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Abstract

An analysis and expansion of our resource for classifying, predicting, and designing RNA structures, RAG
(RNA-As-Graphs), is presented, with the goal of understanding features of RNA-like and non-RNA-like motifs
and exploiting this information for RNA design. RAG was first reported in 2004 for cataloging RNA secondary
structure motifs using graph representations. In 2011, the RAG resource was updated with the increased
availability of RNAstructures andwas improved by utilities for analyzingRNA structures, including substructuring
and search tools. We also classified RNA structures as graphs up to 10 vertices (~200 nucleotides) into three
classes: existing, RNA-like, and non-RNA-like using clustering approaches. Here, we focus on the tree graphs
and evaluate the newly foundedRNAs since 2011, which also support our refined predictions of RNA-likemotifs.
Weexpand theRAG resource for large tree graphs up to 13 vertices (~260 nucleotides), thereby catalogingmore
than 10 times as many secondary structures. We apply clustering algorithms based on features of RNA
secondary structures translated from known tertiary structures to suggest which hypothetical large RNA motifs
can be considered “RNA-like”. The results by the PAM (Partitioning Around Medoids) approach, in particular,
reveal good accuracy,with small error for the largest cases. TheRAGupdate here up to 13 vertices offers a useful
graph-based tool for exploring RNA motifs and suggesting large RNA motifs for design.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

It is now well appreciated that RNA molecules have
essential roles in the regulation of geneexpression and
signal recognition [1–4] besides their widely known
roles in protein synthesis by mRNA, tRNA, and rRNA.
The functionalities of RNAsaremadepossible by large
variations of secondary and tertiary motifs. Unlike
proteins, where structural genomics initiatives have
been advancing for decades [5,6], systematic connec-
tions betweenRNAstructures and their biological roles
remain largely unclear. Thus, improvements in the
connection between RNA's structure and its function-
ality can help advance our understanding of RNAs and
the design of new RNAs.
The secondary structure of RNA, less complex

than its tertiary structure, is already a good starting
point for a structural/functional analysis. Secondary
er Ltd. All rights reserved.
structures, in particular, are amenable to mathemat-
ical analysis by graph theory. Graph theory is a well-
established field of mathematics, which has been
used extensively in a variety of economic, social,
engineering, biological, and medical contexts to
describe and analyze complex networks [7–10].
Shareability networks have been used recently, for
example, to analyze cab sharing in New York City
and to propose a 40% reduction in traffic and pollution
due to simple sharing of cabs [11]. We utilize graph
theory here to analyze RNA secondary structures:
we transform RNA secondary structures into graph
vertices and edges to express RNAs as coarse-
grained objects, thereby forgoing a detailed atomic-
level representation (see Fig. 1). Applying graph
theory to compare the 2D (2-dimensional) graphical
representations has already shown to be useful in
some projects [12–14].
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In 2004, we developed and launched the RAG
(RNA-As-Graphs) Web resource†. This framework
catalogs all possible RNA 2D topologies up to 10
vertices and classifies themasexisting or hypothetical,
with the latter divided into RNA-like (“non-existing
but RNA-like”) and non-RNA-like (“non-existing and
not RNA-like”) [15], by clustering features of RNA
secondary structures as tree and dual graphs by
means of graph theory. The graphical information
extracted is in the form of the adjacency and Laplacian
matrices, which describe graph connections, and
the clustering is performed by their vertex number
and eigenvalue spectrum (see Materials and
Methods).
The many applications of RAG, as reviewed

recently [16–18], include the prediction of RNA-like
topologies [19–22], prediction of non-coding RNA
[23,24], computational modeling of the in vitro
selection process for RNA design [25–27], analysis
of large viral RNA [28,29], analysis and design of
riboswitches [30,31], graph partitioning to explore
RNA modularity [16,17,32], and prediction of 3D
(3-dimensional) RNA topologies [33,34].
Many new RNA databases have been developed

since 2004. For example, the RNA family database
Rfam [35] displays consensus secondary structures
for 1372 families of RNA [36], and the RNA STRAND
database catalogs 4666 secondary structures deter-
mined by comparative sequence analysis, NMR data,
andX-ray crystallography [37]. This growth allowed us
to extend RAG and propose an improved classifica-
tion in 2011. In addition, we implemented various
improvements to the RAG Web resource such as
expanded search tools and a user-friendly interface.
Fig. 1. Conversion from a secondary RNA structure into a
chain A) with its tree graph. (b) 80S ribosomal RNA (PDB ID 3
The 2011 update was still limited to tree graphs up to
10 vertices corresponding to about 200 nucleotides of
RNA sequences.
In this work, we upgrade the RAG database with

new prediction results for RNA-like topologies for large
tree graphs up to 13 vertices (~260 nucleotides) in
length, using an auxiliary graph computation program
named nauty and Traces [38]. This makes RAG's
coverage more than 10-fold greater. We then catalog
new existing RNAs from the Protein Data Bank (PDB)
database, as of August 2014, for all secondary
structures translated from solved experimental struc-
tures. Finally, a new prediction for RNA-like motifs is
described based on the PAM (Partitioning Around
Medoids) clustering approach [39].
Our main achievements consist of the two parts: high

accuracy of predicted RNA-like features for the newly
foundRNAsandour extendedRAG for larger topologies
based on the current dataset. In Discussion, we
elaborate upon the significance of those findings, and
we mention the future prospects of clustering for RNAs.

Results

Association of secondary structures to newRNAs

The process of converting an RNA 2D full topology
into a tree graph, which is described in the Materials
and Methods section, is automated in RAG [19]. This
allowed us to exhaustively inspect the current RNA
structures and assign a secondary graph motif to
each. Taking RNA structures from the PDB yielded
Fig. 2. Many new topologies were identified, even
planar tree graph. (a) 16S ribosomal RNA (PDB ID 3 J12,
IZD, chain A) with its tree graph.
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from the RNAs that had been identified before our
last work, because our current procedure for
excision of pseudoknots and separation of multiple
chains allows the conversion of the RNA structures
that could not be handled previously as tree graphs.

Clustering procedure and current assessment

Early in ourRAGproject, the two clusteringmethods,
PAM [39] and k-nearest neighbor (k-NN) [40,41], were
used for predicting novel RNA topologies based on
clustering. Because k-NN considers randomized data
for its prediction, we consider it now to be less reliable
than PAM.
Indeed, by the procedure described in the

Materials and Methods section below (Clustering
and validation procedure), we obtain 77.27% accura-
cy from PAM (Fig. 3 and Table 1) compared to poorer
results by k-NN (see Supplementary Material).

Clustering and validation procedure

Overall, our goal is to predict which of the hypothet-
ical tree graphs are RNA-like. To do so, we cluster the
data points generated from the tree graphs are
clustered into two categories: RNA-like and non-RNA-
like. Two very different clustering approaches can be
considered: k-nearest neighbor (k-NN) [40,41] and
partitioning around medoids (PAM) [39]. The former
uses training data while the latter does not.
The k-NN algorithm classifies a point based on k

closest training data points: a point is classified by a
majority vote of its neighbors, with the point being
assigned to the class most common among its k
nearest neighbors [40,41]. However, due to the lack
of existing motifs for higher vertices, we use all
existing motifs and the same number of randomly
selected non-existing motifs as a training set.
Because of this randomness, we employed 10 trials
by varying the set of random non-existing data.
Once a training set is given, cross-validation is one

of several approaches for estimating how well the
model might perform on future data. One effective
cross-validation method is called leave-one-out
cross-validation (LOOCV) [42]. As its name suggests,
LOOCV leave-one-out cross-validation leaves one
data item from the training set and performs a
clustering to this single isolated data point by the
training set which that now lacks that item. This
process is repeated for each data item, and the
reliability of the prediction is measured by comparison
to confirmed RNA-like and non-RNA-like motifs.
PAM, on the other hand, requires no training set.

PAM partitions all data (existing and hypothetical
Fig. 2. List of newly found motifs and their associated
secondary structures of RAG graphs. For up through
10-vertex graphs, nine new motifs have been found since
our last update.
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Fig. 3. Plot of PAM clustering result. (a) Enumerated RNA 2D motifs up to 10 vertices (upper) and 13 vertices (lower):
the x-axis and the y-axis are the variables reduced by the MDS as described in Deduction of characteristic information from
the Laplacian spectra. Red indicates existing RNAs. (b) PAM classification as RNA-like and non-RNA-like up to 10 vertices
(upper) and 13 vertices (lower): the two medoids, or centers, of PAM are indicated by X. Most existing RNAs (65 of 84
existing RNAs) are confirmed as the RNA-like group (red) but 19 are classified as non-RNA-like (green). Hypothetical
RNAs are further divided and predicted into RNA-like (blue) and non-RNA-like (black) by the PAM clustering approach.
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graph features) in an “ab initio”manner to predict two
groups (RNA-like and non-RNA-like) that are maxi-
mally separated [39]. Thus, PAM clusters the data into
these two groups, each with its center or medoid, by
minimizing the distances within groups and maximiz-
ing the distance between groups.
The fact that the PAM requires no training set

makes the validation fairly straightforward. We
simply perform PAM clustering on the current
dataset and calculate the accuracy naturally by

Total number of existing RNAs predicted correctly as RNA‐likeð Þ
Number of known existing RNAsð Þ

We further check and confirm actual existing
RNAs predicted as either RNA-like or non-RNA-like
graphs (i.e., that we get not just the right number but
the right graphs).

High accuracy of RAG prediction on the newly
found RNAs

The PAM clustering method classifies the motifs
associated with the newly found RNAs in Table 2, as
shown in Fig. 3. Many of the newly found RNAs were
categorized as RNA-like by the RAG clustering
strategy. Notably, although three motifs were misclas-
sified as non-RNA-like, they all have only one existing
RNA; themotifs that havemultiple existing RNAswere
all correctly classified as RNA-like.
The RNAs that are misclassified are the following:

RNA component of bacterial ribonuclease P (PDB ID
2A2E, chain A) [43], adenosylcobalamin riboswitch
(PDB ID 4GMA, chain Z) [44], and tmRNA-SmpB
ribonucleoprotein complex (PDB ID3IYR, chainA) [45].

Drastically extended RAG for larger topologies
and its accuracy based on the current dataset

The number of vertices for RNAs is not limited to 10
because nauty and Traces can generate secondary
graphswithmore vertices. By integrating this software
with our program, we exhaustively created all tree
graphs through 13 vertices, which allows the enumer-
ation of much larger sets of topological descriptors.
Thus, RAG has extended its coverage by more than
10-fold; RAG in 2011 cataloged 199 secondary graph
motifs, but now, the count is 2286, with 2087 graph
motifs added. Since the graph motifs with varying



Table 1. Statistics from PAM.

Vertex Known Predicted Total

Existing Hypothetical Existing Hypothetical

RNA-like
(correct class)

Non-RNA-like
(misclassification)

RNA-like Non-RNA-like

3 1 0 1 0 0 0 1
4 2 0 2 0 0 0 2
5 3 0 2 1 0 0 3
6 6 0 4 2 0 0 6
7 9 2 6 3 2 0 11
8 16 7 13 3 4 3 23
9 15 32 12 3 21 11 47
10 14 92 11 3 60 32 106
11 8 227 5 3 156 71 235
12 4 547 4 0 391 156 551
13 6 1295 5 1 934 361 1301
Total 84 2202 65 19 1568 634 2286

Existing and hypothetical RNA tree motifs, each divided into RNA-like and non-RNA-like by the PAM clustering approach (see Fig. 3 and
Fig. 4). For the 2286 motifs up to 13 vertices, 65 are predicted correctly as RNA-like but 19 are false positives.
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numbers of nodes are clustered together in RAG, we
can make RNA-like predictions for larger topologies
regardless of the lack of larger existing motifs. Such
predictions can be evaluated based on the RNAs
archived from the PDB, which includes new RNAs in
addition to the others that we could not represent in
Table 2. Newly found RNA motifs and their prediction classes

Graph ID Label

8_15 RNA-like

9_2 RNA-like
9_4 RNA-like
9_19 RNA-like

9_46 non-RNA-like
10_4 RNA-like
10_19 RNA-like
10_45 non-RNA-like
11_1 RNA-like
11_24 RNA-like
11_56 RNA-like
11_89 non-RNA-like
11_138 RNA-like
11_177 RNA-like
11_207 non-RNA-like
11_216 non-RNA-like
12_150 RNA-like
12_286 RNA-like
12_387 RNA-like
12_392 RNA-like
13_140 RNA-like
13_181 RNA-like
13_1021 RNA-like
13_1047 RNA-like
13_1154 non-RNA-like
13_1213 RNA-like

For motifs less than or equal to 10 vertices, motifs include updates since
new. Many of the newly found graph motifs are classified as RNA-like. A
have a single RNA each. For example, there are four RNAs found fo
non-RNA-like. The larger RNAmotifs more than 11 vertices include only n
the other results for 12 and 13 nodes are very good. Only one RNA gra
2011. The result is shown as Table 1. The result for 11
vertices is somewhat poor, but there is only one
misclassified structure for 13 vertices, and there is no
error for 12 vertices. There is only one graph, RAG ID
11_24, with multiple existing RNAs, and it is predicted
properly asRNA-like. Table 1 also shows the statistics
.

RNA (PDB ID)

Ribonuclease P RNA (1NBS_A),
18S ribosomal RNA (3J16_K)

Group I intron (1GID_A, 1GID_B, 1HR2_B)
80S ribosomal RNA (3IZD_A)
Signal recognition particle

(1L9A_B, 1MFQ_A, 2GO5_A, 2J37_A)
Ribonuclease P bacterial A-type (2A2E_A)
M-box riboswitch aptamer domain (2QBZ_X)

Glycine riboswitch (3P49_A)
Adenosylcobalamin riboswitch (4GMA_Z)

23S ribosomal RNA (3J5S_A)
M-box riboswitch (3PDR_A, 3PDR_X)

Ribonuclease P (1U9S_A)
Transfer-messenger RNA (3IYQ_A)

Group 1 intron (3BO4_B)
Ribonuclease P (1NBS_B)

RNase P (3DHS_A)
Group I intron with a tyrosyl-tRNA synthase (2RKJ_C)

Tetrahymena ribozyme (1GRZ_A)
80S ribosomal RNA (3ZEX_E)

Group I intron (3IIN_B)
Group I intron (3BO2_BCDE)

Adenosylcobalamin riboswitch (4GXY_A)
Tetrahymena ribozyme (1GRZ_B)

Group I intron (1U6B_CDB)
Group I intron (3BO3_CDB)

Group I intron-product complex (1Y0Q_A)
28S ribosomal RNA (3J16_J)

our 2011 RAG version. For motifs larger than 10 vertices, motifs are
few of them are misclassified as non-RNA-like, but those motifs only
r ID 9_4, which are RNA-like, but only one for ID 9_46, which is
ew data. Although there are somemisclassified data for 11 vertices,
ph, 11_24, has two RNAs, and it is properly predicted as RNA-like.



Fig. 4. Numbers of existing RNA-like and existing non-RNA-like vs versus number of vertices. This pictorial view of the
statistics obtained in Table 1 and Table 2 reveals that there are more existing RNA-like (properly predicted) topologies than
existing misclassified non-RNA-like (incorrectly predicted) topologies for every number of vertices.
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for higher vertices, and Fig. 4 visualizes the counts
of existing RNA-like and existing misclassified non-
RNA-like in Table 1.
Finally, a complete catalog of our RAG data is

available. Because of space limitations, only a
subset is shown in Fig. 5 for 10-vertex graphs. The
full catalog can be found in the Supplementary
Material and on our RAG Web site†.

Discussion

We have extensively updated our RAG database
based on the newly discovered RNA structures by
exhaustive enumeration of RAG motifs represented
as tree graphs up through 13 vertices. Our clustering
results show two significant gains: the RAG cluster-
ing strategy yields near 80% accuracy for predicting
existing RNA topologies, and no motif with multiple
existing RNA structures is misclassified. Thus,
estimating features of RNA-like structures according
to their topological representation may be attractive
for RNA design. The predicted RNA-like candidates
are good design candidates, as already suggested
[15,16,19].
In our previous work [15], we used a build-up

approach to predict and identify sequences that fold
onto 10 candidate dual graph motifs. Among those
10 candidate motifs, five have since been experi-
mentally determined [16,19]. To design RNA se-
quences that fold onto the targeted RNA-like
topologies, we have used graph partitioning algo-
rithms based on Laplacian eigenvectors [32]. We
recently suggested a gap cut approach that parti-
tions a graph into two graphs by the largest gap of
the sorted second Laplacian eigenvector μ2; we
have illustrated how to use this gap cut partitioning to
describe basic modules of RNAs and propose their
hierarchical assembly [32].
Figure 6 sketches a design application for RNA-like

graphs. Here, we aim to design a large RNA-like
graph, RAG ID 11_205. The gap cut suggests
partitioning the graph 11_205 into two substructures,
an existing 5_3 corresponding to tRNA (PDB ID2DU3)
and an RNA-like 7_4 graph. The latter graph is further
partitioned into two identical existing graphs 4_2
corresponding to the hammerhead ribozyme (PDB
ID 1RMN). The assembly of these existing sequences
provides a starting candidate sequence for the large
RNA corresponding to the target RNA-like graph
11_205. Of course, computational refinements by 2D
structure prediction programs combined with thermo-
dynamic and experimental validation are needed for
confirmation. However, this systematic design proto-
col for novel RNA-like topologies could help expand
the structural and functional repertoire of RNAs.
Although the RAG classification and prediction

described here exhibited good accuracy for predicting
existing RNA topologies, many improvements can be
envisioned. In addition to eigenvalues, Laplacian
eigenvectors could also be useful for graph descriptors.
The second eigenvector was shown to be useful for
graph partitioning for the discovery of RNA modularity
[32]. This kind of approach reveals a connection
between RNAs' higher-order structures and their
properties. A challenge for the future is to integrate
other descriptors and other methods with the current
strategy to improve the results.
Conclusion

Focusing on tree graphs, we show our refined
RAG classification method to predict well RNA-like
and non-RNA-like topologies of secondary structures
with near 80% accuracy.We have also expanded the
database significantly to larger topologies, adding
10 times as many topologies since the last update.
Our analysis suggests that a topology prediction
approach can be productive and that it reinforces the
idea that the properties of RNAs can be analyzed to
a first approximation by means of their secondary
structures.



Fig. 5. Illustrative subset of the RAG catalogue. We classify all enumerated graph motifs as existing, RNA-like and
non-RNA-like motifs. Existing motifs are colored in red, RNA-like are in blue, and non-RNA-like are in black. The complete
version is available in Supplemental Supplementary Material or at http://www.biomath.nyu.edu/rag/home.
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Materials and Methods

RNA secondary structure data

In our previous works, we used several RNA secondary
structure repositories: Rfam [46], PseudoBase++ [47], RNA
STRAND [48], PDB [49], and Nucleic Acid Database [50,51],
for cataloging secondary structures that are either fully or
partially evaluated by experiment. Here, to analyze the
accuracy and efficiency of our RAG clustering strategy for
predicting RNA-like motifs, we exclusively collected RNA
secondary structures from PDB with untangling of multiple
chains so that the structureswe classify are all experimentally

http://www.biomath.nyu.edu/rag/home


Fig. 6. Design application for RNA-like topologies (example target: RAG ID 11_205). The design procedures using
graph partitioning and build-up approaches are shown. In the first row, graph 11_205 (with random vertex numbering),
corresponding Laplacian matrix, eigenvalues (λ2 in red), and the second eigenvector (μ2) are shown. The largest gap of
the sorted elements of μ2 (vertices 1 and 3) is marked in red. In the second row, two subgraphs (existing graph 5_3 and
RNA-like graph 7_4) and gap cut analysis of RNA-like graph 7_4 are shown. The third row shows the assembly procedure:
the build-up of three existing modules at the assembly points suggested by gap partitioning produce a candidate RNA with
the targeted graph 11_205.
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validated. We also include pseudoknot structures, which
are translated into non-pseudoknot str'uctures for a
representation as tree graphs by removal of extra base
pairings composing the pseudoknots. Note that dual
graphs, as we have described separately (see Ref. [15]
and L. Petingi, N. Kim, and T. Schlick, unpublished
results), can be used tomodel pseudoknotted RNA fully. A
simple modification of tree graphs to model pseudoknots
was also recently presented and applied for prediction of
tertiary structures [18].
RNA tree graph representation

The conversion process from detailed RNA secondary
structures into tree graph representations was detailed in
our previous works [15,19]. Briefly, RAG considers
nucleotide bulges, hairpin loops, internal loops, junctions,
and the 3′ and 5′ ends as vertices, as well as RNA stems as
edges (see Fig. 1).
Enumeration of RNA graphs

To classify all existing graph motifs including the
experimentally found and those not yet solved experimen-
tally, we generate all possible tree graphs with a given
number of vertices. Graph theory offers enumeration
methods for describing all possible graphs [52]. Previous-
ly, we had used the counting polynomial of Harary–Prins
and the figures of graph theory [52], but this scheme for
tree graphs was manual; the polynomial gives the number
of the graphs but no information about the shape, or
topology, of the graphs.
An alternative is the integration of nauty and Traces [38],

two programs focused on canonical labeling and automor-
phismgroupcomputations.Theseprogramscanexhaustively
produce all desired tree graphs. The completeness of the
graph generation is verified by two requirements: the number
of generated graphs should match the result of the counting
polynomial of Harary–Prins, and there should be no
isomorphic graphs, which is confirmed by NetworkX [53].
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Thus, we ensure that all the non-isomorphic graphs are
generated. This effective combination allows us to extend
RAG significantly by adding 235, 551, and 1301 tree graphs
for 11, 12, and 13 vertices, respectively.
Topological descriptors of RNA graphs: Laplacian
spectra

To order all the graphs by their features, we use the
second eigenvalue λ2 of the Laplacian matrix, a matrix that
describes graph connections. The other eigenvalues are
associated with a spectral decomposition associated with
the graph, useful for many applications, for example, graph
partitioning by the second eigenvector [32].
To define the Laplacian matrix, we define the n × n

adjacency matrix for an n-node graph where the non-
diagonal entries aij are 1 if there is an edge between vertex
i and j and are 0 otherwise.
The Laplacian matrix (L) is defined by L = D − A, where

D is the diagonal matrix whose diagonal elements aii
specify the degree of connectivity of vertex i. Thus, for
example, a straight-line-shaped graph with three vertices
has graph ID3_1 in theRAG terminology and corresponding
D, A, and L matrices as follows:

D ¼
1 0 0
0 2 0
0 0 1

0
@

1
A;A ¼

0 1 0
1 0 1
0 1 0

0
@

1
A;

L ¼ D−A ¼
1 −1 0
−1 2 −1
0 −1 1

0
@

1
A

Note that the spectrum of the Laplacian matrix is
independent of the labeling of graph vertices because a
change in labeling can be accomplished by the elementary
operations on the matrices and the elementary operations
do not alter their eigenvalues. Thus, if the spectra of the
Laplacian matrices of two graphs are different, the graphs
are also different. Although identical spectra can be
associated with different graph topologies, this situation is
rare [38].
The pattern of a graph's connectivity is related to its

eigenvalue spectrum (spectral graph theory) [54]. The
second smallest eigenvalue, λ2, for example, is called the
algebraic connectivity and measures the graph's compact-
ness: a linear chain has a smaller second eigenvalue than a
branched structure [55]. Thus, the RNAs are analyzed by
means of their graph invariants, which are eigenvalues here.

Labeling the tree graphs with IDs

We label all tree graphs of the same vertex number by
increasing λ2. Thus, for example, ID 6_1 indicates that the
graph has 6 nodes and the smallest λ2 among all 6-node
graphs; ID 6_3 indicates the 6-node graph with the third
lowest λ2 and so on.

Deduction of characteristic information from the
Laplacian spectra

To derive essential topological features of an RNA graph
so we can compare and visualize, in 2D or 3D, the graphs
with varying number of nodes, we compress the number of
descriptors from the Laplacian spectrum, which is com-
posed of n eigenvalues for a graph of n vertices, to two
variables α and β: the slope α and the intercept β are
calculated by applying the linear least-square regression
to the set of planar points (1, λ2), (2, λ3),…, (n − 1, λn). The
first eigenvalue λ1 is omitted because its value is always
zero. Thus, α measures the average spacing between
positive eigenvalues and the intercept β represents the
second smallest eigenvalue calibrated by α. This type of
reduction mechanism is commonly used in clustering
analysis. One example is in the field of drug design, known
as quantitative structure–activity relationships [56], where
various chemical compounds are described by a few
“topological descriptors”.
Here, we observe that α decreases with n, and therefore,

we assume that nα forms a quantity independent of n. We
thus derive a set of two descriptors, (nα, β), and use this
quantity as a component to perform clustering of RNA-like
and non-RNA-like motifs based on the existing RNA
databases. In addition, considering the relationship of the
eigenequation for powers k = 0, 1, 2,…,

Lkx i ¼ λki x i i ¼ 1; 2;…; nð Þ;
where xi is an eigenvector corresponding to λi, enhances
the accuracy of clustering effectively [15] by allowing us
to add more parameters. We define αk and βk in the
same manner from the powers of the eigenvalues (1, λ2

k),
(2, λ3

k), …, (n − 1, λn
k). Thus, a point in a 2k dimensional

space is obtained for each secondary structure. Our
previous work [15] showed some advantage of the k = 2
space over other values; thus, this value is consistently
used here too.
To make each coordinate's contribution equal for the

predictions, we normalized these values based on the
average of their absolute values. That is, if we let xm =
(mth coordinate), for example, x1 = nα1, the normalized
coordinates xm⁎ are

x�
m ¼ x1 = xmð Þxm:

Note that, although we chose ðx1Þ for the numerator, this
could be the mean of any xm.
Finally, the metric multidimensional scaling (MDS) is

performed to map these four dimensional points to the
same number of two dimensional points keeping the
Euclidean distances among the original points as much as
possible [57].
Program implementation

As mentioned, the 2D tree graphs are generated by the
combination of nauty and Traces [38] and NetworkX [53].
The code for converting RNA 2D full topology into a tree
graph, which was described in the section RNA tree graph
representation, was automated in our previous work [19]
and is used here too. The MDS is performed by the
implementation of the function cmdscale from the multi-
variable analysis library package of R [58]. The k-NN and
PAM clustering are performed by the C clustering library
[20]. All other parts are coded by the first author using
Python. The entire calculation process takes less than 2 h
on Intel® Core™ i5-4258U.
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