is
reasonable in the Results section.) DiSCO uses our group’s
TNPACK** ¢ (a truncated Newton minimization package) to
minimize the residual of the electric field (or the electrostatic
potential) by optimizing the discrete surface charges. The formulae
for the residuals are the following:
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Figure 4. Top: the original regular surface models'®
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of the nucleosome core particle with different numbers

of discrete surface charges N. Bottom: the residual R as a function of the salt concentration C for different N,

as shown on top, with d =

10 A (the minimization distance) based on the E refinement (left) and ¢ refinement

(right). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com]



Irregular Surfaces for Mesoscale Electrostatics 2069

- N7
- N= |00
03 el
nas: Vi |
4 AL M
P
@ 02 AN
= g
o i
A '
:.:'ﬂ 015- / v a0l M
s ol
A _a0I0M_——"0HM
01t P4 -~ asi s
o
A
P
5~ e
oS .
Iy
P
kT 0s ol 015 02 028 03 L35
161
#}
W
of
=
=
o
Y P
16 - :
-16 5 il 3 16

q, lel

1357 i
03t 1
125} |
"Eu nal _II“IM.. |
= e 2 010 My
- {1 s
.15} b p |
= { ¥
I F
1 £ o !
QLG #
{49
NSt ‘/‘ !
il L L L |
[}] L5 [iN} mnis 02 n2s 13 0n3s
R, (qy)

10 -5 0 5 ]

q,lel

Figure 5. Top: comparison of the residual of electric field Ry (left) and the residual of electrostatic
potential Ry, (right) between E refinement and ¢ refinement. Bottom: comparison between the optimizefl
discrete surface charge sets gy (from the E refinement) and g, (from the ¢ refinement) with d = 10 A
and C; = 0.05 M, for N = 79 (left) and N = 199 (right). [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com]
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where Ry, Ry are the residuals of the electrostatic potential and
electric field, respectively; ¢ is the electrostatic potential (of the
target macromolecule) solved from the nonlinear PBE; ¢ is the DH
potential of the model; E and E are the corresponding electric
fields; and N, is the number of grid points in the minimization
space V' (Fig. 2, right).

The minimization of the residuals only operates on the grid
points in the computational domain V' outside the minimization
surface S,,;, (Fig. 2). The surface S,,,, is separated from the model
surface S by a distance d (Fig. 2, right). To satisfy the condition of

min

the DH approximation (|e¢p| < 1), the distance d is usually set to
a value greater than the Debye length'®:

1
Ap = © ©)

where k is defined in eq. (2). The Debye length values at different
salt concentrations are listed in Table 1.

The original DiSCO algorithm optimized the discrete surface
charges in terms of the electric field. The ECM algorithm®? derives
effective charges in terms of the electrostatic potential. To test
which refinement (electric field or electrostatic potential) is more
robust, we have modified the DiSCO algorithm to optimize the
discrete surface charges based on the electrostatic potential. Be-
cause we find the latter less robust, we retain the original procedure
in the distributed package.
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Figure 6. Top: the electrostatic potential on the molecular surface of the nucleosome core particle, visualized
by GRASP, at C; = 0.05 M. The electrostatic potential is computed by QNIFFT. Bottom: irregular DiSCO
surface models with different numbers of discrete surface charges N, optimized with d = 10 A and C, =0.05
M. The color of a charge represents it value according to the scale at bottom. The models are visualized with
the program VIEWMODEL.** Each charge is visualized with a 2.5 A radius, and each p(j, k) (see Fig. 3) has

been reduced by 2 A to make the charges clear.

Results

Electrostatic Potential Refinement Versus Electric Field
Refinement

To compare the potential-based (¢p) refinement with the electric
field-based (E) refinement, we use the original regular surface
models'® of the nucleosome core particle, as shown in Figure 1B.
We define the resulting optimized charge sets as (q,) and (gg),
respectively. The residual R as a function of the salt concentration

C, is calculated for different numbers of discrete surface charges
N, varying from 62 to 353, as shown at the top of Figure 4 based
on both refinements.

From Figure 4 we see that the residual of E (Ry;) is about twice
as large as the residual of ¢ (R,). This is reasonable given the
relationship between E and ¢. Namely, when QNIFFT solves the
nonlinear PBE using finite differences,'? every grid point (except
those on the boundary) is surrounded by six nearest grid points;
because E(r) = —V¢(r), one error of ¢ at one grid point causes
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errors of E at its six nearest grid points, each of which only has an
error in one of its three components (E,, E, E_). Thus, one unit
error of ¢ can cause about 6 X 1/3 = 2 éorresponding units of
error for E. We also note that the residual R in both cases increases
at the low end and the high end of the salt concentrations. This may
be caused by the nonlinear electrostatic effects on one hand and
numerical errors on the other, related to our representation of fewer
DH charges than actual molecular partial charges and the inhomo-
geneous medium of our system.

We also compute the residual of E (R) from the ¢ refinement
and the residual of ¢ (R ) from the E refinement. We compare Ry,
from both refinements in Figure 5 (top left), and R, from both
refinements in Figure 5 (top right). The ¢ refinement gives 2—4%
higher residuals Ry than the E refinement, while the E refinement
gives only 0-1% higher R, than the ¢ refinement, for all salt
concentrations except 0.01-0.02 M.

These tests show that the E refinement is much more robust
than the ¢ refinement. The reason may be that all three compo-
nents of E (E,, E, E) are considered in the E refinement, while
¢ is only a scalar in the ¢ refinement.

We also compare the actual values of the optimized discrete
surface charge sets gy, and g, withd = 10 Aand C, = 0.05M
in Figure 5 (bottom) for N = 79 and N = 199. The figure clearly
indicates that both refinements produce very similar and compa-
rable optimal discrete surface charges.

Choosing the refinement type is system dependent. However, over
a wide range of salt concentrations (=0.02 M), the E refinement can
yield a much more robust representation of macromolecules. There-
fore, all the following work is based on the E refinement, and R
denotes the residual of E based on the E refinement [R = Rg(qg)]-

Regular Versus Irregular Models

The previous regular DiSCO models'® for the nucleosome core par-
ticle had an ideal shape: a disk and a small cylinder (Fig. 1B). In
comparison, Figure 6 (bottom) shows the models produced with our
new irregular model building procedure (Fig. 3) for N = 62, 79, 144,
199, 277, 353, with d = 10 A and C, = 0.05 M. These charges have
been optimized with TNPACK. The color of a charge represents its
electronic charge, with blue representing positive values and red
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Table 2. Comparison of the Residual R for Different Numbers of
Discrete Surface Charges N, with d = 10 A and C, = 0.05 M, for
Five Model Surfaces Listed in the Order of Simple to Complex.

Irregular surface

Regular GRASP

N surface All smoothed RS = 50 RS =1 model
199 5.96% 3.43% 3.86% 4.05% 4.28%

353 3.70% 2.75% 2.79% 3.03% 3.37%

500 — 2.52% 2.60% 2.60% 3.13%

1000 — 2.41% 2.38% 2.42% 2.52%
2000 — 2.33% 2.30% 2.38% 2.34%

For each N, the underlined R indicates the smallest residual.

representing negative values (see scale at bottom). The dielectric
constant € inside and outside the model surface has the same value as
that of the solvent, and the surface charges have no size. The models
are visualized by our program VIEWMODEL.**

Figure 6 (top) shows the electrostatic potential on the mo-
lecular surface of the nucleosome core particle built on the
crystallographic coordinates'® as visualized by GRASP*
(C, = 0.05 M). The electrostatic potential is computed by
QNIFFT. The molecular surface is also built by GRASP (using
a reinvented “Marching Cubes” algorithm to produce a surface
tessellation). We can see that the distribution of the discrete
surface charges is consistent with the molecular surface poten-
tial map. (Note the positively charged histone tails and the
negatively charged nucleosome exterior where DNA wraps
around.)

The residual R as a function of the salt concentration C, for
different numbers of discrete surface charges N with d = 10 A is
shown in Figure 7 (top). Clearly the new irregular surface models
reduce the residual R significantly. Still, while a regular surface
could be constructed for the nucleosome, this is not possible in
general, and the new approach can automatically be applied to any
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macromolecular complex. Note that the slight difference we see in
R between Figure 4 (bottom left) and Figure 7 (top left) results
mainly from our lower setting in the latter case for the QNIFFT
convergence parameter (10~ % instead of 107 7).

In Figure 7 we also compare the residual R for N = 79 and N =
199 at two d values 10 A (bottom left) and 20 A (bottom right). We
see that, in both cases, the irregular surfaces yield smaller residuals. At
the larger distances, residuals are smaller for both models because the
DH approximation is more accurate the farther we are from the
surface. Even with d = 20 A, the irregular models yield a better
representation of the nucleosome core particle, decreasing R by
0-3.5% for N = 79, and by 0-2% for N = 199.

Effects of Surface Smoothing

The irregular DiSCO models can reduce the residual significantly,
because their surface is closer to the molecular surface. However,
the molecular surface is clearly complex and requires sufficient
smoothing to be practical. Table 2 shows the residual R for
different numbers of discrete surface charges N with d = 10 A and
C, = 0.05 M, from five kinds of model surfaces in order of
decreasing smoothing, from left to right: original DiSCO model
(Fig. 1B), all smoothed (Fig. 1C and 3B, right), RS = 50 (Fig. 3B,
left), RS = 1 (Fig. 3A, right), and GRASP model (Fig. 6, top). The
discrete surface charge assignment of the GRASP model is the
same as that of our models (Fig. 3D). In Table 2, each underlined
R indicates the smallest residual for the corresponding number of
discrete surface charges N. We see that for N = 199, 353, and
500, the ““all smoothed” DiSCO model surface obtains the smallest
residual R (3.43, 2.75, and 2.52%, respectively); for N = 1000
and 2000, the RS = 50 model surface obtains the smallest R (2.38,
2.30%, respectively). Clearly, the greater the number of surface
charges, the better the representation of a complex macromolecule.
The GRASP model surface is too complex for practical simula-
tions of long time.

N=199

0

10 5 i 5 In

Q" [l

Figure 8. Comparison between the sets of optimal discrete surface charges Q7" and Q5"
corresponding to two sets of initial values Q, (0, 0,...) and Q, (rand, rand, ...) for
N =79 (left) and N = 199 (right), where rand is a random number between 0 and 1. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com]
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Table 3. CPU Time ¢ Used by TNPACK to Minimize the Residual of the Electric Field on SGI R12000, for
Different Numbers of Discrete Surface Charges N with d = 10 A and C, = 0.05 M.

N 62 79 144 199
t [min] 0.47 0.38 2.30 3.09

271 353 500 1000 2000

4.42 5.60 8.12 15.36 33.63

The number of grid points in the minimization space V' (Fig. 2, right) is N, = 1084.

Dependence of Charge Optimization on Initial Values and
CPU Time

In our original algorithm, we have set the initial values of the discrete
surface charges according to the surface charge density o(r) com-
puted from the electric field E(r).'® We now prove that this step is not
necessary. The minimization program TNPACK*—° used for
DiSCO can find the optimal charges just as well when the initial
values are arbitrarily but reasonably assigned.

We experiment with two sets of initial values: O, = 0,0, ... ;
Q, = rand, rand, . . . , where rand is a random number between 0
and 1. Q, is the set of initial values used above that yielded a
distribution of optimal charges (Fig. 6, bottom) consistent with the
molecular surface potential map (Fig. 6, top). The corresponding
sets of optimal charges Q77" and Q5" are compared in Figure 8
(left for N = 79 and right for N = 199). We see that DiSCO finds
nearly the same set of optimal charges, given either Q, or O, for
N =79 and N = 199.

TNPACK not only finds optimal charges given reasonable
initial values, but also performs the optimization very efficiently.
Table 3 shows the CPU time ¢ used by TNPACK to minimize the
residual of the electric field on SGI R12000 as a function of
increasing numbers of discrete surface charges N with d = 10 A

Fis dimer

Fis dimer

4 (enhancer)

\

Hin dimer

Hin dimer

5.3 kbp circular DNA

and C, = 0.05 M. The number of grid points N, = 1084 in the
minimization space V' (Fig. 2, right).

Discussion

The nucleosome core particle, which has more than 12,000 atoms,
now can be represented as an irregular DiSCO surface of 353
discrete charges with only a ~3% residual of the electric field over
a wide range of salt concentration (C; = 0.04 M). As another
application, we illustrate in Figure 9 the irregular surface construc-
tion for the Hin/Fis DNA inversion system.”®?° The computa-
tional requirements in both cases are reduced significantly for the
medium- and long-range macromolecular interactions and allow
long-time Brownian dynamics simulations to study interesting
biological phenomena.'”-*%:2°

We have shown that the E refinement is much more robust,
likely because the three components of the electric field (E,, E,,
E_) are optimized simultaneously; while in the ¢ refinement the
electrostatic potential ¢ is only scalar. For molecular dynamics
applications, the E refinement is preferable because the electric
field directly produces the electrostatic force. In computing free

Hin dimer: N=200, R =5.9%

Figure 9. DiSCO models for supercoiled DNA with bound proteins in the Hin-mediated inversion system
(left). DiSCO represents a Hin dimer as 200 discrete surface charges with a 5.9% residual (right top) and
a Fis dimer as 100 charges with a 4.4% residual (right bottom). The Hin dimer and the Fis dimer have
more than 8,200 and 3,600 atoms, respectively. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com]
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Figure 10. The residual R as a function of the minimization distance
d at different salt concentrations C for N = 353. [Color figure can be
viewed in the online issue, which is available at www.interscience.wi-
ley.com]

energies, both refinements can be used as both perform well in
terms of reproducing the electrostatic potential.

The algorithm developed here for building irregular surface
models is simple and can be applied to any complex macromolec-
ular system. As mesoscale models become important for bridging
all-atom resolution with long-time polymer behavior, the DiSCO
approach will be useful.

Note that the DH surface approach is only appropriate for
studying the medium- and long-range macromolecular interactions
and not short-range interactions or binding events, because the
residual R is acceptable only when sufficiently far from the surface
(i.e., d is close to, or greater than, the Debye length A ). Figure 10
shows the residual R as a function of the minimization distance d
at different salt concentrations C, for N = 353. The residual R
decreases as d increases. The Debye length A, is shown in Table
1. For short-range interactions, a new short-range potential that is
more accurate than the DH approximation must be developed.

DiSCO models are built based on the static geometry of mac-
romolecules. For macromolecules with flexible conformations, we
might compute DiSCO surfaces as a function of conformational
changes, or DiSCO surfaces only for the rigid parts of macromol-
ecules. The latter approach has been applied in refs. 17, 28, and 29.

We invite users to apply our DiSCO program, which can be
downloaded from http://monod.biomath.nyu.edu/index/software/
DiSCO. The VIEWMODEL program (visualizing DiSCO models)
can be downloaded from http://monod.biomath.nyu.edu/~qzhang/
Softwares.htm.
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